土的力学性质指标
4.3 土的物理力学性质及其指标

E0 = βEs
其中
β=1-12-μμ2
土的泊松比, 一般0~0.5之 间
四、土的力学性质
2. 土的抗剪强度
⑴ 土的强度破坏类型
基础
滑动面
滑动面
挡 土 墙
滑动面
四、土的力学性质
2. 土的抗剪强度 ⑵ 直接剪切试验
试验仪器:直剪仪(应力控制式,应变控制式)
四、土的力学性质
2. 土的抗剪强度 ⑶ 粘性土、无粘性土的抗剪强度
修正后
密实度
松散
稍密
中密
密实
按N评定砂石密实度 N≤10 10<N≤15 15<N≤30 N>30
按N63.5评定碎石土密实度 N63.5≤5 5<N63.5≤10 10<N63.5≤20 N63.5>20
三、粘性土的物理特征
1. 粘性土的稠度状态
土的软硬程度或土受外力作用所引起变形或破坏的抵抗能力,是粘性土 最主要的物理状态特征
0 缩限ωs
塑限ωP
液限ωL
ω
固态
半固态
可塑状态
流动状态
粘性土由某一种状态过渡到另一状态的界限含水量称为土的稠度界限
液、塑限的测定 测定液限的方法:锥式液限仪、碟式液限仪和液塑限联合测定仪。 测定塑限的方法:搓条法和液塑限联合测定仪。 测定缩限的方法:碟式仪法和液、塑限联合测定法。
三、粘性土的物理特征
= ms Vs ρω
=
ρs ρω
土粒相对密度变化范围不大:细 粒土(粘性土)一般2.70~2.75; 砂土一般为2.65左右。土中有机 质含量增加,土粒相对密度减小
一、土的三相及三相比例指标
2. 直接指标
质量m 气 水
Vw Va
体积V
土的三项基本物理性质指标

土的三项基本物理性质指标土的物理力学基本指标知识点主要分为:质量密度;孔隙比;孔隙率;含水量;饱和度;界限含水量;液限;塑限;塑性指数;液性指数;渗透系数;内摩擦角与黏(内)聚力等。
土的物理力学基本指标土的三相(固体颗粒、水和气)组成特性,构成了其许多物理力学特性。
相同成分和结构的土中,土的三相之间具备相同的比例。
土的三相共同组成的重量和体积之间的比例关系相同,则土的重量性质(重、轻情况)、不含水性(含水程度)和孔隙性(规整程度)等基本物理性质各不相同,并随着各种条件的变化而发生改变。
比如对同一成分和结构的土,地下水位的增高或减少,都将发生改变土中水的含量;经过压实,其孔隙体积将增大。
这些情况都可以通过适当指标的具体内容数字充分反映出。
土的物理力学基本指标主要有: ①质量密度;②孔隙比;③孔隙率;④含水量;⑤饱和度;⑥界限含水量:黏性土由一种物理状态向另一种物理状态转变的界限状态所对应的含水量;⑦液限:土由流动状态转入可塑状态的界限含水量,是土的塑性上限,称为液性界限,简称液限;⑧塑限:土由可塑状态转为半固体状态时的界限含水量为塑性下限,称为塑性界限,简称塑限;⑨塑性指数:土的液限与塑限之差值;⑩液性指数:土的天然含水量与塑限差值与塑性指数之比值;⑾渗透系数:土被水透过称为土的渗透性,水在土孔隙中流动则为渗流。
在一定水力梯度下,渗流速度反映土的渗透性强弱,渗透系数是渗流速度与水力梯度成正比的比例系数;⑿内摩擦角与黏(内)聚力:土的抗剪强度由滑动面上土的黏聚力(阻挡剪切)和土的内摩阻力两部分组成,摩阻力又与法向应力成正比,其中内摩擦角反映了土的摩阻性质。
因而内摩擦角与黏聚力是土抗剪强度的两个力学指标。
土的物理力学性质及其指标

土的物理力学性质及其指标1. 体积重是指土壤单位体积的质量,通常用单位是千克/立方米(kg/m^3)或兆帕(MPa)表示。
体积重是土壤力学性质的重要参数,它直接影响土体的承载能力和稳定性。
体积重的大小与土壤颗粒密度、含水量和孔隙度有关。
2.孔隙比是指土壤中孔隙体积与总体积的比值,即孔隙度。
孔隙比能够反映土壤孔隙结构和孔隙连通性,对土壤的透水性、保水性和通气性等性质有重要影响。
孔隙比的大小与土壤颗粒颗粒的形态、大小和堆积密度等因素有关。
3.毛细吸力是指土壤孔隙中水分上升或下降所受到的作用力。
毛细吸力与土壤含水量、孔隙度、土壤颗粒大小和水表面张力等因素有关。
毛细吸力对土壤水分运移和供水能力有着重要影响,也是评价土壤保水能力和透水性的重要指标。
4.剪切强度是指土壤在剪切应力作用下的抗剪能力。
剪切强度是土体抗剪破坏的重要参数,直接影响土壤的稳定性和承载力。
土壤的剪切强度与土壤颗粒间的内聚力、黏聚力和有效应力等有关。
此外,还有一些与土壤物理力学性质相关的指标,如孔隙水压力、压缩系数、孔隙率等。
5.孔隙水压力是指土壤孔隙中水分所受到的压力。
它与土壤含水量、孔隙度和毛细吸力等因素有关。
孔隙水压力对土壤水分状态和土壤力学性质具有重要影响。
6.压缩系数是指土壤在外力作用下体积变化与应力之间的关系。
压缩系数反映土壤的压缩性质,与土壤的固结和液化等问题密切相关。
7.孔隙率是指土壤孔隙体积与总体积的比值,即孔隙系数。
孔隙率能够反映土壤孔隙结构和蓄水性能,也是评价土壤质地和透水性的一项重要指标。
这些物理力学性质和指标是描述土体力学性质和水分运移特性的重要参数,对土壤科学研究、土壤工程设计和农田管理等具有重要的理论和实际意义。
土的经验参数

有关土的经验参数一、原状土物理性质指标变化范围
原状土物理性质指标变化范围,见表3-3-28。
注:粘砂土3<I p≤7;砂粘土 7<I p≤17
二、土的平均物理、力学性质指标,见表3-3-29。
土的平均物理、力学性质指标,见表3-3-29。
注:①平均比重采取:砂——;粘砂土——;砂粘土——;粘土——;
②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。
C u
为中间值时E 0 值按内插法确定;
③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。
10
60d d 32
三、土的压缩模量一般范围值
土的压缩模量一般范围值,见表3-3-3-。
注:砂粘土7<I p≤7;粘土I p>17
四、粘性土剪强度参考值
粘性土抗剪强度参考值,见表3-3-31。
注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17
五、土的侧压力系数(ξ)和泊松比(u)参考值
注:粘土I p>17;粉质粘土10<I p≤17;I p≤10
五、变形模量于压缩模量的关系
变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。
因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。
变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。
压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。
两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。
土力学第五讲

测定emax、 emin时人为因素影响较大
Dr 主要应用于填方质量的控制,对于天然土尚难应用
华北电力大学 可再生能源学院
11
现场试验法
标准贯入试验
静力触探试验 63.5kg的钢锤,提升76cm,使 贯入器贯入土中30cm所需要的 锤击数N63.5--标准贯入试验(先
打入土中15cm不计数) 砂类土的密实度
2
换算关系式推导
md ( 1 + w ) r d r r s w s w r = = ? V 1 + e 1 + e ( 1 + w )
干密度计算:
md r r 1 r r s sw d d r = = = Þ = = d V1 + e1 + w 1 + ed r r sw s
孔隙比:
d ( 1 + w ) r d r r s w s w e = -1e = -1 =s-1 r r r d d
同样的e=0.35,对砂1处于最密实状态,而对砂2未达到最密实。 缺点:用一个指标e无法反映土的粒径级配的因素 华北电力大学 可再生能源学院
9
方法的评价 优点:应用方便简捷 缺点:无法反映土的粒径级配的好与坏
华北电力大学 可再生能源学院
10
相对密实度法
emax e Dr emax emin
2.分类 根据土的密实度进行划分,粉土的密实度以孔隙比为划分标准:e≥0.85为稍密; 0.7≤e<0.85为中密;e<0.7为密实。
3.工程性质 粉土的性质介于砂类土与粘性土之间。它既不具有砂土透水性大、容易 排水固结、抗剪强度较高的优点,又不具有粘性土防水性能好、不易被水
冲蚀流失、具有较大粘聚力的优点。在许多工程问题上,表现出较差的性
土力学土的物理性质指标

• 土颗粒比重:
指土体在105º-110ºC的温度下烘至恒量时的重量或
质量与土颗粒同体积的4ºC时蒸馏水的重量或质量之比。
Gs
Ws
Vs
Gs
ms
Vs
水的容重=9.81KN/m3,水的密度=1g/cm3
土颗粒的比重与土体中的水和气体无关
土颗粒比重一般介于2.65-2.75之间
• 测定方法:
比重瓶法、浮称法、虹吸筒法
1) 土颗粒体积
8) 浮密度
2) 孔隙体积
9) 湿密度
3) 土颗粒质量
10) 干密度
4) 水的质量
11) 孔隙率
5) 水的体积
12) 饱和度
6) 气体体积
13) 土颗粒的容重
7) 饱和密度
14) 土体的容重
• 已知,
求解-1
• 1)由
可得,
则土颗粒体积为:
• 2)孔隙体积为:
• 3)由
可得,土颗粒质量为:
Ws Vs (KN / m3 )
V
• 浮密度:指土体淹没在水下面的有效密度,这时土颗粒 受到水的浮力作用,其有效质量减小。
ms Vs (g / cm3 )
V • 浮容重与浮密度的关系:
9.81
间接测定指标-5
• 干容重:指干土的容重,这时土体的孔隙中没有水。
d
Ws V
(KN
s 9.81s
直接测定指标-3
• 土体的容重:指单位体积土体的重量。 也称湿容重、
天然容重。 W (KN / m3 )
V • 土体的密度:指单位体积土体的质量。也称湿密度、
天然密度。 m (g / cm3 )
V
• 土体的容重一般介于16.0-19.0KN/m3,
土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。
原状土物理性质指标变化范围表3-3-28注:粘砂土3<I p≤7;砂粘土 7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。
土的平均物理、力学性质指标,见表3-3-29。
土的平均物理、力学指标表3-3-29注:①平均比重采取:砂——;粘砂土——;砂粘土——;粘土——;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。
C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。
三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。
土的压缩模量一般范围值 表3-3-30注:砂粘土7<I p ≤7;粘土I p >17四、粘性土剪强度参考值1060d d 32粘性土抗剪强度参考值,见表3-3-31。
注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值土的侧压力系数ξ和泊松比u参考值表3-3-32注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。
因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。
变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。
压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。
两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。
土的状态参数fs

土的状态参数fs
土的状态参数 fs 通常指的是土的抗剪强度参数,也称为土的内摩擦角或内摩擦系数。
抗剪强度是指土体抵抗剪切破坏的能力,它是土的一个重要力学性质指标。
fs 表示土在剪切破坏时所产生的摩擦力,它反映了土颗粒之间的相互作用和滑动阻力。
fs 的大小取决于土的类型、颗粒大小、形状、排列方式以及土体的含水率等因素。
一般来说,土的 fs 值越大,说明土的抗剪强度越高,土越不容易发生剪切破坏。
在工程实践中,fs 是土力学和基础工程设计中常用的参数之一。
它用于计算土体的稳定性、承载力、滑坡稳定性等问题。
通过测定土的 fs 值,可以评估土体的工程性质,为工程设计和施工提供重要的参考依据。
需要注意的是,fs 只是土的状态参数之一,土的力学性质还受到其他因素的影响,如土体的压缩性、渗透性等。
因此,在实际工程中,需要综合考虑多个参数和因素来评估土的工程性质。
如果你需要更详细的信息或涉及特定的工程问题,建议咨询专业的土木工程师或岩土工程师,以获取更准确和具体的建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土的力学性质指标
1.压缩系数
土的压缩性通常用压缩系数(或压缩模量)来表示,其值由原状土的压缩试验确定。
压缩系数按下式计算:
2
1211000p p e e a --⨯= (1-1) 式中 1000——单位换算系数;
a ——土的压缩系数(MPa -1);
p 1、p 2——固结压力(kPa ):
e 1、e 2——相对应于p 1、p 2时的孔隙比。
评价地基压缩性时,按p 1为100kPa ,p 2为200kPa ,相应的压缩系数值以a 1-2划分为低、中、高压缩性,并应按以下规定进行评价:
(1)当a 1-2<0.1MPa -1时,为低压缩性土;
(2)当0.1≤a 1-2<0.5MPa -1时,为中压缩性土;
(3)当a 1-2≥0.5MPa -1时,为高压缩性土。
2.压缩模量
工程上也常用室内试验求压缩模量E s 作为土的压缩性指标。
压缩模量按下式计算:
a
e E s 01+= (1-2) 式中 Es ——土的压缩模量(MPa );
e 0——土的天然(自重压力下)孔隙比;
a ——从土的自重应力至土的自重加附加应力段的压缩系数(MPa -1)。
用压缩模量划分压缩性等级和评价土的压缩性可按表1-1规定。
地基土按E s 值划分压缩性等级的规定 表1-1
3.抗剪强度
土在外力作用下抵抗剪切滑动的极限强度,一般用室内直剪、原位直剪、三轴剪切试验、十字板剪切试验、野外标准贯入、动力触探、静力触探等试验方法进行测定。
它是评价地基承载力、边坡稳定性、计算土压力的重要指标。
(1)抗剪强度计算
土的抗剪强度一般按下式计算:
τf=σ·tgφ+c(1-3)
式中τf——土的抗剪强度(kPa );
σ——作用于剪切面上的法向应力(kPa);
φ——土的内摩擦角(°),剪切试验法向应力与剪应力曲线的切线倾斜角;
c——土的粘聚力(kPa),剪切试验中土的法向应力为零时的抗剪强度,砂类土c=0。
(2)土的内摩擦角φ和粘聚力c的求法
同一土样切取不少于4个环刀进行不同垂直压力作用下的剪力试验后,用相同的比例尺在坐标纸上绘制抗剪强度τ与法向应力σ的相关直线,直线交τ值的截距却为土的粘聚力c,砂土的c=0,直线的倾斜角即为土的内摩擦角切,见图6-1。
图1-1 抗剪强度与法向应力的关系曲线
(a)粘性土;(b)砂土。