施工现场漏电保护器频繁跳闸原因分析
漏电保护器跳闸6种常见问题排查解决方法
漏电保护器不同于断路器和隔离开关。
断路器除了有分合电路功能外,还具有短路保护功能。
隔离开关只有分合电路功能。
漏电保护器除了分合电路功能,并有短路保护功能外,还具有漏电保护功能(漏电电流在30mA——500mA不等)。
建筑供配电系统多采用TN—C—S系统。
一般设置两级漏电保护开关。
第一级设置在电源进户处的总开关处,即电源进户处的总开关选用漏电电流值为300mA——500mA的4级(L1、L2、L3和N线)的漏电开关;第二级设置在用户开关箱中的插座回路(悬挂式空调回路允许不设置漏电开关),选用漏电电流值为30mA的2级(L1或L2或L3和N线)的漏电开关。
从而防止了用电人员触电事故的发生及提高了建筑供配电系统安全运行的可靠性。
漏电保护开关故障跳闸后,万万不可将漏电保护开关的漏电流检测环节摘掉。
应根据故障跳闸现象,分析故障跳闸原因,找出解决故障方法。
漏电开关故障跳闸现象大致有6种:第1种,用电设备本身绝缘损坏,导致用电时发生漏电开关故障跳闸现象;第2种,线路潮湿绝缘强度降低,导致非用电时漏电开关故障跳闸现象;第3种,人身意外触电,导致漏电开关故障跳闸现象;第4、5、6种,施工安装时接线不正确,导致用电时发生漏电开关故障跳闸现象。
详细分析如下↓↓↓第1种:用电设备本身绝缘损坏而漏电(设备中的N线与PE线短接)。
如图1所示。
故障现象:插座回路用电时,插座回路漏电开关跳闸。
故障原因:经分析线路接线正确无误,故判断为用电设备本身绝缘损坏而漏电(设备中的N 线与PE线短接)。
解决方法:更换或维修用电设备。
第2种:线路潮湿绝缘强度降低。
如图1所示。
故障现象:不用电时,也出现AL1中的总漏电开关或插座回路漏电开关跳闸。
故障原因:经分析,线路潮湿绝缘强度降低,导致漏电流超过了漏电开关允许漏电流值。
也可能因线路短路所致。
解决方法:烘干线路,提高绝缘强度。
检查线路若是短路所致,排除短路故障。
第3种:有人触电,出现AL1中的总漏电开关或插座回路漏电开关跳闸。
漏电保护跳闸的原因分析
保护动作原因:1、动作电流过小2、一,三级动作电流,动作时间设置反了3、零线N与地线PE联通;因三相不平衡电流时有出现,零线N的电流不等于0, 引起接地线PE的有电流通过,所以在漏电断路器线圈中三相与零线的电流矢量和不等于0,引起保护动作;4、零线未接入保护,当单项负荷用电时,N线电流未经保护线圈,电流不平衡,保护动作;保护不动作原因:1、接地线PE未接或断开;漏电开关在负载不接地的情况下,当负载出现漏故障时不会立刻跳闸,当有人触电时方才跳闸;因为漏电开关是根据基尔霍夫定理的原理来工作的,当负载对地绝缘正常时,零线与火线的电流矢量和为零;当负载对绝缘损坏并且形成对地电流时,负载火线与零线电流矢量和不为零,零序互感器产生信号,漏电开关跳闸;当负载没有接地时,虽然负载外壳在故障情况下会带有危险电压,但是没有电流产生,零序互感器不会产生信号,漏电开关不会跳闸;漏电保护单极,三级,四级常用三种漏电开关 A 一个是单相的,有两个输入,两个输出,两个输入端子中有一个接相线,再一个接N也就是零线 B 一种是三相三极的,是不用接零线的,这种漏电是不能在输出端只接单相负载就是一根接相线,一根接电箱中的零线端子N,如果这样接线,是合不上闸的,通常这种漏电开关是用在负载平衡的电路当中 C 最后一种就是三相四极的,输入端有四个端子,开关面对着自己,上下不要颠倒,从左至右依次是N零线端子,剩下三个是相线,这种漏电开关通常是用在负载不平衡的电路当中,负载端接单相或是三相负载除非是用电设备漏电都不会跳闸的漏电断路器根据电流平衡原理工作相线和中线穿过一环形磁芯,作为电流互感器的一次线组,而二次侧则连接脱扣装置;当电路正常运行时,相线的电流和中线相等,电流的矢量和等于零;但如果电路出现故障,电流接地,此相线和中线的电流无法平衡,电流矢量总和不等于零;电流互感器的二次线组感应出此情况,经过电子放大线路后使漏电断路器脱扣,切断通往负荷的电路;当剩余电流在额定脱扣电流的50%-100%时,漏电断路器脱扣;漏电断路器的拒动与误动作:1.漏电断路器的拒动作的原因1在TN-C-S系统中,如果检测电路在TN-C段PEN线与L线之间,而在TN-S段的PE线上漏电,则漏电断路器会拒动作;2}在TN-S系统中,由于电路的安装人员把N线接入接入开关,如果在N线上断路,则在L线出现漏电时,由于检测电路不会检测的漏电信号,漏电断路器会拒动作;3在TN-C=S系统中,由于电路安装人员把N线和PE线接在一起解释一下,应该是指在该漏电断路器电源进线处或者之前,相当于PE线也进入一次绕组的环形磁芯内了,如果发生漏电,漏电断路器会拒动作;4在安装使用时,由于漏电断路器灵敏度选择过低,而实际产生的漏电值没有达到规定值,也将拒动作;2.漏电断路器误动作的原因1在TN-C-S系统中,由于安装人员将PF线与N线接反,将引起误动作;2在照明与动力合用的三相四线电路中,错误的选用了三极漏电保护器,负载的零线直接接在保护器的电源侧而引起误动作;3漏电保护器附近有大功率电器,当电器开合时产生的电磁干扰会引起误动作;4相线与零线绝缘电阻太低,部分电流径漏点处泄露大地,使电路正常时通过零序电流互感器的电流矢量和不为零而引起误动作;线路漏电5用电设备外壳的接地线与工作零线相连时,引起误动作;6经过三相漏电保护器的三相电源线未按照同一方向通过电流互感器;引起误动作;7在安装使用时,由于漏电断路器灵敏度选择过高,也将引起误动作;。
漏电保护器经常跳闸原因和处理方法
漏电保护器经常跳闸原因和处理方法漏电保护器是一种安全保护设备,它能够监测房屋电路中的电流流动情况,一旦发现有漏电现象,就会立即切断电路,以避免电击事故的发生。
然而,在实际使用中,有时候会出现漏电保护器频繁跳闸的情况,这给人们的日常生活带来了一定的麻烦。
那么,漏电保护器经常跳闸的原因有哪些?如何处理这个问题呢?谐波电流是指电路中存在的非线性负载(如电子设备、电感电容等)所产生的波形失真,会导致电流的含谐波成分增加。
当电路中谐波电流超出漏电保护器的额定值时,漏电保护器就会跳闸。
这种情况下,我们可以通过以下几种方法来处理:首先,安装滤波器。
滤波器可以减小电路中谐波电流的幅值,从而降低漏电保护器跳闸的概率。
在安装滤波器时应注意滤波器的额定电流和额定压力等参数要与电路匹配,以确保其正常工作。
其次,选用具有良好的谐波适应能力的电器设备。
一些电器设备具有良好的谐波适应能力,即在工作时产生的谐波电流较小,这样可以减小电路中谐波电流的幅值,降低漏电保护器跳闸的概率。
在购买电器设备时,可以选择具有这种特性的产品。
再次,合理使用电器设备。
尽量不要同时使用多个大功率电器设备,以免引起谐波电流超过漏电保护器的额定值。
另外,合理安排用电时间,避免用电高峰期集中使用电器设备。
除了谐波电流超出额定值,电路中存在漏电也是导致漏电保护器跳闸的原因之一、电路中的漏电是指由于绝缘破损、线路老化等原因,电流通过绝缘材料流到地中去。
当漏电电流超过漏电保护器的额定值时,漏电保护器就会跳闸。
这种情况下,我们可以通过以下几种方法来处理:首先,定期进行绝缘检测。
定期检测电路中的绝缘状况,发现问题及时处理,修复绝缘破损的地方,以减少漏电现象的发生。
其次,加强用电设备的保护和维护。
定期检查用电设备的线路是否老化,绝缘状况是否良好,如发现问题及时更换或修复。
此外,还要注意用电设备的正常使用,不要私拉乱接线路,避免出现漏电的可能性。
再次,对电路进行合理规划和设计。
漏电保护器跳闸原因及解决方法
漏电保护器跳闸原因及解决方法第一篇:漏电保护器跳闸原因及解决方法漏电保护器是一种安全电器,可以在电气线路发生漏电时自动切断电源,保护人身和财产安全。
然而,有时该装置会出现跳闸现象,造成困扰。
下面将介绍漏电保护器跳闸的原因及解决方法。
一、漏电保护器跳闸原因1.漏电过流漏电过流是导致漏电保护器跳闸的主要原因之一,这种情况通常是由于器具本身出现漏电或线路绝缘性能不良导致的。
此时,漏电保护器会立即切断电源,避免漏电造成人身伤害和财产损失。
2.漏电保护器自身故障漏电保护器自身出现故障也会导致跳闸,这种情况通常是由于设备老化、损坏或使用不当造成的。
例如,若长期处于高温、潮湿的环境下使用,会导致漏电保护器内部元件老化、失效,失去保护作用。
3.过载电流过载电流也是导致漏电保护器跳闸的一个原因。
当电气设备负荷过大时,会导致设备断路或短路,从而迅速产生大电流,使漏电保护器立即切断电源,防止设备受损。
4.接地电流过大接地电流是指电路中出现一条异常低阻值的接地路径,导致接地电流很大,超过了漏电保护器所能承受的限度。
此时,漏电保护器会自动跳闸,以保护人身和设备。
二、漏电保护器跳闸解决方法1.检查电器设备如果漏电保护器跳闸,首先要检查电器设备本身,确定故障原因。
若是电器设备本身出现漏电等问题,要及时更换或维修设备,以消除故障。
2.检查接线在检查电器设备的同时,还要检查接线是否正确、是否松动,以确保电气线路的稳定性。
若接线出现问题,应当及时将其加固或更换。
3.修复漏电保护器如果漏电保护器出现故障,需要进行及时的修复或更换工作。
应该找到专业技术人员进行检查,确定故障原因并进行维修或更换。
4.限制电器负荷为防止过载电流引发漏电保护器跳闸,应该合理规划设备电力负荷,避免在电气线路中出现过大的电流。
同时,也要合理安装漏电保护器,以确保其发挥最大的保护作用。
总之,漏电保护器是一种重要的电气保护装置,对人身和财产安全具有重要作用。
当漏电保护器出现跳闸现象时,应该及时找到原因并采取相应措施,以确保电气安全和稳定。
漏保越级跳闸故障的原因及处理方法
漏保越级跳闸故障的原因及处理方法一、漏保越级跳闸故障的原因。
1.1 漏电保护器自身问题。
下级漏电保护器可能存在质量不过关的情况。
就像有些小厂生产的漏保,那质量就像“纸糊的灯笼”,一有风吹草动就不行了。
比如说它的内部元件可能在生产的时候就有瑕疵,像脱扣器不灵敏之类的。
还有可能是漏保使用时间长了,老化严重,就像人老了身体机能下降一样,它的各项性能指标都达不到要求了,稍微有点漏电情况就跳闸,而且还容易出现越级跳闸这种乱套的情况。
1.2 线路故障。
1.2.1 线路漏电。
线路要是有破损或者受潮,就容易漏电。
比如说家里的电线被老鼠咬了,那绝缘层破了,电流就会偷偷跑出去一部分,这就造成漏电了。
还有像卫生间这种潮湿的地方,如果电线没有做好防水措施,受潮之后也会漏电。
这时候漏电电流达到一定程度,就可能让下级漏保还没反应过来,上级漏保就先跳闸了,这越级跳闸就发生了。
1.2.2 线路过载。
要是在一条线路上接了太多大功率的电器,就像小马拉大车,线路承受不了这么大的电流。
这时候线路发热,绝缘性能下降,可能会产生漏电现象。
而且过载可能会让漏电保护器误判,导致越级跳闸。
比如说夏天的时候,好多家庭开着空调、电热水器,再加上其他电器,一不小心就过载了,然后就跳闸了,还经常是越级跳。
1.3 漏电保护器选型不当。
上级和下级漏电保护器的额定漏电动作电流和动作时间如果没有合理匹配,那就容易出问题。
就好比两个人配合干活,一个动作太快,一个动作太慢,肯定干不好。
如果上级漏保的动作电流比下级的小,或者动作时间比下级的短,那有漏电情况的时候,上级漏保就会先跳闸,这越级跳闸就出现了。
二、漏保越级跳闸故障的处理方法。
2.1 检查漏电保护器。
2.1.1 首先看漏保的外观有没有损坏的迹象,如果有破损或者烧焦的地方,那很可能就是它本身有问题了,这时候就得换个新的。
就像一个受伤的士兵,不能再上战场了,得换个健康的。
2.1.2 然后可以对漏保进行简单的测试,按一下测试按钮,看看它能不能正常跳闸和合闸。
漏电保护器拒动和频繁跳闸原因分析
漏电保护器拒动和频繁跳闸原因分析作者:栾玲王秀娟来源:《科学与财富》2015年第35期摘要:结合实际,针对漏电保护器拒动和频繁跳闸原因进行了分析。
关键词:漏电保护器;拒动;频繁跳闸;原因1 引言针对我们东宁县电业局的实际情况,我们对漏电保护器的运行情况和安装情况进行了认真的分析,下面就分析情况做如下论述。
2 施工现场漏电保护器频繁跳闸的原因施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的人员甚至管理人员的素质参差不齐,在施工现场强制采用TN-S 三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。
各级漏电保护器是TN-S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。
这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。
通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。
2.1 漏电保护器布局不合理根据《施工现场临时用电安全技术规范》JCJ46-88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。
由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。
在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。
对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。
在一些工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护范围,在每个保护范围内形成二级漏电保护,必要时形成三级漏电保护,这样可以提高每个保护范围内二或三级漏电保护的保护灵敏度,提高保护范围内故障漏电时的漏电保护器的动作率,减少总漏电保护器跳闸。
施工现场漏电保护系统存在问题分析及应采取的措施
中的漏 电流 ,三相或三相四线在磁环中不可能布 置完全均衡 ,在施工现场有较多的电焊机等双相
或 单相 负荷 ,三 相 电流 也不 可 能完 全 平衡 ,甚 至
会相差很大,在大电流下或较高的过 电压下,会
在 有很 高导磁率 的磁环 中感 应 出一 定 的 电动 势 , 这 个 电动 势大 到一 定程 度 ,就 会导 致漏 电保 护 器 跳 闸。又 由于额 定 电流越 大 的漏 电保 护器 采用 相 对 较 大 的磁环 ,产 生的漏 磁通 也相 对 较大 ,且漏
② ③
额定漏 电动作 电流应躲过低 电压 电网正 为了保证 多级保护的选择性, 下一级额定
台 电动机 , 虽然起 动 过 程采 用 了 Y 一△ 启 动 , 电 漏
电流选 择过 小 ,没 有考 虑 漏 电保 护器 后 的配 电线 路上可 能有相对 较 大 的 正常漏 电流 。 1 . 4 电保 护器 的接 线 不止 确
戍裂设漏 电保护器,形成“ 三级配 电二级漏 电保
护” 的模式 。正常 情况下 ,开 关箱 内的末 级漏 电保 护器 是用 电设备 的主 保护 ,总开 关 箱 漏 电保 护器
是后 备保护 。当末级 漏 电保 护器 失效 时 ,总 配 电
() 开关箱 内使 用 的额定 漏 电动 作 电流超 过 1 了 3mA 或者 是超 过用 电设备 额定 电流 两倍 以上 0 的漏 电保护器 ,或 是选用 了 带延 时型 的漏 电保 护 器 , 由于额 定漏 电动作 电流 的提 高或 保护 灵 敏 度 的下 降 ,发 生漏 电故障 时,末 级 漏 电保护 器 没 有 动作 ,上 级漏 电保护 器就可 能 动作 。
现场漏电保护器频繁跳闸原因分析
漏 电保 护器 ,但作 为末 级漏 电保护 ,额定漏
电动作 电流不应大 于 3 m 0 A。
维普资讯
建厂 科技交流
20 年第 2 07 期
( 塔吊是施工现场较大的施工设备 , 4 ) 有多
台电动机 , 虽然起动过程采用了 Y A 起动和转 —
强 ,有 的时候使用这些设备时没有接人开关箱 , 这也增 加 了总漏电保护器频繁跳闸的几率。 只有 在每个保护范 围内形成有效的二或三级漏电保
闸 ,这是部分 电焊机漏 电保 护器 跳闸的原 因。
对 于 这 类 用 电 设 备 一 般 应 选 用 对 浪 涌 过 电 压 、过 电流不 太敏感 的电磁 型漏 电保护器 ; 或 选用 比电焊 机额定 电流大 1 . 倍 的电子式 .2 5
路使用了绝缘质量很差的导线 ,接头包扎不好 、 导线直埋不按规定敷设 、电缆过路不穿保护管 等,造成漏电保护器的频繁跳闸。 2 漏电保护器选型不合理
资料 , 现对造成施工 中漏电保护器频繁跳闸的
原因 ,进行 了如下的分析。 I 现场管理及使用不 当
根据 《 施工现场临时用 电安全技术规范 》
保护器后 ,在发生漏 电或故障时 ,末级漏电保
护器就可能拒 动 , 或者 和上一 级漏 电保护器 同
时跳闸。
( 施 工现 场 电焊机 比较 多 ,电焊机 的 3 ) 漏 电保 护器 按 电焊 机 的额 定 电流选用 ,在 电 焊 机起 焊时 的大 电流 可能 会使 漏 电保 护器跳
再末级漏 电保护器不装、 损坏或选型不 当, 将可 能导致本级漏 电保护器未动作 , 上级动作 ; 施工 现场移动设备 比较多, 如振捣棒、手电钻、 小型 切割机 、 打夯机 、 小型 电焊机等随机使用性 比较
线路跳闸原因分析报告【漏电保护开关跳闸原因】
线路跳闸原因分析报告【漏电保护开关跳闸原因】线路跳闸原因分析报告【漏电保护开关跳闸原因】随着科技的发展迅猛,无线网络也进入家家户户,不管城市还是农村,居民生活对用电质量的要求提高,根据国家要求,现在每年计划的停电次数在逐渐减少,同时在发生故障之后能够及时处理设备,恢复用户用电。
1配网线路跳闸原因分析1.1外力的破坏配网线路一般放置于比较复杂的环境中,不可避免的要面对来自大自然的外力干扰,经调查外力的损坏占总比例高达30.2%,例如:狂风的破坏、暴雨的洗刷、雾霾的覆盖、寒冬暴雪的侵蚀,种种外力因素都可使线路的绝缘层遭到破坏导致绝缘层老化、变质,从而发生绝缘层断裂保护力下降等现象,最终导致跳闸。
由此可见,外力的破坏也成为配网线路跳闸的一大因素[1]。
1.2用户的原因用户对于设备的监督检查管理力度不够,也可导致线路的绝缘能力下降,供电管理部门的检查力度不夠也可引发故障,各项监管工作做不到位,使各种问题和存在的隐患都可导致配网线路的损坏。
一些用户存在对知识的匮乏,缺乏对配网线路规定的额定电压等级的认知,随意使用设备,从而导致设备故障。
用户自身原因或者监管不够的原因占发生故障总比例的17%,这些都是不可忽视的重要因素。
1.3设备的缺陷工作人员对于线路检查不够认真,态度随意,不能及时发现、处理问题,且发现问题不及时处理,都为设备造成缺陷致使引发跳闸。
检修人员不按照规定的周期检查,也没有对设备进行清扫和处理,导致设备运行老化、卡涩、变形等异常。
一旦发生异常,都可引发设备故障,导致跳闸。
1.4绝缘子串闪络放电引发的原因导致绝缘子串闪络的因素之一就是过电压,例如:配网系统自身的暂态过电压、供电的高峰期瞬间过电压等,四面八方的过电压叠加都可使电压值迅速上升,一旦超过系统的额定电压值,就会导致绝缘子串闪络问题,引发对地方电及短路等故障。
如果绝缘子的绝缘度不达标质量不合格时,都可引发短路、跳闸。
2配网线路跳闸治理措施2.1防范外力的破坏外力损坏是引发配网线路跳闸的外部因素最重要的原因,因此就需要加大力度排除这种干扰因素,保护好配网线路及设备的安全。
漏电保护器跳闸原因及解决方法
漏电保护器跳闸原因及解决方法漏电保护器跳闸是一种常见的电器故障,它能有效保护我们的生命安全和财产安全。
但是,当我们遇到漏电保护器频繁跳闸的情况时,就需要查找原因并采取相应的解决方法。
本文将详细介绍漏电保护器跳闸的原因及解决方法。
一、漏电保护器跳闸的原因1.电器设备有故障:当我们使用的某个电器设备出现漏电或短路等故障时,会导致漏电保护器跳闸。
这可能是因为设备老化、线路短路、绝缘材料老化等原因造成的。
2.漏电现象:当电器设备正常运行时,如果出现漏电现象,会导致漏电保护器跳闸。
漏电现象可能是由于线路老化、设备故障、潮湿环境等原因引起的。
3.过流现象:当电器设备过载或出现故障时,会导致漏电保护器跳闸。
过流现象可能是由于电器设备负荷过大、线路过载、短路等原因引起的。
4.外部干扰:有时候,外部环境中的干扰也会导致漏电保护器跳闸。
例如,雷击、电压波动等因素可能会干扰电器设备的正常运行,从而引起漏电保护器跳闸。
二、漏电保护器跳闸的解决方法1.检查电器设备:首先,我们需要检查使用的电器设备是否正常。
可以通过拔掉所有电器设备的插头,然后重新接通电源,看漏电保护器是否会跳闸。
如果不跳闸,说明问题可能出在某个电器设备上。
可以逐个接入电器设备,观察哪个设备接入后漏电保护器跳闸,然后修理或更换该设备。
2.检查线路连接:如果电器设备正常,那么可能是线路连接出现了问题。
可以检查线路是否接触不良、导线是否老化断裂等。
如果发现问题,及时修复或更换。
3.消除潮湿环境:如果漏电保护器跳闸与潮湿环境有关,可以采取一些措施消除潮湿,如使用除湿机、通风设备等。
同时,还需要检查线路是否绝缘良好,避免潮湿导致漏电现象。
4.增加电器保护措施:为了避免电器设备过载或短路引起漏电保护器跳闸,可以增加一些电器保护措施。
例如,安装过载保护器、短路保护器等。
5.保持外部环境稳定:对于外部干扰引起的漏电保护器跳闸,我们需要保持外部环境的稳定。
可以使用稳压器、防雷设备等来保护电器设备,避免外部干扰对其造成影响。
漏电保护器频繁跳闸原因分析及措施
在漏电保 护器的选型上 ,要形成相对的技术模块 ,但是 ,由于在整 个施工过程中没有构建严密 的组织管理 , 就会形成于漏电保护器选 型相 违背的现象出现。一是开关箱 内的额定漏电动作 电流相对过高。在超过 了 3 0 m A 或者达到了漏 电保护器能承受电流的两倍一闪 , 形成额定电流 的急剧加大 ,漏电保护器 的灵敏度就会下降 , 加之选用 了带延时型的漏 电保护器 ,未及保护器就会失去工作能力 , 从而不利于整个保护措施 的 实现。二是现场 焊接相对较多 。在点焊接的电流超过一定负荷 , 这 些焊 接设备的集中运作 , 就会形成大电流的涌现 , 这些会影响到整个保 护器 的综合应用。三是对于在漏电保护器未及保护 的过程 中,由于对 电流控 制 的整体运用不够 , 形成一些外在电流的融入 ,在 电流选择空问相对较 小的情况下 , 尤其是没有综合权衡漏电保护器在配 电线路方面的正 常漏 电量 ,因此 ,在上级漏 电保护措施不到位的情形下 ,额定电流不能与外 在的电流形成一个完整 的技术融合 ,尤其是在超越保护电流的范围 , 在 电流超过 5 0 M A或者 7 5 m A的状态下 , 在上一级保护器形成单相或者双向 的负载电流, 在点焊机械的综合作用下 , 突出之 间形成一股强大 的电流 , 在这样 的基础上 , 就会出现相对较大的漏 电流 , 形成漏电保护器的跳 闸, 也不利于整个保护装置的功能发挥。
中 ,要形成不定期的检查模式 ,在采用实验按钮全面检查的过程 中及时
发现 问题 ,并得到及 时的纠正 。在针对漏 电保护器的一些特性分析中 , 对于断路保护器的漏电、过载等要进行记录 ,形成规范化的操作方法。
( 二 ) 技 术 方 法 的 跟 进
漏电保护器跳闸原因及解决方法
漏电保护器跳闸原因及解决方法漏电保护器是一种用来保护人身安全和防止电路设备损坏的重要电器设备。
当电路中发生漏电故障时,漏电保护器会迅速切断电源,起到保护作用。
然而,有时我们会发现漏电保护器会出现跳闸的情况,这给我们的生活和工作带来了诸多不便。
那么,究竟是什么原因导致了漏电保护器的跳闸呢?又该如何解决这一问题呢?接下来,我们将针对漏电保护器跳闸的原因及解决方法进行详细的探讨。
首先,我们来看一下漏电保护器跳闸的原因。
漏电保护器跳闸通常有以下几个主要原因:1. 漏电保护器本身故障,漏电保护器长时间使用后,内部元件可能会老化或损坏,导致跳闸故障。
2. 电路中存在漏电故障,当电路中存在漏电故障时,漏电保护器会立即跳闸以保护人身安全。
3. 过载或短路,电路中的过载或短路也是漏电保护器跳闸的常见原因。
过载会导致漏电保护器无法正常工作,从而跳闸保护电路。
了解了漏电保护器跳闸的原因,接下来我们来探讨解决方法。
针对不同的原因,我们可以采取以下措施:1. 定期检测和更换漏电保护器,定期对漏电保护器进行检测,发现问题及时更换损坏的漏电保护器,确保其正常工作。
2. 排除电路中的漏电故障,定期检查家庭和工作场所的电路,及时发现并排除漏电故障,减少漏电保护器的跳闸次数。
3. 加强电路的维护和管理,避免电路过载和短路现象的发生,合理安排电器的使用,避免长时间大功率电器同时使用,减少漏电保护器的跳闸频率。
总的来说,漏电保护器跳闸是为了保护电路和人身安全,但频繁的跳闸也会给我们的生活和工作带来不便。
因此,我们需要认真对待漏电保护器跳闸的原因,并采取相应的解决方法。
只有做好日常的维护工作,及时排除电路故障,才能保证漏电保护器的正常使用,确保电路和人身安全。
希望本文所述内容对您有所帮助,谢谢阅读!。
漏电断路器跳闸原因及处理方法
漏电保护器跳闸是生活中比较常见的一件事,专业人士在进行维修时,应知道其工作原理和常见的问题及处理方法。
接下来,本文将做专业的介绍。
漏电断路器的工作原理漏电保护器的主要部件是个磁环感应器,火线和零线采用并列绕法在磁环上缠绕几圈,在磁环上还有个次级线圈。
当同一相的火线和零线在正常工作时,电流产生的磁通正好抵销,在次级线圈不会感应出电压。
如果某一线有漏电,或未接零线,在磁环中通过的火线和零线的电流就会不平衡,而产生穿过磁环的磁通,在次级线圈中感应出电压,通过电磁铁使脱扣器动作跳闸。
下面是单相线路的示意图,三相或三相四线线路的原理相同。
1、安装不良如果漏电保护器在安装时各接线柱未接牢固,时间一长,往往会导致接线柱发热、氧化,使电线绝缘层被烧焦,并伴有打火和橡胶、塑料燃烧的气味,造成线路欠压使漏电保护器跳闸。
2、漏电保护器本身有问题用户在购买漏电保护器时,应尽量到信誉好的定点厂家或商店购买,千万不要图一时便宜向一些个体户购买“三无”漏电保护器,这样往往得不偿失。
3、漏电保护器与负载不匹配随着家用电器得不断普及,许多家庭的负载电流已远远超过线路上漏电保护器的额定电流,造成漏电保护器跳闸。
这种情况一般多发生在空调、电水壶等大功率家电的使用,一般只要重新换一只匹配的漏电保护器,问题便可迎刃而解了。
4、负载或线路漏电、短路如果是家电等负载漏电或短路而使漏电保护器跳闸,只要拔掉有故障的家电插头,便可以重新送电;如果是线路漏电或短路,相对来说比较棘手,可先解决一些简单故障,让部分线路暂时恢复送电。
具体做法为:当漏电保护器跳闸后,首先把各分路断开,再把漏电保护器送上,当送上某分路时漏电保护器即跳闸,则可以断定此分路有故障。
只要断开此分路,其他各分路就可以恢复用电。
此时,如果发现某房间的插座或灯具没电,故障往往就在这一带。
5、电源进线电压过高这种情况虽不多见,但十分危险,一般发生在三相四线制供电的住宅楼(现在的住宅楼普遍这样供电)。
经常跳闸原因分析报告
经常跳闸原因分析报告经常跳闸是指电力系统在运行过程中,频繁出现过载、短路等故障,导致保护装置动作,使电路中断的现象。
本文将对经常跳闸的原因进行分析。
首先,电路过载是导致经常跳闸的主要原因之一。
当电路负载大于其额定容量时,电流会超过保护设备的额定值,从而使保护装置动作,切断电路。
常见的过载原因包括:设备容量不匹配、过多的电器设备集中在一个回路上、电气设备老化等。
解决此问题的方法可以是增加电缆的截面积、更换额定容量更大的设备、合理分配负载等。
其次,电路短路也是经常跳闸的常见原因。
电路短路是指电源正、负极之间或各个端点之间发生直接短接,电流大大增加,导致保护装置立即动作,切断电路,以保护电器设备和人身安全。
电路短路的主要原因包括:线路绝缘损坏、设备部件短路等。
解决此问题的方法可以是修复线路绝缘、更换损坏的设备等。
此外,接地故障也可能导致经常跳闸。
接地故障是指电源与地之间的绝缘失效,导致电源中断。
常见的接地故障包括:零线接地、线路器具绝缘损坏等。
解决此问题的方法可以是修复线路绝缘、更换损坏的设备等。
还有一种常见的原因是电源质量不良。
电源质量不良包括电压波动、谐波、电压闪变等。
这些电源质量问题会对电器设备的正常运行产生不利影响,导致经常跳闸。
解决此问题的方法可以是安装更好的电源滤波器、采用稳定的供电来源等。
最后,人为操作失误也可能导致经常跳闸。
例如,在电路维修或改装过程中,没有按照操作规程进行操作,导致保护装置误动作。
解决此问题的方法可以是加强工人的技术培训,提高他们的操作规范性。
综上所述,经常跳闸的原因可能是电路过载、短路、接地故障、电源质量不良和人为操作失误等多种因素造成的。
要解决这个问题,需要根据具体情况采取不同的措施,如增加设备容量、更换损坏的线路和设备、修复线路绝缘、改善电源质量、加强操作规范等。
浅析工程施工中漏电保护器频繁跳闸的原因及解决办法
中 , 确 使 用 漏 电保 护 装 置 , 会 提 高 电器 使 用 的 安全 性 , 止 正 将 防 不 必要 的 事故 发生 ,从而 减 少 由此 带 来 的损 失 。推 广 漏 电保 护 器 , 防 止 触 电伤 亡 事 故 , 免漏 电 而 引 起 的 电气 火 灾 , 有 明 对 避 具
2 施工现场漏 电保护器频繁跳闸的原 因
21 漏 电保 护器 布局不 合理 .
根据 《 工现 场 临 时 用 电 安全 技 术 规 范 ̄G 4 — 0 5 在 临 施 J J6 20 ,
时用电总配 电箱和开关箱中应装 设漏 电保护器 ,形成三级配电
二 级 漏 电保 护 的模 式 。 由于 施 工现 场 所 具 有 的特 殊 性 , 电工 素 如
() 1 目前的漏 电保护器, 不论是 电磁型还是电子型均采用磁
感 应 电压 互 感 器 检 取 用 电设 备 主 回 中 的 漏 电流 ,三 相 或 三 相 四 线 在磁 环 中 不 可 能 布置 完 全 均 衡 ,在 施 工现 场 有 较 多 的 电焊 机
以及漏电保护器本身不可避免的误动 和拒动 ,冉加上在实际施 工中没有按照工地的实际情况对漏 电保护器进行布置,造成了
水利・ ・ 水 电
建材 与 装 饰 2 1 00年 0 2月
浅析工程施 工 中漏 电保 护器频繁跳 闸的 原 因及 解 决 办 法
俞 宏兵
摘 要: 从施 现场用电环境入手, 多方面、 多角度分析论述漏 电保护器非正常频繁跳闸的原因, 从而提出改进对 策, 可给同行参照应
关键词 : 漏电保护器: 跳闸原因; 解决方法
保护范围内形成有效的二或三级漏 电保护模式,才 能有效地减
少 漏 电保 护 器 的 频 繁 跳 闸 。
漏电保护跳闸的两例故障分析
漏电保护跳闸的两例故障分析漏电保护跳闸的两例故障分析电气设备的安全运行必须依赖多种保护装置,其中漏电保护器是重要的安全保障。
漏电保护器的功能是监测电路中的漏电电流,一旦电流达到设定值就会立即断开电路,以保护人身安全和电气设备的安全。
然而,漏电保护器有时会出现跳闸的问题,甚至出现误跳或不能跳闸的情况。
本文将分别分析两例漏电保护跳闸的故障原因,以期对类似问题的处理有所启发。
例1:工业建筑内漏电保护跳闸频繁某厂房内漏电保护跳闸频繁,检查发现漏电保护器接入了公司公共低压配电电源,而该电源线路不仅供应该厂房用电,还供应相邻的厂房。
在对该厂房进行全面检查后,发现该厂房使用的某些设备采用电容式电源,电容的静电电流使得漏电保护器经常跳闸。
经过调整与维护后,漏电保护器恢复了正常工作状态。
由此可以看出,电容式电源的使用对漏电保护器有极大影响,不能忽视。
例2:宿舍楼漏电保护跳闸困扰某校宿舍楼内漏电保护跳闸困扰已久,校方多次维护均无效。
在一次检查中,发现校园建筑师在设计楼宇时没有考虑各个电路分段,导致宿舍楼内各电路之间串扰。
在重新规划电路后,漏电保护器不再频繁跳闸,整个宿舍楼的用电质量得到了有效提升。
以上两例故障原因完全不同,但都与电路设计或电器设备使用方式相关。
漏电保护器应用广泛,对供电质量、电气设备的安全及人员安全均有重要影响。
在使用中,应注意以下几点:1.未必所有使用电器都适合使用漏电保护器。
2.选择漏电保护器及其额定动作电流时一定要根据电路负载来决定。
3.应将漏电保护器安装于保护电路的首部,一般为插座前端。
4.漏电保护器检测电路的电位零点一定要接地,否则便不能正常工作。
5.接地电阻值要符合国家相关规定。
在落实漏电保护器的使用与安装中,以上要点被忽视往往是导致漏电保护器频繁跳闸或出现误跳、不能跳闸等故障的主要原因。
对于漏电保护器频繁跳闸或误跳的处理,最根本的方法是在用户侧完善电气配电系统,提升保护设备的安全保障能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施工现场漏电保护器频繁跳闸原因分析中电四公司廖显红2014年4月15日现场施工用电一级配电箱漏电开关跳闸的原因分析摘要:通过对现场施工用电的管理并及时总结经验教训,针对施工现场漏电保护器频繁跳闸原因进行分析,了解各种漏电保护器的基本常识,掌控各级配电系统的有效配置,合理的对下场线路的架设,希望能对解决施工现场漏电保护器的频繁跳闸问题有所帮助。
关键字:一级配电箱、漏电保护器频繁跳闸、原因、采取措施前言:现场的施工单位较多,施工作业环境一般比较差,临时用电所使用的设备、线路本身安全隐患比较多,而且流动性、重复性、临时性较强,一闸多机现象严重,参加施工的作业人员甚至管理人员以及电工的素质参差不齐,经常造成一级配电箱漏电开关跳闸。
因此我们在施工现场中,强制推行三级配电二级漏电保护和采用TN—S 三相五线式供电方式,确保用电设备达到“一机、一闸、一漏、一箱”的目的就是为了保障施工现场用电的安全及加强对用电的管理。
各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成一级漏电保护器的频繁跳闸。
不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全得不到有效的保障。
通过近几年来在施工现场对施工临时用电方案的编制、临时用电的管理、总结体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。
施工现场漏电保护器频繁跳闸的原因分析1、漏电保护器选型不合理①开关箱内使用漏电开关其额定漏电动作电流超过了正常值(30mA)或者是超过用电设备额定电流两倍以上的漏电保护器,甚至选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,依次在发生漏电故障时,三级箱漏电保护器还没有动作,一级箱漏电保护器却先行动作。
②有些随机使用性的用电设备或小容量负荷的设备没有专用的开关箱,如I、Ⅱ类电锤、电钻、小型切割机等手持电动工具,在接入有较大额定电流的漏电保护器后,在发生漏电或故障时,三级漏电保护器就可能拒动,或者和一级漏电保护器同时跳闸。
③施工现场电焊机比较多,电焊机的漏电保护器按电焊机的额定电流选用,在电焊机起焊时的大电流可能会使漏电保护器跳闸,这是部分电焊机漏电保护器跳闸的原因。
对于这类用电设备一般应选用对浪涌过电压、过电流不太敏感的电磁型漏电保护器;或选用比电焊机额定电流大1.5-2倍的电子式漏电保护器,但作为末级漏电保护,额定漏电动作电流不应大于30mA,这样才不至于使一级箱漏电保护器跳闸。
④塔吊是施工现场较大的施工设备,有多台电动机,虽然起动过程采用了Y-Δ起动和转子回路串入电阻起动,降低了起动电流,但仍然会有较大的起动电流。
Y-Δ起动和电动机换速时会随机产生一定的过电压,塔吊配电箱和配电线路处于高空中,长年日晒雨淋,绝缘难免有一定的损伤,导致漏电流相应增大,这些因素都可能造成塔吊的漏电保护器频繁跳闸。
在考虑采用电子式漏电保护器时应适当将它的额定电流放大1.5-2倍,以降低漏电保护器本身的灵敏度,减少频繁跳闸的几率,但是其漏电动作电流还是必须小于上级漏电保护开关的漏电动作电流。
⑤三级箱漏电保护器上的漏电保护额定漏电动作电流和额定漏电不动作电流选择过小,没有考虑到漏电保护器下口的配电线路上可能有相对较大的正常漏电流。
一般一级箱漏电保护器的额定漏电动作电流大小选择应为三级额定漏电动作电流的两倍左右。
如在保护范围较小时,一级箱漏电保护器额定漏电动作电流可选择50mA或75mA;保护范围较大或在上一级箱漏电保护器后有较多的单相或双相负载如电焊机时,应考虑众多单、双相负载接线不平衡时,可能有相对较大的漏电流,那么一级箱漏电保护器额定漏电动作电流可选择75mA或100mA。
必要时,一级箱漏电保护器应带有0.2s的延时,这样可提高漏电保护范围内三级箱和一级箱的漏电保护器的动作具有选择性。
2、漏电保护器布局不合理根据《施工现场临时用电安全技术规范》以及建设公司相关文件,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护,确保用电设备达到“一机、一闸、一漏、一箱”的模式。
但是由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱、一闸多机及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了一级配电箱漏电保护器的频繁跳闸,停电范围较大。
在施工高峰期,总开关的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。
对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。
在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护范围,每个专业施工对单独设置一漏电保护器,必要时在每个漏电保护器保护范围内形成二级漏电保护,这样可以提高每个保护范围内二或三级漏电保护的保护灵敏度,提高保护范围内故障漏电时的漏电保护器的动作率,减少总漏电保护器跳闸。
合理的布置也可以促使各个施工队自主管理和方便项目部的统一管理。
这样工地进线总电源上的漏电保护器,可主要做为施工现场防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可根据施工现场的大小在200~500mA之间选择,额定漏电动作时间可选择0.2—0.3s,可极大地减少浪涌电压、电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。
如果能通过加强对工地漏电保护器的管理,使每个漏电保护范围内的二级漏电保护(必要是增加饿)、三级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率,减少对总漏电保护器的损坏。
3、漏电保护器本身有一定的局限性现有市场上的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡,而且在施工现场有很多的电焊机存在双相或单相负荷,三相电流也很难达到完全平衡,甚至相差很大,在大电流下或较高的过电压下,会在有很高的导磁率在磁环中感应出一定的电动势,当这个电动势大到一定程度,就会导致漏电保护器跳闸。
又由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,误动或拒动率也越大。
漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。
4、在保护范围内没有形成有效的两级漏电保护三开关箱内的漏电保护器是用电设备的主保护,如果三级箱漏电保护器不装、损坏或选型不当,将可能导致一级箱漏电保护器频繁跳闸。
如施工现场有的照明部分相当混乱,存在很多问题:工地照明线经常随施工部位的改变而重新敷设,乱拉乱挂现象比较多,导线绝缘不是很好,经常漏电;现场办公室照明线虽然比较固定,但是一般固定的比较低,人很容易触及,还带有一些插座回路,在很多时候都不装漏电保护器,特别是在天刚黑需要照明的时候,经常造成了总漏电保护器频繁跳闸。
施工现场移动设备比较多,如振捣棒、手电钻、小型切割机、打夯机、小型电焊机等随机使用性比较强,有的时候使用这些设备时没有接入开关箱,这也增加了总漏电保护器频繁跳闸的几率。
只有在每个保护范围内形成有效的两级漏电保护模式,才能有效地减少一级配电箱漏电保护器的跳闸几率。
5、漏电保护器的接线有问题①使用单相负载,而中性线(零线)未穿过漏电保护器。
②中性线穿过漏电保护器后,直接接地或通过用电设备等接地,漏电保护器将保护跳闸;中性线对地绝缘不良或接地不良,似接非接,导致漏电保护器无规律跳闸,故障难找。
③中性线穿过漏电保护器后,同其他漏电保护器的中性线或与其他没有装设漏电保护器的中性线连在一起。
④选用三相四线或四极的电子式漏电保护器用于三相或双相负载,中性线未引人漏电保护器或虽引入但虚接,致使漏电保护器控制回路无电源而拒动。
一旦发生漏电事故,引起上级漏电保护器动作。
⑤三相负载如电动机一般不接中性线,使用四芯电缆,其中有一芯应接PE保护线和电动机外壳,但在有些情况下,这根PE保护线接在了PN中性线上,实际上是把中性线通过电机外壳接地,在有单相负载或负载不平衡,中性点发生偏移时,就会使上级漏电保护器跳闸;如果中性线电阻较大时,可能造成漏电保护器无规律跳闸,查找故障困难。
⑥漏电保护器后的负载没有平均分配。
施工现场电焊机大部分使用交流380V两相电源,漏电保护器后的电焊机一次线路对地漏电流矢量和不为零,对于一级箱的漏电保护器,如果多台电焊机接线使三相不平衡,就会使通过漏电保护器的漏电流增加,同时使中性线对地电位提高,增加了中性线漏电的机率,增加了电焊机上级保护的跳闸几率。
在用电设备和线路发生漏电故障或漏电流增加时,会造成上级漏电保护先于电焊机末级漏电保护或两漏电保护同时跳闸。
还有中性线断线或接触不良,致使中点电位偏移零电位,增加了中性线漏电和引发其他故障的几率。
6、用电设备及用电线路漏电施工现场的用电设备使用环境比较恶劣,保养、维修也很有限,设备质量参差不齐,绝缘有好有坏,有些设备漏电流比较大;用电线路也是如此,有些线路使用了质量很差的绝缘导线,不按规定敷设,接头包扎不好,如导线直埋、电缆过路不穿保护管等,造成了末级漏电保护器跳闸,如果末级漏电保护器损坏或将末级漏电保护器退出,将造成上级漏电保护器的频繁跳闸。
结论总之,漏电保护器频繁跳闸是施工现场各种因素综合作用的结果,最主要的是要选购优质量的开关、合理布置漏电保护器,缩小两级漏电保护器的保护范围,正确选择好各种规格的漏电保护器并调好开关、规范线路施工、正确接线,使每个范围内的两级漏电保护器处于有效保护状态;另一方面就是加强施工现场的临时用电设备和线路的管理,通过培训提高用电人员的自身素质,加强对维护电工的教育,有效的控制各个配电箱的门锁,这样就可以既满足工地用电的安全性,又可以减少漏电保护器的频繁跳闸,给正常的施工创造较好的供电条件。
参考文献1 潘毅.电磁式剩余电流保护装置讲座.电工技术杂志,19992 连理枝.剩余电流动作保护装置的应用讲座.电工技术杂志,20023 王厚余.低压配电系统接地故障保护讲座.电世界,2002—2003。