2.4X射线衍射分析方法
第二章 X射线衍射
• 主要内容: • X射线的物理基础 • X射线衍射原理(布拉格方程) • 样品制备及实验方法 • X射线衍射方法在材料研究中的应用
2.1 X射线的产生及性质
2.1.1 X射线的发现及性质
发现:
1895年,著名的德国物理学家伦琴发现了X射线,也叫伦 琴射线。 1912年,德国物理学家劳厄等人发现了X射线在晶体中的
43m 2 4
90
30
31 32
O Td Oh
43,34,6m
m 3 m 43,34,62,9m, i
2.2.1 X射线衍射
原理:通过在晶体中所产生的衍射现象进行结构分析
X射线衍射: 衍射:光线照射到物体边沿后,通过散射继续在空间发射 的现象。 X射线投射到晶体中时,会受到晶体中原子的散射,而散 射波就好象是从原子中心发出,每一个原子中心发出的散射
非晶体(noncrystal)
是指组成物质的分子(或原子、离子)不呈空间有规
则周期性排列的固体。它没有一定规则的外形,如玻璃、 松香、石蜡等。 它的物理性质在各个方向上是相同的,叫“各向同性”。 非晶体是内部质点在三维空间不成周期性重复排列的固体,
具有近程有序,但不具有长程有序。如玻璃。外形为无规
2、均匀性:晶体内部各个部分的宏观性质是相同的。 3、各向异性:晶体中不同的方向上具有不同的物理性质。 4、对称性:晶体的理想外形和晶体内部结构都具有特定的 对称性。 5、自限性:晶体具有自发地形成封闭几何多面体的特性。 6、解理性:晶体具有沿某些确定方位的晶面劈裂的性质。 7、最小内能:成型晶体内能最小。 8、晶面角守恒:属于同种晶体的两个对应晶面之间的夹角 恒定不变。
2.2.2 布拉格方程 英国物理学家布拉格父子把空间点阵理解为互相平行且 面间距相等的(hkl)的一组平行点阵(或面网),面网间距 为d。入射X射线S0(波长为λ)沿着与面网成θ角(掠射角) 的方向射入。
X射线衍射分析方法
X射线衍射分析方法X射线衍射分析是一种常用的材料结构分析方法,通过探测和分析样品对入射的X射线的散射方向和强度,来确定样品中原子的排列方式和晶体结构。
X射线衍射分析方法基于X射线作为电磁波的性质,具有较高的分辨率和广泛的应用领域。
nλ = 2d sinθ其中,n为衍射的阶数,λ为X射线的波长,d为晶格的晶面间距,θ为入射射线与晶面的夹角。
X射线衍射的实验装置通常由一个X射线源、一个单色器(用于选择特定波长的X射线)、一个样品台和一个衍射探测器组成。
实验过程中,样品被放置在样品台上,入射射线照射到样品上后产生散射射线,散射射线被探测器接收,并转化成电信号进行记录和分析。
1. 粉末X射线衍射(Powder X-Ray Diffraction,PXRD):粉末X射线衍射是最常用的X射线衍射分析方法,适用于晶体和非晶态样品。
通过测量样品中X射线的衍射图样,可以确定晶体的结构、晶胞参数和晶格的对称性。
粉末X射线衍射还可以用于定量分析样品中各种组分的含量。
2. 单晶X射线衍射(Single Crystal X-Ray Diffraction,SCXRD):单晶X射线衍射是研究晶体结构最直接、最准确的方法。
通过测量特定晶面上的衍射强度和散射角度,可以获得晶体的精确结构和原子的位置信息。
这种方法对于研究有机小分子、无机晶体和金属晶体的结构非常有价值。
3. 催化剂的X射线衍射(Catalytic X-Ray Diffraction):催化剂的X射线衍射用于研究催化剂的晶体结构和相组成,从而了解催化剂在反应中的性能和活性。
这种分析方法对于设计和优化催化剂非常重要。
4.衍射峰位置和衍射峰宽度分析:X射线衍射分析中,可以通过测量衍射峰在散射角度上的位置和宽度来研究样品的晶体结构和缺陷情况。
衍射峰的位置与晶胞参数相关,而衍射峰的宽度与晶体的结构缺陷和晶体的有序程度有关。
总结起来,X射线衍射分析方法是一种非常重要的材料结构分析方法,通过测量样品对入射X射线的衍射方向和强度,可以确定样品中原子的排列方式和晶体结构。
X射线衍射分析
X射线衍射分析百科内容来自于:《近代X射线多晶衍射》X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
简介X射线衍射X射线满足布拉格方程:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。
波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。
将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。
从衍射X 射线强度的比较,可进行定量分析。
本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。
X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。
如铜靶材对应的X射线的波长大约为1.5406埃。
考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
这一预见随即为实验所验证。
1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础。
(完整版)X射线衍射分析方法
背射法 180- 2 屏或底片
透射法
2
r
○
屏或底片
D
(3)劳厄斑点的分布图 ✓ 在透射图中斑点分布在一系列通过底片中心的椭圆或双曲线上; ✓ 在背射老厄图中,斑点分布在一系列双曲线上。
(4)劳厄图的对称性
当入射线的方向与晶体中的对称轴一致,或与对称面平行或 垂直时,劳厄斑点会出现相应的对称性。
极小和极大决定两个反射球的大小。
对应于极小和极大之间的任意波长的反射球介于这两个球之间。
所有反射球的球心都落在入射线的方向上。
极小和极大决定的两个反射球之间的倒格点和所对应各球心连线 都表示晶体的衍射方向。
1/极小
1/极大
屏或底片
劳厄法的原理图
(2)斑点所对应的晶面的布拉格角
择、防散射狭缝的宽度、扫描速度、走纸速度、时间常数、记录器 记录的范围2角。
Intensity(Counts)
[C Y K46.raw] 2g+850deg 600
400
200
0
20
30
40
2-Theta(?
50
60
70
09-0432> Hydroxylapatite - Ca5(PO4)3(OH)
1、劳厄法:晶体固定不动,射线为连续谱线。
2、转晶法:转动晶体,采用单色特征标识谱线
注:如果转动晶体,又用未经过滤的多色入射线,则照片上的斑点过 多,不便于分析,一般不采用。
1、劳厄法(透射和背射)
1、劳厄法 (1)原理
晶体不动,利用射线连续谱,连续谱有一最小波长极小 ,长波在 理论上是无限制的,但易被吸收,因此有一最大波长极大。
X射线衍射分析原理及其应用
X射线衍射分析原理及其应用X射线及XRD1.1 X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁辐射。
X射线的波长在10-6~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。
1.2 X射线的产生途径有四种1)高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2)将物质用初级X射线照射以产生二级射线—X射线荧光;3)利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源;4)从同步加速器辐射源获得。
1.3 X射线的吸收当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。
物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1] 。
1.4 XRDX射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。
在实际的应用中将该分析方法分3为多晶粉末法和单晶衍射法。
多晶粉末法常用来测定立方晶系的晶体结构点阵形式、晶胞参数及简单结构的原子坐标,还可以对固体式样进行物相分析等。
衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的长;θ是衍射角;d是结晶面间隔;n是整数。
X射线束入射到样品表面后产生衍射,检测器收集衍射X射线信息。
当入射波长λ、样品与X射线束夹角θ及样品晶面间距d满足布拉格公式时,检测器可以检测到最强的信息。
因此采集入射和衍射X射线的角度信息及强度分布,可以获得晶面点阵类型、点阵常数、晶体取向、缺陷和应力等一系列有关材料结构信息[2],确定点阵参数的主要方法是多晶X射线衍射法[3]。
材料研究方法-第三章X射线衍射分析
X射线衍射分析的优势和局限性
1 优势和应用价值
X射线衍射分析能够提供高分辨率的晶体结构信息,可用于研究材料相变、配位化学、催 化作用等领域。
2 局限性
X射线衍射分析只对晶体材料适用,对非晶态和纳米材料无法应用。
X射线衍射分析实例
1
研究锂离子电池电解质固体界面的晶体结构
Hale Waihona Puke 用单晶X射线衍射仪分析高效锂离子电解质与电极材料的交界面结构。
材料研究方法-第三章X射 线衍射分析
欢迎来到材料研究方法-第三章:X射线衍射分析。在这个演示中,我们将介 绍X射线衍射分析的原理、应用及其优势和局限性。让我们来探索这项有趣的 技术!
X射线衍射分析概述
定义和原理
X射线衍射分析是通过分析X射线穿过材料时的 衍射模式,探究材料的晶体结构和组成的技术。
仪器和设备
2
研究含铁亚铁酸盐的质子传导性质
通过Powder X射线衍射技术研究不同硅酸盐基质中铁亚铁酸盐的晶体结构和质 子导电机制。
3
研究金属氧化物的杂质掺杂过程
用Texture X射线衍射仪研究镉氧化物和钴氧化物的杂质掺杂过程,探究了掺杂 元素对材料结构的影响。
X射线衍射分析在材料研究领域中的应用
材料结构
材料相变
• 研究分子晶体的结构和 功能性固体材料的结构
• 探究半导体中的晶格畸变等
• 研究金属的相变和相变 动力学
• 分析材料在不同温度下 的相变特性
配位化学
• 研究金属络合物和配位 化合物的晶体结构和配
• 位探键究不同金属离子之间 的配位作用
新兴技术趋势-暴露在X射线下的人体结构
除了材料研究,X射线衍射技术还被应用于医学领域。最近,有研究者使用层析技术来分析复杂的人体结构, 如神经系统。这为神经疾病的诊断和治疗提供了新的思路。
X射线衍射实验方法和数据分析
X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。
关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。
1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。
物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。
实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。
在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。
就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。
第二章X射线衍射分析方法及应用
告诉你答案。
第二章X射线衍射分析方法及应用
物相定性分析的基本原理:
(1)每一种物相都产生自己 特有的衍射花样,两种物相 不会给出完全相同的衍射花 样。 (2)多相试样的衍射花样是 各自相衍射花样的机械叠加 ,互不干扰。
第二章X射线衍射分析方法及应用
粉末衍射卡(Powder Diffraction File,简 称PDF) ➢PDF标准卡分为有机物和无机物两大类, ➢每张卡片记录一个物相。 ➢为说明卡片内容,可将卡片分为10个区。
第二章X射线衍射分析方法及应用
10 第二章X射线衍射分析方法及应用
PDF卡的内容分述如下: 区间la、1b、1c:低角度区(2<90°) 的
第二章X射线衍射分析方法及应用
区间6:样品来源、制备方式及化学分析数 据等,其中标出热处理、照相或扫描的温 度。
第二章X射线衍射分析方法及应用
区间7:物相的化学式和名称。 区间8:物相的矿物名。本区右上角为表示卡片 数据可靠程度的符号,其中 — 数据有较高的可靠性;
i — 数据可靠性稍差,表示资料经过指标化, 强度是估计的,准确性不如星号;
如, Diffractometer代表衍射仪法; Ref.—该区数据来源。
第二章X射线衍射分析方法及应用
区间4:物相的结晶学数据, 其中
Sys. — 晶系; S. G. — 空间群符号; a0、b0、c0 — 晶胞轴长; A、C — 轴率,A = a0/b0,C = c0/b0 、 、 — 轴角; Z — 单位晶胞内“分子”数; Dx — 计算的密度; Ref.— 该区数据来源。
最后判定存在的物相。 第二章X射线衍射分析方法及应用
X射线衍射分析方法
e−2D
A(θ)
I1 = R1 C1 I2 R2 C2
对于两相: C1 + C2 = 1
18
实线为理论计算值
19
20
哈氏无机数值索引: 每一种物质占一行、依次为8条强线的晶面间距及相对强度(用数 字表示,其中x为100%),化学式,卡片号,显微检索号
哈氏索引的编制是按各种物质三条强线中第一个d值的递减次序划 分成51个小组(即51个晶面间距范围),每一小组第一个d值的变 化范围都标注在哈氏数值索引各页的书眉上,以便查阅。
µβ ρβ
)+
µβ ρβ
16
二、外标法
X射线物相的定量分析
若混合物中含有n相(n大于2),各相的μm不相等,此时可往 试样中加入标准物质,把试样中待测相的某根衍射线条强度与 标准物质的某根衍射线条强度相比较,从而求得待测相含量。 仅适用于粉末试样。
设加入的标准物质用S表示,其质量分数为Ws。被分析的相在
第一篇 X射线衍射分析
第一章 X射线的产生和性质 第二章 X射线的衍射原理 第三章 X射线衍射分析方法
X射线衍射仪的构造及几何光学 X射线衍射仪的测量方法和实验参数
第四章 X射线物相分析
1
2
X射线衍射仪的构造及几何光学
X射线衍射仪包括X射线发生器,测角仪,探测器和测 量记录系统。其中测角仪和探测器是两个关键部件 一、测角仪
一、计数测量方法
1、连续扫描测量法 2、阶梯扫描测量法法 二、实验参数的选择
1、光阑的选择 梭拉光阑固定不变 发散狭缝光阑 1/300,1/120,1/60,1/40,1/20,10,40
发散狭缝光阑B1是用来限制入射线在与测角仪平面平行 方向上的发散角,它决定射线在试样上的照射面积和强 度。对发散光阑B1的选择应以人射线的照射面积不超过 试样的工作表面为原则。
现代材料分析方法实验课讲义——X射线衍射分析2学时11-56页精选文档
n——反射级数,为整数; ——入射X线波长,与X射线管所用的靶材有关。
上式即为布拉格定律或布拉格方程,它把衍射方向、平面
点阵族的间距d(hkl) 和X射线的波长 联系在一起。
01.05.2020
Deliang Chen,Zhengzhou University
4
当波长一定时,对指定的某一族平面点阵(hkl)来说,n数值 不同,衍射的方向也不同。n=1, 2, 3,……,相应的衍射角 为1, 2, 3,……,而n=1, 2, 3等衍射分别为一级、二级、三
可以证明,在衍射hkl中,通过晶胞原点的衍射波与通过第 j个原子(坐标为xj,yj,zj)的衍射波的周相差为:
j = 2(hxj +kyj +lzj)。
01.05.2020
Deliang Chen,Zhengzhou University
9
若晶胞中有n个原子,每个原子散射波的振幅(即原子散射
因子)分别为f1, f2, , fj, , fn,各原子的散射波与入射波的
2
当入射角与散射角相等时,一层原子面上所有散射波干涉 将会加强。与可见光的反射定律类似,X射线从一层原子面 呈镜面反射的方向,就是散射线干涉加强的方向。因此, 将这种散射称为从晶面反射。
下面讨论两相邻原子面的散射波的干涉:
过D点分别向入射 线和反射线作垂线, 它们的光程差为:
=AB+BC=2dsin
级衍射。为了区别不同的衍射方向,可将上式改写为:
[2d(hkl)sinn ]/n =
带有公因子n的晶面指标(nh nk nl)是一组和(hkl)平行的晶面, 晶面间距d (nh nk nl)和相邻两个晶面的间距d (hkl)的关系为:
材料表征知识点总结
材料表征知识点总结一、材料表征的基本概念1.1 材料表征的概念材料表征是指通过一系列的手段和方法对材料进行结构、性能分析的过程。
它是材料科学研究的重要手段,对于认识和理解材料的微观结构、物理性质、化学性质、力学性质等具有重要意义。
材料表征的目的是为了揭示材料的内在特征,解析材料的结构和性质之间的关系,为材料设计、改进和应用提供科学依据。
1.2 材料表征的内容材料表征的内容主要包括以下几个方面:结构表征、性质表征、表面表征、界面表征、缺陷表征等。
结构表征主要是对材料的晶体结构、非晶结构、微观结构、纳米结构等进行研究与分析;性质表征主要是对材料的物理性质、化学性质、力学性质、热性质等进行研究与分析;表面表征主要是对材料的表面形貌、表面性质、表面活性等进行研究与分析;界面表征主要是对材料的各种界面性质、界面相互作用、界面扩散等进行研究与分析;缺陷表征主要是对材料的各种缺陷类型、缺陷形成、缺陷演变等进行研究与分析。
1.3 材料表征的方法材料表征的方法主要包括物理方法、化学方法、电子显微镜方法、X射线衍射方法、光学显微镜方法、谱学方法、表面分析方法等。
这些方法可以对材料的结构、性质、表面、界面、缺陷等进行多角度、多层次的表征与分析,从而全面地了解材料的内在特征。
二、材料表征的常用方法与技术2.1 物理方法物理方法是材料表征中最常用的方法之一,主要包括X射线衍射法、电子显微镜法、磁共振法、核磁共振法、拉曼光谱法、光谱学方法、热分析法、热敏电阻法、热释电法等。
这些方法可以通过对材料的物理性质、电磁性质、热力学性质等进行分析,揭示材料的内部结构和性质之间的相互关系。
2.2 化学方法化学方法是材料表征中另一个重要的方法,主要包括原子吸收光谱法、光度法、电化学方法、色谱法、荧光分析法、偏振光分析法等。
这些方法可以通过对材料的化学性质、化学成分、化学反应等进行分析,揭示材料的化学本质和特征。
2.3 电子显微镜方法电子显微镜方法是材料表征中一种重要的方法,主要包括透射电子显微镜法、扫描电子显微镜法、透射电镜能谱法等。
X射线衍射原理操作及结果分析-XRD全面介绍
思考题
1.简述X射线衍射分析的特点和应用; 2.简述X射线衍射仪的结构和工作原理;
X射线衍射一般分为:
单晶X射线衍射 多晶粉末X射线衍射
2. 实验仪器及实验操作
2.由阴极灯丝、阳极、聚 焦罩等组成,功率大部分在1~2千瓦。可拆 卸式X射线管又称旋转阳极靶,其功率比密闭 式大许多倍,一般为12~60千瓦。常用的X射 线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、 Cu等。
晶面间距d与晶胞的形状和大小有关,相对强度则与质点 的种类及其在晶胞中的位置有关。所以任何一种结晶物质 的衍射数据d和I/I1是其晶体结构的必然反映,因而可以 根据它们来鉴别结晶物质的物相。
布拉格方程
此式的物理意义在于:规定了X射线在晶体内产生衍射 的必要条件,只有d、θ、λ同时满足布拉格方程时, 晶体才能产生衍射。
4
O2 (4e)
0.1488(2)
0.9779(1)
0.2382(7)
4
O3 (4e)
0.1709(8)
0.0469(9)
0.0437(1)
4
O4 (4e)
0.1613(1)
0.2622(8)
0.1834(1)
4
O5 (4e)
0.4294(5)
0.0872(5)
0.3307(7)
4
O6 (4e)
0.6965(8)
x, y, z (in units of lattice constants a = 8.6071(1)Å, b = 8.5931(8)Å, c = 12.0410(1)Å and β = 90.587(2)°) for carbon-coated Li3V2(PO4)3
(完整word版)第五章X射线衍射实验方法
第五章 X射线衍射实验方法常用的实验方法1.按成相原理分:单晶劳埃法、多晶粉末法、周转晶体法2.按记录方式分:照相法:用照相底片记录衍射花样衍射仪法:用各种辐射探测器和电子仪表记录。
、第一节粉末照相法1.粉末照相法是用单色X射线照射转动(或固定)多晶体试样,并用照相底片记录衍射花样的一种实验方法。
试样可为块、板、丝等形状,但最常用粉末,故称粉末法。
2.粉末法成相原理:粉末试样是由数目极多的小晶粒组成,且晶粒取向完全无规则,各晶粒中d值相同的晶面取向随机分布于空间任意方向,这些晶面对应的倒易矢量也分布于整个倒易空间的各个方向,它们的倒易阵点则布满在以倒易矢量的长度为半径的倒易球面上.由于等同晶面族{HKL}的面间距相等,所以,等同晶面族的倒易阵点都分布在同一个倒易球面上,各等同晶面族的倒易阵点分别分布图5-1 粉末法成相原理图在以倒易点阵原点为中心的同心倒易球面上.在满足衍射条件时,根据厄瓦尔德原理,反射球与倒易球相交,其交线为一毓垂直于入射线的圆,从反射球中心向这些圆周连线级成数个以入射线为公共轴的共顶圆锥,圆锥的母线就是衍射线的方向,锥顶角等于4θ.这样的圆锥称为衍射圆锥。
1。
1 德拜照相法(1)德拜照相法(2)圆筒底片摄照示意图1。
2 聚焦照相法o是利用发散度较大的入射线,照射到试样的较大区域,由这个区域发射的衍射线又能重新聚焦,这种衍射方法称为聚焦法.聚焦相机的基本特征是狭缝光阑、试样和条状底片三者位于同一个聚焦圆上。
它所依据的几何原理是同一圆周上的同弧圆周角相等,并等于同弧圆心角的一半。
按照这样的几何原理,让狭缝光阑、试样和条状底片三者采取不同的布置,便可设计出各种不同类型的聚焦相机。
塞曼—波林相机的内壁圆周为聚焦圆,狭缝光阑s、试样表面AB和条状底片MN三者准确地安置在同一个聚焦圆上。
狭缝光阑相当X射线的虚光源,实际光源为x射线管的焦点。
图5—2 塞曼—波林相机的衍射几何1。
3 平面底片照相法2.利用单色(标识)X射线、多晶体试样、平面底片和针孔光阑,故也称之为针孔法。
X射线衍射分析
X射线衍射分析X射线衍射是一种广泛应用于材料科学、生物学、化学等领域的分析技术,它通过衍射现象来研究晶体结构和晶体取向。
本文将介绍X 射线衍射分析的原理、方法以及在不同领域中的应用。
一、X射线衍射原理X射线衍射是指X射线入射到晶体上,由于晶体的周期性结构,X 射线在晶胞中遇到原子核或电子时会发生衍射。
根据布拉格定律,衍射角度与晶格常数、入射波长之间存在特定的关系,通过观察衍射角度和强度可以推断出晶体结构的信息。
二、X射线衍射方法1. 粉末衍射:将样品粉碎成粉末状,通过X射线衍射仪器进行衍射分析,可以获得材料的晶体结构信息。
2. 单晶衍射:用单一晶体进行X射线衍射分析,可以得到更为详细的结构信息,包括原子间的位置和取向。
三、X射线衍射在材料科学中的应用1. 晶体学研究:通过X射线衍射可以确定晶体结构和晶体学参数,揭示材料的性质和相态变化。
2. 晶体生长:X射线衍射可以监测晶体的生长过程,帮助调控晶体的形貌和性能。
四、X射线衍射在生物学中的应用1. 蛋白质结构:X射线衍射被广泛用于解析蛋白质的晶体结构,揭示蛋白质的功能和作用机制。
2. 细胞成像:通过X射线衍射可以对细胞结构进行高分辨率成像,为细胞生物学研究提供重要依据。
五、X射线衍射在化学分析中的应用1. 晶体化学:X射线衍射可以确定晶体中元素的位置和化学键的性质,为化学合成提供参考。
2. 晶体衍射敏感性分析:X射线衍射可以用于检测材料中微观结构的变化,分析化学反应的过程和机制。
总结:X射线衍射作为一种强大的分析技术,不仅在材料科学、生物学和化学领域有着重要的应用,还在许多其他领域有着广泛的应用前景。
随着仪器技术的不断进步,X射线衍射分析将在更多研究领域展现其重要作用。
X射线衍射分析法
X射线衍射分析法X射线衍射分析法是一种广泛应用于材料科学领域的非破坏性分析方法,它通过对材料中X射线的衍射模式进行研究,可以得到材料的结晶结构信息、晶体学参数以及晶体缺陷等重要信息。
X射线衍射技术已经成为材料科学研究中不可或缺的重要手段,被广泛应用于金属材料、半导体材料、无机晶体、有机晶体等材料的研究和分析中。
X射线衍射的原理是利用入射X射线借助晶体的晶格结构,发生衍射现象,通过测量样品中出射X射线的衍射角度和衍射强度,可以确定晶体的晶格常数、晶体结构、晶体取向和晶体缺陷等信息。
X射线衍射仪是一种专门用于进行X射线衍射分析的仪器,根据不同的应用需求,可以选择适合的X射线衍射仪进行实验。
X射线衍射分析法主要包括粉末衍射分析法和单晶衍射分析法两种常用的方法。
粉末衍射分析法适用于多晶材料或粉末材料的结构研究,可以获得晶体的空间点群、晶胞参数、结晶度等信息;单晶衍射分析法则适用于单晶材料的结构研究,可以获得晶体的真实结构信息,包括晶体的空间对称性、原子位置等详细信息。
X射线衍射分析法具有许多优点,如非破坏性、高灵敏度、高分辨率、快速测量和可定量分析等特点,因此在材料科学研究领域得到广泛应用。
在金属材料研究中,X射线衍射分析可以用于评估金属的晶体结构和相变行为;在半导体材料研究中,X射线衍射分析可以用于研究半导体晶体的缺陷结构和掺杂效应;在生物晶体学研究中,X射线衍射分析可以用于解决生物大分子的三维结构等问题。
在进行X射线衍射分析时,需要注意一些实验参数的选择和控制,以确保实验结果的准确性和可靠性。
在进行粉末衍射实验时,需要选择合适的X射线波长、样品旋转角度、测量范围和样品制备条件等参数;在进行单晶衍射实验时,需要控制晶体的取向和衍射仪的校准等条件。
总的来说,X射线衍射分析法是一种非常有价值的材料结构分析方法,可以为材料科学研究提供重要的结晶学信息。
随着仪器技术的进步和应用领域的拓展,X射线衍射分析方法将在材料科学研究中发挥愈发重要的作用,为解决材料科学领域的难题提供宝贵的帮助。
2014级-X射线衍射实验指导书
水冷装置 冷却水
X 射线管 高压电缆 高压发生器
x 射线发生器(XG)
控制驱动装置 测角仪
探测器 样品
计数存储装置
扫描条 件设置
计算机 系统
光管电流、电压设置 图 1-2 X 射线多晶衍射仪构造示意图
衍射仪主机
水冷装置
计算机
测角仪 X 射线光管
样品
图 1-3 日本理学(Rigaku)Miniflex 600 衍射仪
槽,并用平整光滑的玻璃板将其压紧,将槽外或高出样品板面的多余粉末刮去,
重新将样品压平,使样品表面与样品板面一样平齐光滑,如图 1-7(b)所示。如果
样品容易发生取向,可以使用背压法或是撒样法制样。
(2)特殊样品的制备
对于金属、陶瓷、玻璃等一些不易研成粉末的样品,可先将其锯成窗孔大小,
磨平一面,再用橡皮泥或石蜡将其固定在窗孔内。
(a)垂直式(θ-θ)
(b)水平式(θ-2θ)
图 1-5 测角仪类型
3
2.2.2 测角仪光学系统 图 1-6 是测角仪的衍射几何光路图。S1 和 S2 为索拉(Sollar)狭缝,由一组
等间距平行的金属薄片(Ta 或 Mo)组成,可以将倾斜的 X 射线挡住。发散狭缝 (DS)用于限制 X 射线水平方向的发散度。防散狭缝(SS)用于防止空气散射 等 X 射线进入探测器。DS 和 SS 大小设置相同。接受狭缝(RS)用于控制进入 探测器的衍射线的宽度。如果衍射仪中使用滤波片进行单色化时,滤波片一般插 入至接收狭缝之前。
探测器
2.2.1 X 射线发生器 X 射线发生器主要由高压控制系统和 X 光管组成,它是产生 X 射线的装置。
衍射仪按 X 射线发生器的功率分为普通衍射仪(~3kW)和高功率旋转阳极衍射 仪两类。前者使用密封式 X 射线管,后者使用旋转阳极 X 射线管(12kW 以上)。 密封式 X 射线管又根据外壳的种类可以分为玻璃管和陶瓷管。图 1-4 是密封式 X 射线管的示意图。封闭式 X 射线管是一支高真空的二极管。当灯丝加上电压(低 电压)时,就会在产生热电子,这些电子在高电压的加速之下,以高速度撞击在 阳极靶上,运动电子的能量大约 1%转变为 X 射线,其余转化为热能,由冷却水 带走。靶材的种类有 Cr、Fe、Co、Cu 等,其中 Cu 靶为比较常用的靶材。X 射 线管上开有铍窗,让 X 射线射出,供衍射仪使用。
X射线衍射分析方法
识别并标定衍射峰,确定各峰对应的晶面 间距。
结构分析
结果解释与报告
根据衍射峰数据,进行物相鉴定、晶体结 构分析和晶格常数计算等。
对实验结果进行解释和讨论,撰写实验报 告,提供有关样品的物相组成、晶体结构 和结晶度等信息。
03 X射线衍射分析的应用实 例
晶体结构分析
晶体结构分析是X射线衍射分析的重 要应用之一,通过测量晶体对X射线 的衍射角度,可以推导出晶体的空间 结构。
高分子材料
通过X射线衍射分析可以研究高分子材料的结晶度和分子排列,有 助于高分子材料的设计和改性。
陶瓷和玻璃材料
X射线衍射分析用于研究陶瓷和玻璃材料的晶体结构和微观结构,有 助于陶瓷和玻璃材料的性能优化和应用拓展。
医学领域
药物研发
X射线衍射分析用于研究药物分子的晶体结构和构象,有助于新 药设计和开发。
深入线衍射分析可以研究固体表面的晶体结构和相变行为,
有助于表面工程和器件研发。
相变和相分离
03
X射线衍射分析可以用于研究物质在相变和相分离过程中的晶体
结构和变化规律,有助于材料科学和能源领域的发展。
材料科学领域
金属材料
X射线衍射分析用于研究金属材料的晶体结构和相组成,有助于优 化金属材料的性能和加工工艺。
微聚焦X射线技术
通过采用微聚焦X射线技术,可以将X射线聚焦到 微米甚至纳米级别,实现对微小样品的高精度分 析。
X射线光谱分析
结合X射线衍射和X射线吸收谱等技术,可以获取 样品的更多信息,为物质结构和性质的研究提供 更全面的数据。
X射线衍射分析的未来展望
智能化与自动化
随着人工智能和自动化技术的发 展,未来X射线衍射分析将更加智 能化和自动化,提高分析效率。