自定义坐标系(北京54、西安80、2000坐标系)
《道路分析掌测》GPS-RTK功能使用指南
《道路分析掌测》GPS-RTK功能使用指南(3.30版以后)GPS-RTK功能功能正确运用,主要分为几个步骤:1、通过RTK手薄设置GPS流动站主机,输出蓝牙通讯波特率9600。
2、掌测版联机设置,仪器选项,南方RTK;然后,点击蓝牙联机模式,扫描蓝牙设备,找到RTK蓝牙设备,点下蓝牙地址,首次需要密码配对,配对成功以后,流动站主机数据会实时传送过来。
3、掌测版GPS-RTK 设置。
首先选择分带类型,3度带,6度带,自定义中央子午线;选择坐标系,北京54坐标系,西安80坐标系,2000坐标系,WGS84坐标系。
选择坐标系和分带目的,是更贴近当前使用坐标系的使用情况。
具体操作如下:GPS坐标系统选择、坐标分带设置。
根据工程所在坐标系控制网,查询使用控制网最接近的坐标系系统,中央经度子午线,坐标分带情况。
在初始界面上根据查询的参数设置坐标系统和分带情况。
选择下拉菜单选择适宜坐标系统。
常见的坐标系,北京54坐标系、西安80坐标系、2000坐标系、WGS84坐标系,它们所对应的椭球参数参数不同,选择相同坐标系的椭球参数,最适合对应计算符合条件。
选择最恰当的坐标分带。
选择坐标系统分带。
选择合适分带的使长度变形满足要求。
因根据控制网提供的坐标分带选择,3度带和6度带,会根据规范规定计算,中央经度都是自己计算的,不能随意更改中央子午线经度。
任意子午线:目前,很多都是建立独立中央子午线经度作为换带的中心经度,应选择任意子午线经度,然后,输入中央子午线经度就可以,如下图位置:在选择任意子午线经度以后,才可以输入中央子午线经度。
180度12分34.147秒输入180.1234147 。
4、四参数两坐标系统校准。
在控制点1上,通过手机GPS获取坐标,点击“导入GPS1”,然后,对应输入甲方给的控制点1实测坐标;在控制点2上,通过手机GPS获取坐标,点击“导入GPS2”,然后,对应输入甲方给的控制点2实测坐标;然后,点击“两点校准”,实现四参数坐标转换参数计算。
Erdas实习报告
ERDAS遥感影像处理综合实习报告一:自定义坐标系(北京54、西安80、2000坐标系)操作步骤:1.1 添加椭球体修改文件为ellipse.txt,语法为<椭球体名称>,<长半轴>,<短半轴>。
这里的逗号为英文半角输入状态下的逗号,建议直接复制文件中已有的椭球体进行修改。
这里将下面三行加在ellipse.txt文件的末尾,保存关闭即可。
最终效果如下图所示。
• Krasovsky,6378245.0,6356863.0• IAG-75,6378140.0,6356755.3• CGCS2000,6378137.0,6356752.3注:ellipse.txt文件中已经有了克拉索夫斯基椭球,由于翻译原因,这里的英文名称是Krassovsky,为了让其他软件平台识别,这里新建一个Krasovsky椭球体。
1.2 添加基准面修改文件为datum.txt,语法为<基准面名称>,<椭球体名称>,<平移三参数>。
这里将下面三行添加在datum.txt文件末尾,保存关闭即可。
最终效果如下图所示。
• D_Beijing_1954, Krasovsky, -12, -113, -41• D_Xian_1980,IAG-75,0,0,0• D_China_2000,CGCS2000,0,0,01.3 定义坐标系操作步骤如下:(1)打开ENVI Classic,选择Map > Customize Map Projection工具;(2)在弹出的CustomizedMap ProjectionDefinition对话框内填写如图所示参数,其中Projection Name保持与ArcGIS中的名称一致;(3)选择Projection > Add New Project ion…,保存投影坐标系;(4)选择File > Save Projections…,在弹出对话框中点击OK,将新建坐标系保存在map_proj.txt文件内,以便下次启动ENVI后依然可以使用。
CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解
CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解一、万能地图下载器中的常用坐标系水经注万能地图下载器中的常用的坐标系主要包括WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。
其中,WGS84、WGS84 Web 墨卡托、GCJ02和BD09是近年来GIS系统(尤其是WebGIS)中的常用坐标系,而西安80、北京54和CGCS2000坐标是测绘中常用的坐标系。
本软件除了支持常用的坐标系外,还支持其它各种地理坐标系和投影坐标系,当在坐标投影转换时,选择“更多”可以选择其它坐标系。
对于不同的功能,本软件所支持的常用坐标系略有不同,本文将会对矢量导入导出、影像导出大图、影像导出瓦片和高程导出所支持的坐标系分别作出说明。
二、矢量导入导出坐标系矢量导入主要包括导入下载范围和导入矢量数据叠加,这两中导入方式均支持WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。
下图为导入沿线路径时,可选择的坐标投影。
下图为导入矢量数据时,可选择的坐标投影。
与导入数据相同,在将矢量数据导出时也可以进行WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等投影转换。
三、影像导出大图坐标系在下载卫星影像并导出大图时,可支持导出WGS84经纬度投影、WGS84 Web 墨卡托投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02 Web 墨卡托投影和BD09 Web 墨卡托投影等,不支持导出GCJ02经纬度投影和BD09经纬度投影。
我国四大常用坐标系及高程坐标系
我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.257221013、W G-84坐标系WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
“2000坐标”成了标配,你还不懂坐标系定义和转换?(含西安80WGS84转2000实操)
“2000坐标”成了标配,你还不懂坐标系定义和转换?(含西安80WGS84转2000实操)国⼟空间规划明确要求“统⼀采⽤2000国家⼤地坐系”和“1985年国家⾼程基准”作为空间定位基础,可是很多时候我们拿到的数据坐标并不是“2000国家⼤地坐标系”,需要进⾏坐标转换,这可就犯了难?其实不只是国⼟空间规划,其他需要应⽤ArcGIS的⾏业同理——坐标系统是GIS数据重要的数学基础,⽤于表⽰地理要素、图像和观测结果的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显⽰其位置、⽅向和距离,缺少坐标系统的GIS数据是不完善的。
本课,我们来学习下ArcGIS中坐标定义与转换的相关知识。
Part 1ArcGIS中的坐标系统ArcGIS中预定义了两套坐标系统,地理坐标系(Geographic coordinate system)和投影坐标系(Projectedcoordinate system)。
1地理坐标系地理坐标系 (GCS) 使⽤三维球⾯来定义地球上的位置。
GCS中的重要参数包括⾓度测量单位、本初⼦午线和基准⾯(基于旋转椭球体)。
地理坐标系统中⽤经纬度来确定球⾯上的点位,经度和纬度是从地⼼到地球表⾯上某点的测量⾓。
球⾯系统中的⽔平线是等纬度线或纬线,垂直线是等经度线或经线。
这些线包络着地球,构成了⼀个称为经纬⽹的格⽹化⽹络。
那么问题来了,经纬度是啥呢?GCS中经度和纬度值以⼗进制度为单位或以度、分和秒 (DMS) 为单位进⾏测量。
纬度值相对于⾚道进⾏测量,其范围是 -90°(南极点)到 90°(北极点)。
经度值相对于本初⼦午线进⾏测量。
其范围是 -180°(向西⾏进时)到180°(向东⾏进时)。
常⽤的坐标系都有哪些?ArcGIS中,中国常⽤的坐标系统为GCS_Beijing_1954(Krasovsky_1940)GCS_Xian_1980(IAG_75)GCS_WGS_1984(WGS_1984)GCS_CN_2000(CN_2000)2投影坐标系投影坐标系是个啥?将球⾯坐标转化为平⾯坐标的过程称为投影。
四大常用坐标系及高程坐标系
四大常用坐标系及高程坐标系Document number:NOCG-YUNOO-BUYTT-UU986-1986UT我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。
为此有了1980年国家大地坐标系。
1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。
基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。
西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
如何设置北京54或西安80坐标系
如何设置北京54或西安80坐标系?方法很简单,但是需要5个参数,这5个参数可以从当地测绘部门获取,也可以从设置好的GPS中读出。
第一步,在任意画面按MENU键,进入“系统设置”,然后进入”选择坐标系“,选”主位置画面“,在出现的列表中选择最下边的”自定义“或”User Grid“,选第一行的“横向墨卡托”,用箭头键和ENTER键输入当地的中央纬线(00.00000N)和中央经线(XXX.00000E),进入下一页,然后用同样的方法设置投影比例(1.00000000)、尺度比(1.00000000)、东西偏差(00500000.0)和南北偏差(00000000.0),然后按“完成”按钮。
中央纬线的计算方法用GOOGLE 查找吧,网上有很多。
第二步,在任意画面按MENU键,进入“系统设置”,然后进入”选择大地基准“,选”主位置画面“,在出现的列表中选择倒数第四个的”自定“或”User“,设置Delta A, Detla F, Delta X, Delta Y, Delta Z等5个参数,这5个参数需要找当地测绘部门查询。
如何计算当地的中央经线?子午线GPS要设置北京54或者西安80坐标系的时候,除了五个Delta 参数需要输入外,还有一个中央经线参数需要输入,与Delta参数不同,中央经线是可以自己计算的,计算方法如下:1、六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。
2、三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。
附ARCGIS中定义的坐标系:北京54坐标系:Beijing 1954 3 Degree GK CM 75E.prj(三度分带法,中央经线东经75度,横坐标前不加带号)Beijing 1954 3 Degree GK Zone 25.prj(三度分带法,带号25,横坐标前加带号)Beijing 1954 GK Zone 13.prj(六度分带法,中央经线东经75度,横坐标前加带号)Beijing 1954 GK Zone 13N.prj(六度分带法,中央经线东经75度,横坐标前不加带号)西安80坐标系:Xian 1980 3 Degree GK CM 75E.prj(三度分带法,中央经线东经75度,横坐标前不加带号)Xian 1980 3 Degree GK Zone 25.prj(三度分带法,带号25,横坐标前加带号)Xian 1980 GK CM 75E.prj(六度分带法,中央经线东经75度,横坐标前不加带号)Xian 1980 GK Zone 13.prj(六度分带法,中央经线东经75度,横坐标前加带号)。
BeiJing54 Xian80 WGS1989坐标系的分类总结
在大地测量学中,坐标系分为两大类:地心坐标系和参心坐标系。
地心坐标系是坐标系原点与地球质心重合的坐标系,参心坐标系是坐标系原点位于参考椭球体中心,但不与地球质心重合的坐标系。
我国使用的1954北京坐标系,1980西安坐标系都属于参心坐标系。
GPS中使用的世界大地坐标系WGS-84属于地心坐标系,我国最近开始启用的中国大地坐标系2000(即CGCS2000),也属于地心坐标系。
以上两大类坐标系都有下列几种表达形式:1.空间大地坐标系,即大地经纬度(B,L,H)形式2.空间直角坐标系,即三维空间坐标(X,Y,Z)形式3.投影平面直角坐标系。
即二维平面坐标(x,y,h)形式在工程测量和施工中,我国普遍使用的是1954北京或1980西安的高斯投影平面直角坐标系。
但为满足工程施工精度要求,通常会在测区建立独立的地方坐标系,且独立地方坐标系都能够通过转换公式换算为国家统一的坐标系上,如1954北京坐标系或1980西安坐标系。
楼主说的施工图纸上面标的那个是测量坐标可能是国家平面直角坐标系和独立的地方平面坐标系之一。
一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。
而在实际应用中,我国地图采用的是1954北京坐标系或者1980西安坐标系下的高斯投影坐标(x,y,),不过也有一些电子地图采用1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),高程一般为海拔高度h。
GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。
现就上述几种坐标系进行简单介绍,供大家参阅,并提供各坐标系的基本参数,以便大家在使用过程中自定义坐标系。
1、1984世界大地坐标系WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。
中国使用的测量坐标系
中国使用的测量坐标系
我国使用的测量坐标系有以下四种:
1、北京54坐标系
2、西安80坐标系:该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。
3、2000国家大地坐标系:简称为CGCS2000,英文全称为China Geodetic Coordinate System 2000。
Z轴指向BIH1984.0定义的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子午面与协议赤道的交点,Y轴按右手坐标系确定。
该坐标系的大地坐标和美国WGS84坐标系的大地坐标基本一致,可直接采用,只是平面坐标需要用系数调整。
4、1985国家高程标准:我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统。
黄海高程是1956年9月4日,国务院批准试行《中华人民共和国大地测量法式(草案)》,首次建立国家高程基准,称“1956年黄海高程系”,简称“黄海基面”。
系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。
原点设在青岛市观象山。
该原点以“1956年黄海高程系”计算的高程为72.289米。
后经复查,发现该高程系验潮资料过短,准确性较差,改用青岛验潮站1950-1979年的观测资料重新推算,并命名为“1985国家高程基准”。
国家水准点设于青岛市观象山,其高程为72.260米,作为我国高程测量的依据。
它的高程是以“1985国家高程基准”所定的平均海水面为零点测算而得,“1956年黄海高程系”已废止。
手持GPS参数设置及全国各地坐标转换参数
⼿持GPS参数设置及全国各地坐标转换参数⼿持GPS参数设置及全国各地坐标转换参数/298.2。
西安80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。
国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。
(三)⼿持GPS的参数设置要想测量点位的北京54、西安80及国家2000公⾥⽹⾼精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置⼿持GPS的各项参数。
⾸先,在⼿持式GPS接收机应⽤的区域内(该区域不宜过⼤),从当地测绘部门收集1⾄两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采⽤《万能坐标转换》软件,可计算出DX、DY、DZ的值。
将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影⽐例、东西偏差、南北偏差等六个常数值输⼊GPS接收机。
将GPS接收机的⽹格转换为“UserGrid”格式,实际测量已知点的公⾥⽹纵、横坐标值,并与对应的公⾥⽹纵、横坐标已知值进⾏⽐较,⼆者相差较⼤时要重新计算或查找出现问题的原因。
详细过程可查看《万能坐标转换》软件的【⼿持GPS参数设置】界⾯。
(四)⾃定义坐标系统(User)投影参数的确定1、⾃⼰观测计算新机拿到⼿之后,供应商都给提供⼀个投影参数,这对于要求不⾼的⼀般⽤户来说基本可以满⾜⼯作需要,⽽对于⼀些专业⽤户来说,就要⾃⼰来测算参数。
⼀般型号的导航型⼿持GPS⾃定义坐标系统(User)投影参数设置界⾯都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,⽽实际⼯作中,后两个参数(△A、△F)针对某⼀坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005),⽆需改动,需要⾃⼰测算的参数主要为前三个(△X、△Y、△Z),⼀般称为三参数。
2、经验坐标三参数对于⾮专业⼈员⼤多采⽤经验坐标,可别⼈的成果。
北京54、西安80坐标系及其转换
北京54、西安80坐标系及其转换北京54坐标系简介北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统 1990]。
历史1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
因此,P54可归结为:a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为 1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
坐标参数椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。
缺点自 P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:1、椭球参数有较大误差。
克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。
2、参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。
北京54坐标系与西安80坐标系及常用坐标系参数
北京54坐标系与西安80坐标系及常用坐标系参数西安80坐标系与北京54坐标系其实是一种椭球参数的转换,作为这种转,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。
那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WZ),尺度变化(DM)。
要求得七参数就需要在一个地区需要3个以上的已知点。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。
方法如下:第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对;第二步:求公共点的操作系数。
第三步:利用相关软件进行投影变换。
54国家坐标系:建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
因此,P54可归结为:a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
1954北京坐标系参考椭球基本几何参数长半轴a=6378245m短半轴b=6356863.0188m扁率α=1/298.3第一偏心率平方=0.006693421622966第二偏心率平方=0.00673852541468380国家坐标系:采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。
北京54与西安80坐标系浅谈
北京54与西安80坐标系浅谈一、北京54坐标系1、定义北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
2、历史新中国成立以后,我国大地测量进入了全面发展时期,在全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
3、特点a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为 1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。
4、缺点a.椭球参数有较大误差。
克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。
b.参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。
这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。
c.几何大地测量和物理大地测量应用的参考面不统一。
我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。
我国常用的坐标系
我国常用的坐标系【原创版】目录1.我国常用的坐标系概述2.北京 54 坐标系3.西安 80 坐标系4.WGS84 坐标系5.2000 国家大地坐标系6.1985 国家高程标准正文一、我国常用的坐标系概述在我国,地理数据常用的坐标系有北京 54 坐标系、西安 80 坐标系、WGS84 坐标系和 2000 国家大地坐标系等。
这些坐标系在各个领域有着广泛的应用,例如大地测量、工程测量、地图制图等。
二、北京 54 坐标系北京 54 坐标系是我国常用的一种大地坐标系,其全称为“北京 54 世界大地坐标系”。
它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
在这个坐标系中,大地上的一点可以用经度 l54、纬度 m54 和大地高 h54 来定位。
三、西安 80 坐标系西安 80 坐标系是我国于 1980 年建立的一种大地坐标系,其全称为“西安 80 世界大地坐标系”。
该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约 60 公里。
西安 80 坐标系采用克拉索夫斯基椭球作为基准椭球,与北京 54 坐标系相比,其采用了更加精确的测量数据。
四、WGS84 坐标系WGS84 坐标系是全球定位系统(GPS)采用的坐标系,全称为“世界大地坐标系 1984”。
它是一种地心坐标系,以地球质心为坐标原点,采用WGS84 椭球作为基准椭球。
WGS84 坐标系在全球范围内得到了广泛应用,是国际上最常用的坐标系之一。
五、2000 国家大地坐标系2000 国家大地坐标系是我国于 2000 年建立的一种新的大地坐标系,全称为“2000 国家大地坐标系”。
该坐标系采用 CGCS2000 椭球作为基准椭球,是我国当前正在推广使用的坐标系。
与北京 54 和西安 80 坐标系相比,2000 国家大地坐标系具有更高的精度和更广泛的应用范围。
六、1985 国家高程标准1985 国家高程标准是我国于 1985 年颁布的一项国家标准,用于规定高程测量的基准面和高程值。
自定义坐标系
通过本次实验,了解了地理投影的基本原理,大地坐标的概念;北京54,西安80,2000坐标系的由来及其参数;掌握了在ENVI下如何自定义坐标系,包括添加椭球体,基准面和定义坐标系;在ENVI下自定义了北京54,2000坐标系,并进行了投影转换操作;
小组意见
签名:年月日
实验记录
(1)修改数据文件:分别打开datum.txt基准面参数文件,ellipse.txt椭球体参数文件,并进行修改,如下图(1),(2):
图(1)atum.txt基准面参数文件
图(2)ellipse.txt椭球体参数文件
(2)自定义一个54坐标系:新建坐标系,选择投影和基准面,设置相关参数,如下图:(3)。添加新的投影坐标系,并进行保存,保存在map_proj.txt坐标系参数文件中。
西安科技大学
学院:专业:班级:
姓名
学号
实验组
4
实验项目名称
自定义坐标系
实验目的
(1)理解在ENVI5.3中自定义坐标系的原理和方法;
(2)掌握在ENVIENVI5.3自定义坐标系的流程和操作;
(3)深刻理解ENVI5.3自定义坐标系的意义及其应用;
实验要求
软件:ENVI5.3
硬件:计算机
数据要求(条件):map_proj.txt坐标系参数文件datum.txt基准面参数文件ellipse.txt椭球体参数文件f49e011021.IMG数据文件
(3)自定义一个CGCS2000坐标系,方法如步骤(2)中,设置相关参数,如图ห้องสมุดไป่ตู้4):
(4)投影转换:将北京54投影到CGCS2000坐标系,输入坐标系选择北京54坐标系,输出坐标系选择CGCS2000坐标系,设置相关参数,指定输出路径,如下图(5)。
#ENVI中自定义坐标系
ENVI中自定义坐标系说明——以北京54和西安80为例1 地理投影的基本原理常用到的地图坐标系有2种,即地理坐标系和投影坐标系。
地理坐标系是以经纬度为单位的地球坐标系统,地理坐标系中有2个重要部分,即地球椭球体<spheroid)和大地基准面<datum)。
因为地球表面的不规则性,它不能用数学公式来表达,也就无法实行运算,所以必须找一个形状和大小都很接近地球的椭球体来代替地球,这个椭球体被称为地球椭球体,我国常用的椭球体如下:我国1954年在北京设立了大地坐标原点,由此计算出来的各大地控制点的坐标,称为1954年北京坐标系。
为了适应大地测量的发展,我国于1978年采用国际大地测量协会推荐的IAG-75地球椭球体建立了我国新的大地坐标系,并在1986年宣布在陕西省泾阳县设立了新的大地坐标原点,由此计算出来的各大地控制点坐标,称为1980年大地坐标系。
我们经常给影像投影时用到的北京54或者西安80坐标系是投影直角坐标系,如下表所示为北京54和西安80坐标系采用的主要参数,图1高斯——克吕格投影的分带4 ENVI中定义坐标ENVI中的坐标定义文件存放在HOME\ITT\IDL70\products\envi45\map_proj 文件夹下,三个文件记录了坐标信息:ellipse.txt 椭球体参数文件datum.txt 基准面参数文件map_proj.txt 坐标系参数文件在ENVI中自定义坐标系分三步:定义椭球体、基准面和定义坐标参数第一步、添加椭球体语法为 <椭球体名称>,<长半轴>,<短半轴>。
这里将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入ellipse.txt末端。
注:ellipse.txt文件中已经有了克拉索夫斯基椭球,因为翻译原因,这里的英文名称是Krassovsky,为了让其他软件平台识别,这里新建一个Krasovsky椭球体。
ERDAS里面定义西安80等坐标系
转载]在ERDAS 中定义西安80、北京54和2000坐标系自定义西安80坐标系:在ERDAS本身没有西安80坐标系,需要自定义。
在ERDAS安装目录下的/etc/spheroid.tab文件是用来记载椭球体和基准面参数的。
它是一个TXT文本文件,可以用文本编辑器对它进行修改,可以依照它的语法就可以任意添加自定义的椭球体和基准面参数。
基本语法为:“椭球名称”{“椭球序号”椭球体长半轴椭球体短半轴“基准面名称1” dx1 dy1 dz1 rx1 rz1 ds1“基准面名称2” dx2 dy2 dz2 rx2 rz1 ds2……….}其中:“基准面名称” dx dy dz rx rz ds中,dx、dy、dz是x、y、z,3个轴对于WGS84基准点的平移参数,单位为m。
rx、ry、rz是x、y、z、3个轴对于WGS84基准点的旋转参数,单位为rad。
Ds是对于WGS84基准点的比例因子。
在更多的情况下椭球的基准面是基于它本身的。
这时假定椭球的中心点是与没有经过任何平移或旋转的WGS84的基准面相重合,即这时椭球基准面的7个参数均为0,即这时椭球基准面的7个参数均为0。
在spheroid.tab文件末尾加入如下语句即可,假设spheroid.tab文件中最后一个椭球体序号为73,则加入:"IAG 75" {74 6378140 6356755.2882"xian 80" 0 0 0 0 0 0 0}上述因为不知道具体的7个参数,所以用7个0代替。
如果能得到西安80的7参数,可以将具体的7个参数加入。
经过以上的操作IAG75 椭球就会出现在ERDAS的椭球选择列表中。
然后在设置投影的时候选择Custom标签,进行设置即可。
如果安装过ERDAS的补丁包,那么在安装路径下的Fixes文件夹下的spheroid.tab文件进行上述修改即可添加。
自定义北京54坐标系:北京54坐标系只需自己组合椭球体和基准面就可以。
54和80以及2000坐标系分析
第四、采用地心坐标系有利于航天技术与武器的 发展。
精品课件
18
第五、采用地心坐标系有助于推动卫星导航 产业,进而推动陆、海、空交通运输业的 发展。
第六、采用地心坐标系,有利于世界大地坐 标系的统一,进而有利于我国参与全球化, 有利于社会的可持续发展
大地高H:是指从一地面点沿过此点的地球椭球面的法线到地球椭球 面的距离。
精品课件
4
1954年北京坐标系统
基本情况
北京54坐标系为参心大地坐标系,大地 上的一点可用经度L54、纬度M54和大地高 H54定位,它是以克拉索夫斯基椭球为基础, 经局部平差后产生的坐标系
椭球坐标参数:
长半轴a=6378245m; 短半轴=6356863.0188m; 扁率α=1/298.3。
精品课件
9
特点:
1. 采用多点定位原理建立,理论严密,定 义明确;
2. 椭球参数为现代精确的地球总椭球参数; 3. 椭球面与我国大地水准面吻合得较好; 4. 椭球短半轴指向明确; 5. 经过了整体平差,点位精度高。
精品课件
10
2000国家大地坐标系
基本参数
2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点 为包括海洋和大气的整个地球的质量中心。Z轴指向BIH1984.0定义 的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子 午面与协议赤道的交点,Y轴按右手坐标系确定。2000国家大地坐标 系采用的地球椭球参数如下:
精品课件
12
必要性 北京54坐标系与西安80坐标系都是参心坐标
系,即局部坐标系,坐标系的原点与地心有较 大偏差,因此造成了以下问题: 首先,自上世纪50年代卫星上天,人类进入空 间时代,大地测量也进入空间时代,现在大地 测量是以GPS为代表的空间时代。时代变了, 测量手段也变了。以前用经纬仪和测距仪;现 在则用GPS,角度测量和距离测量与坐标系没 有关系,而GPS测量与坐标系有直接关系。用 GPS进行控制测量时,地面点坐标应参考于地 心坐标系,不可参考于局部坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网址:
技术支持邮箱: ENVI-IDL@
电话: 010-57632288
技术支持热线: 400-819-2881-5
遥感事业部
1.2 国内坐标系介绍
先了解大地坐标的概念。大地坐标,在地面上建立一系列相连接的三角形,量取一段精确 的距离作为起算边,在这个边的两端点,采用天文观测的方法确定其点位(经度、纬度和方位 角) ,用精密测角仪器测定各三角形的角值,根据起算边的边长和点位,就可以推算出其他各点 的坐标。这样推算出的坐标,称为大地坐标。 我国 1954 年在北京设立了大地坐标原点, 由此计算出来的各大地控制点的坐标, 称为 1954 年北京坐标系。 为了适应大地测量的发展, 我国于 1978 年采用国际大地测量协会推荐的 IAG-75 地球椭球体建立了我国新的大地坐标系, 并在 1986 年宣布在陕西省泾阳县设立了新的大地坐标 原点,由此计算出来的各大地控制点坐标,称为 1980 年大地坐标系。随着社会的进步,国民经 济建设、国防建设和社会发展、科学研究等对国家大地坐标系提出了新的要求,迫切需要采用 原点位于地球质量中心的坐标系统作为国家大地坐标系。2000 国家大地坐标系(China Geodetic Coordinate System 2000,CGCS2000)是全球地心坐标系在我国的具体体现,其原点为包括海洋 和大气的整个地球的质量中心,CGCS2000 是我国当前最新的国家大地坐标系。 我们经常给影像投影时用到的北京 54、西安 80 和 2000 坐标系是投影直角坐标系,如下表 所示为国内坐标系采用的主要参数。从中可以看到我们通常称谓的北京 54 坐标系、西安 80 坐 标系实际上指的是我国的大地基准面。 表1.2 坐标名称 北京 54 西安 80 CGCS2000 投影类型 Gauss Kruger(Transverse Mercator) Gauss Kruger(Transverse Mercator) Gauss Kruger(Transverse Mercator) 北京 54、西安 80 和 2000 坐标系参数列表 椭球体 Krasovsky Xian_1980 CGCS2000 基准面 D_Beijing_1954 D_Xian_1980 D_China_2000
注: ellipse.txt 文件中已经有了克拉索夫斯基椭球,由于翻译原因,这里的英文名称是 Krassovsky,为了让其他软件平台识别,这里新建一个 Krasovsky 椭球体。
图2.1
定义椭球体
2.2 添加基准面
修改文件为 datum.txt,语法为<基准面名称>,<椭球体名称>,<平移三参数>。 这里将下面三行添加在 datum.txt 文件末尾,保存关闭即可。最终效果如下图所示。 D_Beijing_1954, Krasovsky, -12, -113, -41 D_Xian_1980,Xian_1980,0,0,0 D_China_2000,CGCS2000,0,0,0
网址:
技术支持邮箱: ENVI-IDL@
电话: 010-57632288
技术支持热线: 400-819-2881-5
遥感事业部
1. 概述
1.1 地理投影的基本原理
常用到的地图坐标系有 2 种,即地理坐标系和投影坐标系。 地理坐标系是以经纬度为单位的地球坐标系统,地理坐标系中有 2 个重要部分,即地球椭 球体(spheroid)和大地基准面(datum) 。由于地球表面的不规则性,它不能用数学公式来表 达,也就无法实施运算,所以必须找一个形状和大小都很接近地球的椭球体来代替地球,这个 椭球体被称为地球椭球体,我国常用的椭球体如下表所示。 表1.1 椭球体名称 WGS84 克拉索夫斯基(Krasovsky) Xian_1980 CGCS2000(CRS80) 年代 1984 1940 1980 2008 我国常用椭球体 长半轴(米) 6378137.0 6378245.0 6378140.0 6378137.0 短半轴(米) 6356752.3 6356863.0 6356755.3 6356752.3 扁率 1:298.257 1:298.3 1:298.257 1:298.257
在 map_proj 文件夹内有三个文本文件记录了坐标信息,分别为: ellipse.txt datum.txt map_proj.txt 椭球体参数文件 基准面参数文件 坐标系参数文件
在 ENVI 中自定义坐标系分三步:定义椭球体、基准面和定义坐标参数。
2.1 添加椭球体
修改文件为 ellipse.txt,语法为 <椭球体名称>,<长半轴>,<短半轴>。这里的逗号为英文半角 输入状态下的逗号,建议直接复制文件中已有的椭球体进行修改。 这里将下面三行加在 ellipse.txt 文件的末尾,保存关闭即可。最终效果如下图所示。 Krasovsky,6378245.0,6356863.0
网址: 技术支持邮箱: ENVI-IDL@ 电话: 010-57632288 技术支持热线: 400-819-2881-5
遥感事业部
根据三个以上具有西安 80 坐标系与其他坐标系的同名点坐标值, 利用软件来推算, 有一些绿色 软件具有这个功能,如 Coord MG。 中央经线获取可有以下两种方法, 第一种根据已知带号计算, 6 度带用 6*N-3, 3 度带用 3*N; 第二种方法是根据经度从下图中查找。
遥感事业部
自定义坐标系(北京 54、西安 80、2000 坐标系)
版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。
目录
自定义坐标系(北京 54、西安 80、2000 坐标系) .................................................................. 1 1. 概述..................................................................................................................................... 2 1.1 地理投影的基本原理...................................................................................................... 2 1.2 国内坐标系介绍.............................................................................................................. 3 1.3 参数的获取...................................................................................................................... 3 2. 详细操作步骤..................................................................................................................... 4 2.1 添加椭球体...................................................................................................................... 4 2.2 添加基准面...................................................................................................................... 5 2.3 定义坐标系...................................................................................................................... 6 2.4 使用自定义坐标系.......................................................................................................... 7 3. 使用 ArcGIS 国内坐标系 ................................................................................................. 10
图1.1
高斯——克吕格投影的分带
2. 详细操作步骤
ENVI 中的坐标定义文件存放在安装路径下的 map_proj 文件夹内,在不同的 ENVI 版本中路 径稍有不同,分别为:ducts\envi4X\map_proj ENVI 5.x:HOME\Exelis\ENVI5X\classic\map_proj
大地基准面指目前参考椭球与 WGS84 参考椭球间的相对位置关系(3 个平移,3 个旋转,1 个缩放) ,可以用其中 3 个、4 个或者 7 个参数来描述它们之间的关系,每个椭球体都对应一个 或多个大地基准面。 投影坐标系是利用一定的数学法则把地球表面上的经纬线网表示到平面上,属于平面坐标 系。数学法则指的是投影类型,目前我国普遍采用的是高斯——克吕格投影,在英美国家称为 横轴墨卡托投影(Transverse Mercator) 。高斯克吕格投影的中央经线和赤道为互相垂直,分带 标准分为 3 度带和 6 度带。美国编制世界各地军用地图和地球资源卫星像片所采用的全球横轴 墨卡托投影 (UTM) 是横轴墨卡托投影的一种变型。 高斯克吕格投影的中央经线长度比等于 1, UTM 投影规定中央经线长度比为 0.9996。 我国规定 1:1 万、1:2.5 万、1:5 万、1:10 万、1:25 万、1:50 万比例尺地形图,均 采用高斯克吕格投影。1:2.5 万至 1:50 万比例尺地形图采用经差 6 度分带,1:1 万和 1:2.5 万比例尺地形图采用经差 3 度分带。