暖通空调系统中的水力平衡问题

合集下载

暖通空调系统水力平衡调节的有效措施

暖通空调系统水力平衡调节的有效措施

暖通空调系统水力平衡调节的有效措施在建筑物暖通空调水系统中水力失调是最常见的问题,由于水力失调导致系统流量分配不合理,造成某些区域冬天不热,夏天不冷的情况。

系统输送冷、热量不合理,从而引起能量的浪费。

本文对水力失调和水力平衡的概念进行阐述,并对产生水力失调的原因和调节措施进行了分析。

标签:空调;水系统;水力失调;平衡调节在暖通空调水力系统中,虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。

因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节。

一、水力失调和水力平衡的概念在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。

水力失调的程度可以用实际流量与设计要求流量的比值X来衡量,X称水力失调度。

X=QS/QJ(QS:用户的实际流量,QJ:用户的设计要求流量)水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。

r=1/XMAX=QJ/QMAX(QJ:用户的设计要求流量,QMAX:用户出现的最大流量)二、水力失调和水力平衡的分类2.1静态水力失调和静态水力平衡由于设计、施工、设备材料等原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的水力失调,叫做静态水力失调。

静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。

通过在管道系统中增设静态水力平衡设备(水力平衡阀)对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案

暖通空调系统全面水力平衡解决方案暖通空调系统是建筑中关键的基础设施之一,而水力平衡则是暖通空调系统中最为重要的技术之一。

水力平衡指的是各个部分的流量、压力和温度等物理量在系统内达到协调统一的状态,使整个系统运行稳定、节能、舒适。

本文将介绍暖通空调系统全面水力平衡解决方案。

水力平衡问题暖通空调系统的水力平衡问题主要体现在管道系统中。

管道系统的水力平衡问题,属于流体力学的范畴,具有复杂性、时变性和非线性等特点。

在管道系统中,水流的速度、流量、压力和温度等物理量会因系统的长度、管径、流量、节流器等因素而不同,这些因素的差异会导致系统中的局部水力失衡。

这种失衡会导致流量的变化、压力的不均匀和能量的浪费,从而影响系统的运行效率和舒适度。

解决方案为了解决暖通空调系统中的水力平衡问题,需要采取以下解决方案:管道设计管道设计是解决暖通空调系统水力平衡问题的关键。

在设计管道系统时,需要考虑到管径、管道长度、管道材质、弯头角度等因素,以确保系统可以满足流量和压力的要求。

设计流量控制流量控制是暖通空调系统中流量平衡的关键。

通过使用节流器、流量控制阀、平衡阀等设备,可以控制管道中的流量,达到水力平衡的目的。

管道调试管道调试是水力平衡实现的重要环节之一。

调试过程中需要测试流量、压力和温度等参数,根据实际情况对管道中的设备进行调整和改进,以实现水力平衡。

建立水力网络模型建立水力网络模型可以帮助工程师更好地理解管道系统中的水力平衡问题,优化系统设计和调试方案。

水力网络模型可以通过计算机模拟来实现,这种方法可以减少试错成本,并提高系统设计的精度。

定期维护系统维护是确保水力平衡可以持续有效的关键。

定期检查管道系统中的设备、清洗管道内部的沉积物、更换老化的管道等操作,可以保持系统的正常运行,并有效减少系统的故障率。

结论暖通空调系统的全面水力平衡是建筑节能和舒适性的关键环节。

通过管道设计、流量控制、调试、建立水力网络模型和定期维护等措施,可以解决水力平衡问题,使系统运行更加节能、稳定和舒适。

暖通空调水系统中的水力失调及应对措施

暖通空调水系统中的水力失调及应对措施

暖通空调水系统中的水力失调及应对措施前言暖通空调系统在冬季供暖和夏季制冷中被广泛应用。

水是系统中最常用的工质,用于传递和储存能量。

然而,在系统运行过程中,由于各种原因,水力失调现象时有发生。

本文将简要介绍水力失调的原因及对应的应对措施。

水力失调的原因1.管网设计不当:管网设计不当,导致热水、冷水进出口流量失衡,影响整个系统的供暖或制冷效果。

2.系统调节不当:系统调节时,由于人为原因或设备故障,未能满足流量平衡的要求,导致水力失调。

3.泵站运行不正常:泵站的运行状态及参数不正常,例如泵流过大或过小、泵站数量不足等,均会导致系统的水力平衡失控。

4.管道不清洁:管道四周的污垢和杂物会导致管道狭窄,影响水的流动,进而导致水力失调。

5.附加装置安装不当:例如阀门和节流装置,如果安装不当或清洗不及时,也会导致管道阻力增大,进而影响水力平衡。

水力失调的应对措施1.管网优化设计:针对管网设计不当,可以进行优化的设计,使热水、冷水进出口流量平衡。

可以通过实验测量和计算的方法,确定合适的管径、道路总长度和道路流量比例,从而达到相对平衡。

2.系统调节及检修:在系统运行过程中,需要定期对系统进行检修和调节,确保流量平衡和系统的正常运行。

例如能耗分析法、定常法、非定常法和调节矩阵法等方法可以用来调节系统。

3.泵站参数调整:泵站的运行状态及参数需要进行调整。

针对泵流过大或过小、泵站数量不足等问题,需要借助与技术人员,调整泵站的运行参数。

4.管道清洗:定期对管道进行清洗,去除污垢和杂物,保持管道畅通,从而保证水力平衡。

5.附加装置检修:针对阀门和节流装置,要定期进行检修和清洗,确保其运行正常,从而保证管道阻力不至于变大。

水力失调问题在暖通空调系统的运行过程中时常出现,但是只要采取正确的手段,可以较好地应对,使得系统运行正常,达到预期的效果。

因此,在暖通空调系统的设计、运行和维护中,务必要持续注重水力平衡方面的问题。

关于空调系统水力平衡与系统节能的分析

关于空调系统水力平衡与系统节能的分析

关于空调系统水力平衡与系统节能的分析摘要:本文主要介绍了水力平衡在空调水系统运行中对节能的意义,并分析了水力失衡的原因及不同形式系统的水力失衡调节的方法。

关键词:水力失调;水力平衡;水泵能耗引言节约资源是我国的基本国策,我国建筑能耗占总能耗的30%左右,其中空调能耗约占建筑能耗的50~60%,在集中中央空调系统的耗能设备中,冷冻水泵与冷却水泵的能耗大约占25~30%。

长期以来,空调系统在实际运行中普遍存在水力失调问题,不仅影响室内环境的舒适性,而且也影响到系统的运行成本;同时,空调水系统的水力不平衡会造成空调系统水流量的分配失衡,导致有些回路流量过剩而另一些回路流量不足,从而出现空调区域冷热不均的现象,为了兼顾局部失衡区域的空调效果,空调主机、水泵不得不在大流量状态下工作,导致空调系统能耗增加。

因此,解决水力失衡问题是提高暖通空调系统舒适性和节能的关键。

1水力工况和水力工况平衡水力工况是指系统各点的压力,各管段的流量、压差。

由管段的流量与压差的关系公式△P=SQ2可知当管路阻抗一定时,流量和压差成正比,压差增大时,流量增大。

式中:P—压差或阻力损失;S管段或系统的阻力系数;Q—管段或系统的流量。

系统运行水力工况是水泵的特性曲线与管网特性曲线交点形成的。

而水泵的扬程都是根据最不利环路的阻力确定的,以保证最不利支路的作用压差满足设计要求。

对于管网特性曲线△P=SQ2,因并联的近端回路S值都会小于设计值,造成总S值远小于设计值。

见图1:设计管网特性曲线为S设计,设计工况点为A点,未经水力平衡的管网特性曲线为S运行,运行工况点为B点,水泵的实际工作点在管网特性曲线图上将落到B点,其直观表象就是:①循环水泵在小扬程大流量工况下运行,使水泵在大轴功率低效率点工作;②总循环水量的加大必然导致主机阻力加大;③流量加大后供回水温差变小;④近端支路作用压差大于用户需用压差必然导致近端支路流量过大。

图1管网特性曲线图水力工况平衡就是使流量合理分配,让各个回路的流量达到设计流量或实际需求流量。

对暖通空调水力平衡浅析

对暖通空调水力平衡浅析

对暖通空调水力平衡浅析摘要:在建筑物暖通空调工程中 ,水力平衡的调节是个重要的课题。

水力平衡又分为静水力平衡和动态水力平衡两种 ,水力平衡的实现将有助于工程的完善 ,同时保证全系统的正常运行。

关键词:水力;平衡; 系统;流量abstract: in the hvac engineering building, hydraulic balance regulation is a very important issue. hydraulic balance and divided into static hydraulic balance and dynamic hydraulic balance two kinds, the realization of the hydraulic balance will help to the improvement of the project, and at the same time guarantee the normal operation of the whole system.keywords: hydraulic; balance; system; flow中图分类号:tu831.3+5文献标识码:a 文章编号:在建筑物暖通空调水系统中,水力失调是最常见的问题。

由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。

一、水力失调和水力平衡的各种类型1.1静态水力失调和静态水力平衡由于各种原因导致的系统管道特性阻力数比与设计要求管道特性阻力数比值不一致 ,从而使系统各用户的实际流量与设计要求流量不一致 ,引起系统的水力失调 ,叫做静态水力失调。

静态水力失调是稳态的、根本性的,是系统本身所固有的 ,是当前我国暖通空调水系统中水力失调的重要因素。

暖通空调水力平衡调节方法探讨

暖通空调水力平衡调节方法探讨

要满足工程设计和技术规范要求 ,同时又应采 用合理 的方案 , 为甲方节约资金 。 合理地安装水 力平衡 阀以及 采用正确的方法进 行系统联调 ,
可 以极大地改 善系统 的水力特性 ,使 系统 接近 或达到水力平衡 ,从而既为系统的正常运行 提 供了保证, 同时又节省 了能源 , 使系统经济 高效
地 运 行

2 9— 7
关 键 词 : 通 空调 ; 力平 衡 ; 节 暖 水 调
在暖通空调水力系统 中, 虽然某 些通用阀 门如截止阀 、 阀等也具有一定的调节能力 , 球 但 由于其调节性能不好 以及无法对调节后的流量 进行测量 ,因此这种调节只能说是定性的和不 准确的 ,常常给工程安装完毕后的调试工作和 运行管理带来极大 的不便 。 因此近些年来 , 在越 来越多的暖通空调工程水系统的关 键部位 ( 如 集水器 )特别是在一些 国外设计公司设计 的工 、 程项 目中,均大量地选用水力平衡 阀来对 系统 的流量分配进行调节。 1 力 失 调 和 水 力 平 衡 的 概念 水 在 热水供热 系统 以及空调 冷冻水 系统 中 各热 ( ) 冷 用户的实际流量与设计要求流量之 间 的不一致性称为该用户的水力 失调 。水力失调 的程度可 以用实际流量与设计要求流量的 比值 x来衡量 , x称水力失调度 。 X Q /J Q : 户 的实 际 流量 , J用 户 = SQ ( S 用 o: 的设计要求流量 ) 水力 平衡是 指网路 中各个 热用户在 其它 热用 户流量改变时保持本 身流量不变 的能力 , 通常用热用户的水力稳定性系数 r来表示。
建 筑工 程 f J I
陈 学谧

暖通空调水力平衡调节方法探讨
( 尔滨工业 大学博 实房地产 开发有限公 司, 哈 黑龙江 哈 尔滨 10 0 ) 5 00

论暖通空调变流量水力系统平衡问题

论暖通空调变流量水力系统平衡问题

论暖通空调变流量水力系统平衡问题【摘要】本文介绍了水力平衡的概念及分类,概述了变流量系统的全面水力平衡方法。

【关键词】暖通空调变流量水力系统平衡措施中图分类号: tu96+2 文献标识码: a 文章编号:一、前言空调水系统具有以下特点:空调设备绝大部分时间内在远低于设计负荷情况下运转;空调水系统供回水温差远低于供暖系统的温差,无法进行质调节,流量调节才是合理的做法;空调水系统设计有定流量系统与变流量系统之分,两种方式均是就负荷侧而言,对于冷源侧,则应根据制冷方式不同具体分析对待。

主要关注的是变流量水系统的全面平衡。

二、水力平衡的概念及分类1、静态水力失调和静态水力平衡由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求的管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求的流量不一致引起的水力失调,叫做静态水力失调。

静态水力失调是稳态的、根本性的,是系统本身所固有的。

通过增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求的管道特性阻力数比值一致,从而使系统总流量达到设计总流量,同时使各末端设备流量达到设计流量,可以实现静态水力平衡。

2、动态水力失调和动态水力平衡系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其他末端的流量也随之发生改变,偏离末端要求流量,引起水力失调,这种水力失调叫做动态水力失调。

动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。

3、全面水力平衡全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。

三、变流量系统的全面水力平衡方法1、静态水力平衡的实现通过在对应部位安装静态水力的平衡设备,使系统达到静态水力平衡。

当系统所有的自力式阀门均设定到设计参数位置,所有末端设备的温控阀均处于全开位置时,系统所有末端设备的流量均达到设计流量:实现静态水力平衡的目的是使系统能均衡地输送足够的水量到各个末端设备,并保证末端设备同时达到设计流量。

暖通空调水力平衡分析

暖通空调水力平衡分析

暖通空调水力平衡分析暖通空调系统是现代建筑中必不可少的一部分,它的主要作用是为建筑内的人员提供舒适的温度和空气质量。

然而,在暖通空调系统设计与施工中,常会出现水流量不均衡、水压不稳定等问题,这会导致系统能效低下、压力波动等负面影响。

因此,进行水力平衡分析是确保暖通空调系统顺利运行的关键环节之一。

1.暖通空调系统的水力平衡水力平衡是指在管路系统中通过合理布置流通方式、管道尺寸、阀门和泵的数量及功率等,使水在管道中能够均匀流动,从而达到管路各处的流量、压力、速度等参数的平衡状态。

暖通空调系统的水力平衡主要包括两方面内容:一是通过合适的水流量配管,使各个机组能够达到设计的供冷、供热量;二是在管路中保持合适的水压力,确保系统正常运行。

2.暖通空调系统水力平衡分析的意义暖通空调系统中水力平衡的实现对系统性能和经济性都有重要影响。

水力不平衡会导致系统流量不均匀,造成冷热负荷不匹配,降低系统供暖/供冷效果,提高能耗成本,同时还会对设备和管道造成损坏。

通过水力平衡分析,可以帮助设计师、施工方和用户更好地了解系统的状况,及时解决水力不平衡问题,提高系统的能效,加强其可靠性和稳定性。

3.暖通空调系统水力平衡分析的方法及工具暖通空调系统水力平衡分析的方法包括实地测量、计算分析以及试验室模拟等。

实地测量方法:通过现场测量管道的压力、流量、温度等参数,分析管道系统水力状况。

计算分析方法:根据建筑物空调系统的相关参数,使用计算软件进行模拟计算分析。

试验室模拟法:在模拟试验室中对管道系统进行模拟试验,分析系统性能和水力平衡状况。

工具方面,现在有许多强大的水力计算软件,如Elite、Flowmaster和Revit MEP等,可以帮助工程师进行精准的水力平衡分析。

4.暖通空调系统水力平衡分析应注意的事项(1)确保管道清洁:管道系统中有铁屑、沙子等杂物,将直接影响水流量的均匀性,从而影响水力平衡的达成。

(2)合理选择管道尺寸:为了保证水流量的均衡,一般采用相同尺寸的管道进行配管,如果在分支管道上使用较小的管径,可能会影响到主干管道的水力平衡。

watts空调水系统全面水力平衡完美解决方案

watts空调水系统全面水力平衡完美解决方案
静态水力失调的特点是:静态的、根本的、是系统本 身所固有的。
静态水力平衡:通过在水系统管道中增设静态平衡阀 及对系统进行全面水力平衡调试,使在设计工况下,每个 末端设备流量均同时达到设计流量,实现静态水力平衡。
实现静态水力平衡的主要产品有:静态平衡阀
( 三 ) 三个测量标准的实现形式 实现静态水力平衡的系统也就达到了全面水力平衡的
2、电动控制阀两端的压差不能变化太大,以保证控制阀有 良好的控制特性。
3、一二次侧系统的流量相匹配,确保主机和末端获得设计 供回水温度。
实现动态水力平衡的主要产品有:动态流量平衡阀、 压差控制阀、电动平衡二通阀、动态平衡电动调节阀。
一二次侧水力互扰:当主机侧多台主机并联时,存在 多台主机不同组合条件下运行,这时各运行主机之间会存 在水力互扰;或者,在二次侧运行工况变化时,系统的阻 力特性会随之改变,从而引起输配侧不同支路之间的水力 互扰。对于二次泵变流量系统,还存在一二次侧流量不匹 配问题。
为实现室内设定温度,系统每天提前 1~2 小 时开机
每天比水力失调系统少运行 1 小时以上
按一天运行 8 小时计算,少运行 1 小时节省 运行能耗 12.5%!
系统阻力过大,水泵在高扬程下运行
系统可在最低阻力下运行,计算出多余扬程, 通过变频降低水泵能耗
通常可降低能耗
20%

部分负荷下,水力失调将更加严重,过流回 路加剧过流,造成能耗浪费
第一个测量标准:在设计工况下,所有末端设备都能同时 够达到设计流量。
实现动态水力平衡的系统也就达到了全面水力平衡的 第二个测量标准:电动控制阀两端的压差不能变化太大, 以保证控制阀有良好的控制特性。
当实现了前两个测量标准,同时在一二次侧界面处采 用了合适的旁通方式,通过全面水力平衡调试后,确保一 次侧流量大于等于二次侧的设计流量,那么空调系统就能 达到全面水力平衡的第三个测量标准:一二次侧系统的流 量相匹配。

空调水系统水平衡调试方案

空调水系统水平衡调试方案

暖通空调水系统平衡调节方案准备工作:1、校核水系统各个分支的空调冷热水设计流量是否合理;2、检查水泵新风机组空调机组和风机盘管的水过滤器是否已清洗干净3、检查空调冷热水管路的手动阀门(包括蝶阀、闸阀、静态平衡阀)是否处于全部打开状态且阀门开度可调;4、检查水泵冷水机组新风机组空调机组和风机盘管的手动阀门(包括蝶阀、闸阀、水力平衡阀)是否处于全部打开状态且阀门开度可调;5、检查新风机组空调机组和风机盘管的冷热水电动阀是否可以正常工作且处于完全开启状态;6、收集整理水泵、平衡阀、电动阀样本;7、检查水泵的开启台数是否符合设计要求;8、将各管路的控制阀进行分组及编号,绘制简图,并标注设计流量;以该图为例,此系统为一个2级并联和一个2级串联组成的,V1-V3,V4-V5…V16-V18为一级并联系统,G1、G2…G6为二级并联系统,V1-V3,V4-V5…V16-V18又分别与G1、G2…G6组成一级串联系统,G1、G2…G6又与G组成二级串联系统。

方案一:。

若(1)保持整个系统所有阀门全开,测量总管阀G的流量,计算流量比Q总Q总<1,则是因为手动阀、平衡阀、电动阀、风机盘管的电动两通阀未打开,或=1.0。

是管路中有气体,或是过滤器堵塞,或设计扬程不足;调节Q总(2)逐一测量G1、G2…G6的实际流量,计算Q值。

测量时无顺序要求。

为基准,(3)根据Q值大小排序,若Q1<Q2<Q3<Q4<Q5<Q6,以主管流量比Q总按照Q值由大到小,依次调节各个阀门(G6→G5→G4→G3→G2→G1),使分别达到主管的流量比Q。

总,若变化≥5%,则需按照(1)-(3)再次微调。

(4)测量主管Q总(5)按照(1)-(3)的步骤调节1-6阀组的流量平衡。

以第1组为例(6)测量记录V1、V2、V3的流量比值q1、q2、q3,以G1的流量比值Q1为基准。

假设q1<q2<q3,则暂时保持V1阀的全开状态,调节两外2个阀;(7)调节V3开度,使q3=Q1(8)调节V2开度,使q2=Q1(9)测量V1的流量和q1,若q1>Q1,则调节V1使q1=Q1。

暖通空调水力平衡的分析以及调节方法论文

暖通空调水力平衡的分析以及调节方法论文

暖通空调水力平衡的分析以及调节方法【摘要】水利平衡是建筑工程暖通系统中的重要内容,水力平衡对暖通空调系统的能量耗损问题有着非常重要的影响,目前我国建筑工程领域暖通空调水力平衡存在一定的问题,为此本文针对暖通空调水力平衡所存在的具体问题及调节方法展开论述。

【关键词】水力平衡;暖通系统;问题;调节方法在暖通工程中受水力失调的影响导致了暖通系统流量不能够进行合理的分配,不同的区域之间要么流量过剩,要么流量不足,进而影响了暖通空调系统功能的正常发挥,系统所传送的冷热能量不能够满足季节对暖通空调系统的基本需求,同时也造成了能量的巨大浪费,为有效解决这一问题仅凭提高水泵扬程这种措施对其进行解决,其效果并不十分明显,有效解决这一问题,还须运用调节阀门对暖通空调系统的流量进行有效地调节和配置。

尽管我国暖通空调系统中已经运用诸如:截止阀、球阀等阀门对暖通空调系统的水力状况进行了调节,但其调节效果并不十分理想。

对暖通空调系统的水力平衡进行调节后,无法对系统调节后的流量实施准确的测量,因此这种调节方式是不可取的,无法对暖通空调水力平衡系统进行全面有效地控制与调节。

这种调节方式不利于系统运行后对系统进行科学有效的管理,增加了管理工作的难度。

基于我国暖通空调水力平衡的实际情况,应该优先采用水力平衡阀这种先进的阀门,对暖通空调系统进行调节,保障系统的水力平衡,确保系统功能得以正常的发挥。

1 对定流量系统水力平衡系统的基本分析定流量水力平衡是我国暖通空调水力平衡系统中一种非常典型的水力平衡系统模式,这种水力平衡系统模式有着非常典型的特点,即:在系统运行过程中,暖通空调内部各个不同的部位的流量基本保持平衡不变。

定流量平衡系统的具体表现形式主要有两种,下面我们就这两种典型的定流量系统模式进行简单的介绍。

1.1 完全定流量模式所谓完全定流量系统模式主要是因为在这个系统中不配备任意一种形式的动态阀门,当暖通系统处于完全定流系统模式状态下对水力定流进行初步调节后,不需要对阀门进行调整,阀门只需保持固定状态即可,此时整个系统内部各处的流量是处于恒定状态下的。

暖通空调系统水力平衡调节的有效措施

暖通空调系统水力平衡调节的有效措施

水是一种 自由流动 的流体 ,总是 向阻力相对较小的环路流动 。 这就导致 了靠近水泵 的环路的流量大幅的增加,直到和远离水泵 的 环 路阻力 的流量相 同,这就可 以使 各个环路 的流量变得平衡起来 水力平衡调节 的本质就 是针对 通过 改变 系统 内部 阻力元件 来加 强有 利环路 的阻力 ,从而能够释放其压头 的剩余 ,形成阻力的平衡。 3 . 1现在操作的水力平衡 阀调节法的局限 水力平衡可 以分为两种类型 ,即动态 的水力平衡和静态 的水力 平衡。一般在固定的流量状况下 ,假如各个分支环路 的实 际的水流 量和设计 的预想流量基本相等 , 也就是把静态 的水力平衡落 到实处。 静态 的水力平衡所解 决的是关 于静态平衡 的系统运转 的缺 陷,从而 确保系统 能够均匀 的供给充足 的水量 ,也就是设计的流量。 3 . 2常用水力平衡调节法 ( 1 ) 定流量系统的水力平衡 。 这种系统之 出现在静态的水力失 调之中,不会存在动态的水力失调 ,针对这种情况, 只要在相关位 置装配静态的水力平衡设备就可 以了。至于末端全部定流量的系统 而言 ,系统里面不包含动态 的阀门,一般采用 的节流元件是静 态平 衡 阀、节流孔板 、定流量阀等 ,来实现管路阻力和流 量的有 效调整 。 从而达到每个环路 的实际 的流量是符合 设计流量 的标准 或维持在一 个恒 定的定值 。对 系统进 行必要的调节 之后能实现后阀 门的开度不 需要做其他 的变动 。 系 统的各处 的流量能够持续控制在稳定 的状态 , 也 就 实 现 了 静 态 的 水 力平 衡 这 样 的 水 力 平 衡 , 会 导 致 严 重 的 能 量 浪 费 。 随 着 空 调 周 围 的 环 境 改 变 ,人 流 量 的 增 加 , 以及 日照 辐 射 度 等因子发生变化 ,会 出现空调承担 负荷 的变更 ,从而 引起末端 设备 对空调 的温度需求的改变 。假如一直给末端提供 最大 量的、稳 定的 空调水流量 ,就必然在许多时候发生能源和 能量 的大量浪费,使空 调的系统性能和经济效能变差 。 ( 2 ) 变流量系统水力平衡 的调控 。 随着人们的节能环保意识的 不断增 强,变流量水 系统得 到越来 越广 泛的应用。变流量系统的运 转过程 之中,各个分部环路的流量的高低是随着负荷 的变化产生相 应的变化。鉴于空调一年的极大部分都是在部分 的负荷下工作 ,系 统 的 水 流 量 很 长 时 间 内都 是 处在 一个 低 于 设计 流 量 的情 形 下 , 因此 , 变流量系统显得格外的高效和节能环保 。不 是说变流 量水 系统就是 完美无缺的 ,它也有一个很大缺 陷。并 联环 路之间的耦合 性很强 , 而水力之间是相互影响 的,如果一个环 路的水力产生扰动 ,就会像 涟漪一样传递到 别的环路 里面 。现 在的暖通空调系统的动态水力的 平衡大 多采 用动态 的压 差平衡 阀。它既能吸收外面多余的压头 。又 能阻隔环路或者设备与设备之 间的流量变化 的相互干涉 。 ( 3 ) 采用灵活的能量配置的调配手段 。 从 能量 分 配 的动 态水 力 平 衡 的 调 控 来 看 ,给 空 调 的能 量 的动 态 波 动 和 分 配 给 出 了 一种 灵 巧 的 调 控 技 术 。让 空 调 的 管 理 人 员 能 够 依 据 不 同 的 空调 环路 的 需 要 以 及 需 求 的 实 时 变 化 ,提 供 不 一 样 的空 调 服务 的 质量 安 排 , 在 温 度 的 冷 暖 有 限 制 的情 况 下 能 够 保 障 关 键 环 路 的 温 度 的 配 置 合 理 。 4 结 束 语 暖空系统是一个具有 多动 态和特 征鲜明的多变的系统 负荷 的 增减会对各 环路 之间的冷热需求造成影响 。通过实际 的情况来看 , 现有的水力 平衡 的调控方式都不足 以适应这种状态 ,不能及时有 效 的解 决相 关的技 术难题 。采用系统 以及动态 的方式来解决动态水力 失 衡 的 问题 , 是 暖 通 空 调 系 统 在 水 流 量 的输 送 领 域 的一 个 重要 的 技 术 创 新 , 也 是 一 种 值 得 大 力 推 广 和 广 泛 应 用 的技 术 ,对 现 在 的变 频 空调产生极大的影响。 参考文献 : 『 1 ] 辛欣. 建筑节能与暖通空调技术现状探 讨 [ I ] 碱 市建设理论研 究( 电 子版 ), 2 0 1 1 ( 2 2 ) . f 2 1 王飞腾 . 浅谈暖通空调的设计I I

暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节

暖通空调水系统的水力平衡调节暖通空调水系统的平衡调节在集中供热和中央空调的水系统运行中,水力失调是常见的问题。

水力系统的失调有两方面的含义。

一方面是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的,称之为稳态失调。

另一方面是指系统运行中,当一些用户的水流量改变时,会使其它用户的流量随之变化,这涉及到水力稳定性的概念。

对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。

管网水力失调的原因是多方面的,归纳起来主要有两种情况。

一种是管网中流体流动的动力源提供的能量与设计要求不符,例如泵的型号、规格的变化及其性能参数的差异、动力电源的波动、流体自由液面差的变化等,导致管网中压头和流量偏离设计值。

另一种是管网的流动阻力特性发生变化,例如在管路安装中管材实际粗糙度的差别、焊接光滑程度的差别、存留于管道中泥沙、焊渣多少的差别、管路走向改变而使管长度的变化、弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。

尤其是一些在管网设置的阀门,改变其开度即可能改变管网的阻力特性。

水力失调对管网系统运行会产生不利影响。

管网系统往往是多个循环环路并联在一起的管路系统。

各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。

如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。

当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。

在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。

在水力失调发生的同时,管网中的压力分布也发生了变化。

在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。

为了解决水力失调问题,可以采用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀等阀门进行平衡调节。

空调水系统的优化分析

空调水系统的优化分析

空调水系统的优化分析摘要:空调水系统的组成复杂,对空调系统的运行效果作用关键。

在实际运行中,中央空调水系统往往会出现一些问题,严重影响中央空调系统的运行效果,降低空调房间的舒适性,而且也浪费能源,造成建设单位和用户的不满意。

本文分析了中央空调水系统几种常见问题及其产生原因,并提出了相应的解决方案。

关键词:中央空调水系统;水力不平衡;水泵1水力平衡问题及优化对于建筑的暖通空调系统,如果在运行过程中,因为某一或部分用户的制冷或制热需求的改变而使系统网路的流量分配与各热用户所要求的流量偏离,造成各用户的供冷供热量不符合要求,这种现象就是的水力失调。

相对而言,水力平衡就是说在暖通空调制冷或制热过程中,系统内任何一个用户制冷制热需求的改变都不会给系统中其他的用户制冷制热带来影响,即系统水力稳定性强。

在空调行业中,通常运用水力稳定系数来衡量暖通空调水力平衡的程度,水力稳定系数用y来表示。

y值是暖通系统中热用户的规定流量与工况变化后可能达到的最大流量的比值,y值越大,就说明设计越成功,y值过小,用户的制冷制热要求就难以得到保证。

但是,虽然说r值越大越好,但是过大的话容易造成投资方资金浪费现象,因此,r值是不能无限制过大的。

r值为1时,水稳定处于最佳状态,水力最平衡,其他数值则表示水力失调。

目前,根据暖通空调水系统水力平衡调节的作用和应用范围,对系统进行划分,常用的水力平衡调节有以下几种:(1)单个水力平衡阀的调节实际应用中,单个水力平衡阀的调节是非常容易操作的,首先,将其与专用的流量测量仪表进行连接,并在仪表中输入相应的阀门口径及设计流量,然后根据仪表所显示的开度数值,通过水力平衡阀手轮将测量流量旋转至与设计流量一直即可完成调节。

(2)已有精确计算的水力平衡阀调节对于已有精确计算的水力平衡阀的调节,由于已知系统中每个水力平衡阀流量及分担的设计压降,因此,调节包括以下几个步骤:查出水力平衡阀设计压降——查出或计算出水力平衡阀设计流量——根据调节阀的流通能力计算出其对应设计开度——将水力平衡阀开度旋转至设计开度——完成。

全面水力平衡暖通空调水力系统设计与应用手册

全面水力平衡暖通空调水力系统设计与应用手册

全面水力平衡暖通空调水力系统设计与应用手册一、引言暖通空调系统在建筑物中起着重要的作用,保障室内空气质量和舒适度。

而水力系统作为暖通空调系统的一个重要组成部分,对系统的稳定性、效率和节能性有着重要影响。

全面水力平衡暖通空调水力系统的设计与应用显得尤为重要。

本手册旨在通过系统的介绍、设计原则与方法、应用案例分析等方面的内容,为相关从业人员提供指导和借鉴,帮助他们更好地理解和应用全面水力平衡暖通空调水力系统。

二、全面水力平衡暖通空调水力系统的介绍1. 水力系统的概念和作用水力系统是指在暖通空调系统中,通过管道、阀门、水泵等设备输送冷热水的系统。

水力系统的主要作用包括传热、传热、水力平衡和控制等。

2. 全面水力平衡的概念全面水力平衡是指在水力系统设计中,通过合理的布局、管道尺寸的选择、阀门的调节等手段,使得系统中的各个支路、回路能够达到平衡状态。

水力平衡的实现有利于提高系统的热效率、降低能耗、延长设备使用寿命。

三、全面水力平衡暖通空调水力系统的设计原则与方法1. 设计原则(1)综合考虑系统的整体平衡性(2)合理选择管道尺寸和布局(3)采用自动控制技术提高系统稳定性(4)优化水泵和阀门的选择和配置2. 设计方法(1)初步确定系统的水流量和压降(2)计算管道的阻力和选型(3)合理考虑管道的布局和衔接(4)选择适当的阀门和调节装置四、全面水力平衡暖通空调水力系统的应用案例分析以某高层建筑为例,介绍其全面水力平衡暖通空调水力系统的设计方案和实际应用效果,包括系统的结构布置、主要设备的选择和配置、水力平衡的实现效果等。

五、总结与展望全面水力平衡暖通空调水力系统的设计与应用是暖通空调领域的一个重要课题。

该手册旨在通过介绍系统原理、设计方法和实际案例,帮助相关从业人员更好地理解与应用该系统,为建筑节能与环保做出贡献。

未来,随着科技的不断发展,全面水力平衡暖通空调水力系统将会得到更广泛的应用,为建筑节能和绿色发展提供更多解决方案。

水力平衡技术在暖通空调中的应用

水力平衡技术在暖通空调中的应用

水力平衡技术在暖通空调中的应用标签:动态失调水力平衡节能改造平衡阀水力失调分为静态失调和动态失调两种情况。

静态失调是指系统中各用户在设计状态下,实际流量与设计流量不符,这种失调是稳态的、根本性的,如不加以解决,这类问题始终存在。

特别是在现有的定流量系统中,静态失调问题比较突出。

动态失调是指系统中一些用户的水流量改变时,引起系统的阻力分布变化,导致其他用户流量随之改变产生失调,这种失调是变化的、动态的。

新建的分户供暖系统因安装散热器温控阀,系统变流量运行,产生的失调现象属于此种失调。

暖通空调实际运行中,初、末的供回水温差小,由重力引起的垂直失调小;中期供回水温差大,由重力引起的垂直失调作用加大。

特别对于下供下回系统,要求系统供回水温差应小于10℃,才能保证因重力引起的垂直失调不致太大。

暖通空调系统的最初设计一般供回水温差为25℃,这样实际运行时为了避免垂直失调则系统流量必须加倍,正如前面所示将造成巨大的能源浪费。

水力平衡技术在暖通空调中的应用按照国家规范的热工要求,应通过合理划分和均匀布置环路,并进行水力平衡计算,减少各并联环路之间压力损失的相对差额。

当相对差额大于15%时,应根据水力平衡要求配置必要的水力平衡装置。

水力平衡技术是所有节能措施中最重要的一项,是一切工作的基础。

抛开水力平衡来谈节能则不能保证用户供暖效果,不能实现最大程度的节能。

通常水力管网平衡调节靠平衡阀来实现,平衡阀是解决管网设计、施工过程中产生的最基本失调情况的一种阀门,因此,调节功能是其首要的功能。

阀门的理想流量特性主要有直线流量特性、等百分比流量特性、快开流量特性三种。

对于平衡阀只有采用线性流量特性和等百分比流量特性才具有良好的调节性能,其中以等百分比流量特性最好。

除调节功能之外,平衡阀附加了可测量的测量接口,配合智能仪表可以精确的测量压差、流量甚至介质温度;平衡阀具有可视的数字刻度,一看就可以知道阀门的开度。

平衡阀必须经过科学调试才能达到正确发挥它的作用。

对暖通空调水力平衡的分析以及调节方法的探讨

对暖通空调水力平衡的分析以及调节方法的探讨

对暖通空调水力平衡的分析以及调节方法的探讨摘要:本篇文章主要针对空调水力系统的调节平衡问题,在空调水力的失调和空调水力失衡的基础之上来作为调节的基础,并且对空调水力流量系统在调节过程中所处的平衡环节做出了全面详细的分析。

关键词:暖通空调水力平衡调节平衡阀进入21世纪以来,我国社会经济进入了蓬勃发展的时期,人们日常的水平也不断的提高,极大的刺激了科技技术水平的提升,在这个过程中,建筑行业自身的能耗也在不断的增大,建筑中的暖通空调就处在这样一个状况之下,建筑内的暖通空调主要属于一种人们在日常生活过程中所使用的节能型的中央空调。

对于建筑行业来说,空调的暖通系统出现失调的现象是极为普遍的,这主要是由于暖通空调在运行的过程中,对水力的分配没有达到一个均匀数值,从而造成了整个建筑内个别区域内出现夏天没有制冷效果,冬天没有供暖的情况,暖通空调系统出现了供冷供热不合理,但是对于能源的消耗却依然是标准甚至超过原来设计耗能的,这就导致了能源耗损的情况出现[1]。

近几年来,在大多数暖通空调的水力调节系统的一些比较重要的部位都使用了水力来作为平衡阀,通过平衡阀来对系统供水系统进行调节。

1.水力失调在使用暖通空调的过程中,如果它流向各个用户间的流量与初期设定的流量不同,那么暖通空调就出现了失调的现象,失调现象也可以分为动态的失调和静态失调这两类,静态失调主要是指的在设定的条件小,暖通空调没有达到要求的流量,或者说与设计的流量不符,这就是暖空空调系统出现了根本上的系统问题,如果不及时将这个问题解决掉,这个问题就会一直伴随着暖通空调的运行而存在。

特别是在一些定流量的系统之中,出现静态失调这种现象是比较普遍的,动态失调就供水系统在运作的过程中,受到用户对水流的改变影响,从而使得整个系统的阻力、压力在不断的发生变化[2],从而使得一些用户的流量受到影响,这一类现象是随着用户变化而变化的,是属于动态性的。

2.水力平衡调节2.1水力平衡及元器件水力平衡是指系统管网中各个用户在其它用户流量改变时保持本身流量不变的能力,通常通过用户的水力稳定性系数来表示用户出现的最大流量。

暖通中央空调水系统水力平衡如何调试?

暖通中央空调水系统水力平衡如何调试?

暖通中央空调水系统水力平衡如何调试?暖通中央空调系统的目标是在最低的能耗水平下提供需要的(舒适的)室内温度。

为了达到这两个目标,系统可能采用了变频和自控技术。

但是发挥这些设备功能的前提条件是水系统达到全面的平衡。

即生产部分(冷水机组)、输配部分和末端设备部分的所有回路应该满足水力平衡的三个必要条件。

第一:所有的末端设备在设计工况下可以获得设计流量;第二:电动调节控制阀的压差变化不能太大;第三:生产侧的流量要大于等于分配侧的总流量。

全面水力平衡是中央空调系统实现正常功能的基础保障。

全面水平衡包括冷水机组部分的平衡;输配部分的水力平衡以及末端设备的水力平衡。

一、平衡阀的定义平衡阀是在水力工况下,起到静态或动态平衡调节的阀门。

平衡阀主要是起流量调节作用,平衡阀相当于在水系统中的一个阻力元件。

就暖通空调水系统而言,水在管路中流动是有阻力的,并且阻力随着管路的延伸逐渐增大,而水自然会往阻力小的地方流,造成距离机房远近不同的管路获得的流量无法满足系统实际需要,即近的管路流量偏大,远的管路流量偏小,其表现为一幢建筑的不同区域的室内温度冷热不均。

平衡指的就是用某种方法或某种产品使系统不同管路的阻力达到平衡,确保系统的每一个管路都获得其实际所需要的流量其最终目的就是要使整幢建筑的室内温度达到均衡!二、平衡阀的分类1.静态平衡阀:亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等,它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前需要下的部分负荷的流量需求。

2.动态流量平衡阀:亦称自力式流量控制阀、自力式平衡阀、定流量阀、自动平衡阀等,它是根据系统工况(压差)变动而自动变化阻力系数,在一定的压差范围内,可以有效地控制通过的流量保持一个常值,即当阀门前后的压差增大时,通过阀门的自动关小的动作能够保持流量不增大,反之,当压差减小时,阀门自动开大,流量仍照保持恒定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

暖通空调系统中的水力平衡问题
时间:2012-06-12 16:15 来源:特灵空调编辑:公司编辑点击:1492次字号:小大
在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。

水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。

但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调
在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。

水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。

但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量要求不符。

1.产生水力失调的原因和结果
水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。

静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。

这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。

水力不平衡常会导致:
(1)系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。

(2)由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。

(3)水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。

能量输配效率低下,无法进行整体调控和节能运行。

(4)在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。

(5)在装备有自动控制的系统中,往往由于水量不符合设计要求,而使自控装置失灵或不能充分发挥其控制功能,导致温控效果差。

(6)由于调节阀的调节相互影响,电机频繁动作,使用寿命缩短。

2.解决水力失调的方式
目前,国内中央空调水系统按流量的稳定性可分为定流量和变流量系统;按布置形式又分为同程式系统和导程式系统。

本文将就这不同系统中如何克服水力失调进行探讨。

2.1同程系统不能解决水力平衡问题
同程系统在所有末端要求完全相同的设计流量的情况下,各用户盘管的水阻力大致相等,所以流量是可以得到均匀分配的。

但这种均匀分配也只是在满负荷时的设计流量下的平衡,如果末端设备由电动二通调节阀进行调节时,此时同程系统的平衡作用也就不再起作用了。

因此同程系统的平衡实际上也只是适用于设计流量工况,而不适用于部分负荷工况。

2.2平衡阀的种类
我们已经知道水力失调并不能通过在设计时进行平衡计算解决,即使是同程式系统。

为了解决这一问题,必须采用各种水力平衡阀:手动平衡阀、自动流量
型平衡阀(流量限制器)、自动压差平衡阀(压差控制器)、动态压差平衡型电动调节阀(一体阀)等等。

(1)手动平衡阀是具有锥形阀芯、开度指示、开度锁定、关断功能及测压孔的一种手动调节型阀门;它是通过改变阀芯与阀座间的开度,改变水流阻力来达到调节流量的目的。

(2)流量限制器是通过自力式限流元件(弹筒)来自动控制通过阀体的流量。

在一定的工作压差范围内,当前后压差增大时,通过弹筒自动减小流通面积保证流量;反之,当压差减小时,弹筒自动开大,增大流通面积,恒定流量。

(3)压差控制器由导压管将被控对象(系统或阀门)的供回水压力连通到膜盒膜片上下腔,节流部分仍为阀芯。

当压差变化时,膜片感应被控对象的压差,克服弹簧的压力带动阀杆移动,从而改变阀芯开度,使被控对象的压差恒定。

(4)一体阀是由平衡阀与电调阀合二为一的组合式阀门,主要形式有:手动平衡阀加电调阀、流量限制器加电调阀、压差控制器加电调阀等。

丹佛斯公司提供的一体阀是压差控制器加电调阀的组合。

2.3各种不
(3)压差控制器由导压管将被控对象(系统或阀门)的供回水压力连通到膜盒膜片上下腔,节流部分仍为阀芯。

当压差变化时,膜片感应被控对象的压差,克服弹簧的压力带动阀杆移动,从而改变阀芯开度,使被控对象的压差恒定。

(4)一体阀是由平衡阀与电调阀合二为一的组合式阀门,主要形式有:手动平衡阀加电调阀、流量限制器加电调阀、压差控制器加电调阀等。

丹佛斯公司提供的一体阀是压差控制器加电调阀的组合。

2.3各种不同的水力平衡方案
(1)手动平衡阀应用于定流量系统
定流量系统在过去强调初投资的时代曾广泛应用于各空调领域中。

手动平衡阀是用于一次性流量调节,它不能自动地随系统工况变化而改变阻力,在调试工作完成后,它的开度值不能随便变更,否则就失去了调试的意义。

手动平衡阀是用于消除系统、环路、末端剩余压头来达到限定水流量的目的,为保证系统各处达到设计流量,所以它必须安装在各总管、立管、支管、末端。

调试是手动平衡阀应用中最重要的一环,调节任何一个手动平衡阀均会引起整个系统各节点压力、流量的变化。

在安装完成后,要经过调试才能实现水力平衡。

在定流量系统中使用手动平衡阀的优点在于:可较好地实现水力平衡且投资相对较小;同时具有可调节性在冬夏季转换时可发挥其灵活的调节性能。

其不足之处是需要选择合理且适当的调试方法进行调试,调试工作量很大。

在国外有专门的调试公司,而且收费也不低。

(2)流量限制器
1)流量限制器应用于定流量系统
在定流量系统每个末端安装流量限制器,可简易地保持该末端设备回路的水流量恒定,通过温控器控制阀门的调节来满足舒适度要求。

在流量有变化时,确保阀后的流量恒定,不受其它环路或末端水流量改变引起的系统压力波动。

在变流量系统中,如果末端设备的水流量控制是开关调节,也可以使用这种方式。

流量控制器的动作与调节阀的动作相反,因此流量控制器不适用于比例调节。

2)流量限制器在一次泵系统的应用
在冷水机组的一次/-次环路系统中各台冷水机组及水泵之间通常是并联布置。

由于各机组之间的阻力不同,引起通过的流量不一致,有些机组不能发挥其额定出力。

在每台机组的冷水出口管上装一只流量限制器,可以容易地使机组达到它的额定出力,避免机组的流量过大或过小而使其经常性地开/关机,起到保护作用。

对于型号和流量大小不一致的情况,非常适用。

(3)应用于变流量系统的压差控制器
在暖通空调设计中,变流量系统因其自身的节能性已被业内人士广泛认可和接受。

为确保冷冻机最小流量在设计中大多采用二次泵变频或分集水器压差旁通。

1)从原理我们知道,压差控制器可保证阀后系统的资用压头恒定,而不受流量变化的影响,保证系统的水力平衡,因此压差控制器最适合用于变流量系统。

而手动平衡阀和流量限制器无法做到这一点,它们并不适用于变流量系统。

2)保证系统中调节类阀门(如温控阀,电调阀等)的具有较高的阀权度,从而确保阀门在本身的特性曲线上工作。

压差控制器的动作与调节阀的动作一致。

3)在使用压差控制器以后,系统中的调节阀门可选用力量较小的驱动器。

4)提高节能效果。


风机盘管系统,当房间温度升高,阀门开大,希望增加进入盘管的流量。

如果没有压差控制阀,阀门开大又会导致阀两端的压差减小,使流量减小,二者相抵,因此进入盘管的流量不会显著地增加,因此房间温度会继续上升,只有当阀门开大的程度大于压差减小的影响,盘管的流量才会增加。

开大的程度取决于房间的温度。

这部分房间温度的升高就是能源的浪费。

而有压差控制阀的系统,就不会出现这种情况。

5)调试工作量小,并且当系统扩
风机盘管系统,当房间温度升高,阀门开大,希望增加进入盘管的流量。

如果没有压差控制阀,阀门开大又会导致阀两端的压差减小,使流量减小,二者相抵,因此进入盘管的流量不会显著地增加,因此房间温度会继续上升,只有当阀门开大的程度大于压差减小的影响,盘管的流量才会增加。

开大的程度取决于房间的温度。

这部分房间温度的升高就是能源的浪费。

而有压差控制阀的系统,就不会出现这种情况。

5)调试工作量小,并且当系统扩建时,不需对原有系统进行重新调试。

(4)一体阀(压差控制器加电动调节阀形式)应用于变流量系统
压差控制器形式的一体阀是用于末端水力平衡和控制的最佳选择,比如风机盘管、空调箱、换热器。

对于用户它可直接设定最大设计流量。

内置膜腔结构可确保通过控制阀锥前后压差为一个较低的定值,这同时可保证流量不会超过最大设定值。

一体阀具有压差控制器的所有优点,并可简化安装,而且平衡做到了末端,使得系统在任何局部都不会出现水力失调。

3.结束语
合理地应用水力平衡阀是提高供热空调系统的舒适性和节约能耗的有效途径。

没有绝对最佳的水力平衡方案,而只有最适合特定系统的解决方式。

需要根据业主的要求由厂家和设计咨询单位共同协商制定。

只有综合了投资、调试和运行成本的水力平衡方案才能带给投资方最大的投资回报。

相关文档
最新文档