广东省深圳市2018年高考数学一模试卷(文科)
2018年广东省深圳市高考数学一模试卷(文科)
2018年广东省深圳市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.11. (5 分)已知集合A 二{x|x —2 :::0}, B二{x|e x…一},则小B=()e 1 1A . (0 , 1] B. [_1 , 0)C. [-1 , 2)D. [0 , 2)=+ i2. (5分)已知a ・R , i为虚数单位,若复数z=a!纯虚数,则a =()1 —iA . 0B . 1 C. 2 D. _13. (5分)其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集到了一部分不同年份的该酒品,并测定了其芳香度(如表)由最小二乘法得到回归方程y =1.03x 1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为()A . 6.1B . 6.284. (5分)设有下面四个命题:p : n N , n2- 2n;P2:x・R , “ x 1 ”是“ x 2”的充分不必要条件;P3 :命题“若x = y,贝U sin x = sin y ”的逆否命题是“若sin x屮sin y,贝U x屮y ”;P4 :若“ pVq ”是真命题,则p 一定是真命题.其中为真命题的是()A . P1 , P2B . P2 , P3C. P2 , P4D. P1,P3(5分)已知焦点在x轴上的双曲线的一条渐近线的倾斜角为一,6且其焦点到渐近线的距离为2, 则该双曲线的标准方程为()2222222x A . 丄=1x2 ’B. y=1C. x丄=1D. x•—1323641246. (5分)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为(C. 6.5D. 6.811的外接球表面积为(C .7. ( 5分)中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长 两尺,松日自半,竹日自倍,松竹何日而长等•意思是现有松树高5尺,竹子高2尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹 子一般高?如图是源于其思想的一个程序框图,若输入的x =5,y =2,输出的n 为4,则程序框图中 B . y, xC . x, y& ( 5分)如图,网格纸上小正方形的边长为1,某几何体的三视图如图所示,则该几何体11的外接球表面积为(* I49. ( 5分)函数f(x)二si n(「x , 「是常数,•…0, |讣冷)的部分图象如图所示,为得到函数y=cos ・.x ,只需将函数f(x)二si n(.,x —;)的图象( )A .向左平移 匸个长度单位B . 向右平移 5 二 个长度单位1212C .向左平移 '个长度单位D . 向右平移5二 个长度单位6610 . ( 5分)设等 差数列 {a n } 满 足: 3a ? =5a 2 2 2 2 2 2 、厂cos a 4 -cos a 4 sin a 7 sin a 4 cos a 7 - sin a 4 - -cos(a 5 a 6)公差 d 二(2,0),则数歹U{a n }的前项和S 的最大值为( )A . 100二B . 54二C . 77 二D . 300二11.(5分)已知函数f(x)是定义在R 上的奇函数,且在区间(0,;)上有3f(x) xf (x)0恒1成立,若 g(x)=x 3f(x),令 a=g(log 2』)),b=g(log 5 2) , c=g(e 2)则()e A . a =: b :: cB . b :: a :: cC . b :: c :: aD . c :: b :: a12 . (5分)已知F 为抛物线y 2 =4.3x 的焦点,过点F 的直线交抛物线于 A , B 两点(点A 在第一象限),若AF =3FB ,则以AB 为直径的圆的标准方程为 ()5/3264 2 丄厂 264 A . (x ) (y -2)B . (x —2) (y —2 3)=333C . (x —5 3)2 (y-2)2 =64D . (x —2.3)2 (y-2)2 =64二、填空题:本题共 4小题,每小题5分,共20分.4彳 T 片T13 . (5 分)已知向量 a=(-2,3) , b =(m,1).若向量(a-2b)//b 平行,则 m 二 _______________2x y 2-014 . (5分)若实数x , y 满足约束条件 x ,2y-2, 0,贝V z =2x -y 的最小值为 ____________ .16 —JI925 —n 4C . 16二D . 25 二l x —y—2, 0x 115. _______________________________________________________________ (5分)曲线y =e - x的一条切线经过坐标原点,则该切线方程为______________________________ .16. (5 分)如图,在.\ABC 中,.ABC =90 , AC=2CB=2.3 , P 是.:ABC 内一动点,.BPC =120,则AP的最小值为_______ .三、解答题:本题共5小题,共70分•请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17. (12 分)设数列{a.}的前n 项和为S n , a’=2 , a. 1 =2 • £, (n・ N ).(I)求数列{a n}的通项公式;2 1(n)设b n = log 2 (a n),求数列{}的前n项和T nb n bn +18. (12分)如图,在三棱柱ABC -ABG中,底面ABC为等边三角形,平面BCG B! _平面ABB! A,且B1BA =45 .(I)证明:AC_AA;(H)若AA =7?AB =2,求三棱柱ABC —ABQ,的体积.19. (12分)某重点中学将全部高一新生分成 A , B两个成绩相当(成绩的均值、方差都相同)的级部,A级部采用传统形式的教学方式,B级部采用新型的基于信息化的自主学习教学方式.期末考试后分别从两个级部中各随机抽取100名学生的数学成绩进行统计,A 部成绩分组 [90 , 100) [100 , 110) [110 , 120) [120 , 130) [130 , 140) [140 , 150]频数18 23 29 23 6 1B 部成绩分组 [90 , 100) [100 , 110) [110 , 120) [120 , 130) [130 , 140) [140 , 150]频数8 16 24 28 21 3若记成绩不低于130分者为“优秀”数学成绩 (井数)频率 组距0.030率距频组Q.O25「「讳呻J 」J rT 「r H'--ll m*「「『■+"」b _ ■ ■-二■二--_ -二■二■ ■一-■■一■■一■■一■二■■二L - _一 mf -l J」1「「『T Ui ・l「「『T T—0,0200.0150.005—90100110120130140150「-17二亠o5 0Oi-J「「『T -4-Tr亠:510.100 三90100110120130140150 対凸* 雄_ r「「M T J J 「r M -I J Ji-l-i「『T 」」N二二二-二-■ 一-二■ - = - ■ 一厂厂w L 4」」-!1匚Li.」」」」・rLn-Jl 』d -■呵-」一 -■一「■一-二■■二「二T r T L X J r T丄丄* 1T-41-I1「「「m一 -_■一二. 1「「「----「r T丿」J 「T 4T J J l_ ■■一二二一 ■-一二 一■一 ■I■一二 <1 ■ 一 ■ ■ 一二 _ ■_ mJ一「TTT1T-一二二二-+■+* 44-丄丄T一二二一一二二一-二 一二二一 ■■二r r L I _L 2T r + * i(n)填写下面的列联表,并根据列联表判断是否有99%的把握认为“优秀”与教学方式有关?(川)根据上表数据完成下面的频率分布直方图, 并根据频率分布直方图, 分别求出A ,B两个级部的中位数的估计值(精确到0.01);请根据以上计算结果初步分析A ,B 两个级22i20. (12分)已知椭圆C:笃•爲=1(a b 0)的离心率为-,直线l :x ・2y=4与椭圆有且a b 2只有一个交点T .(I)求椭圆C 的方程和点T 的坐标;(H) O 为坐标原点,与 OT 平行的直线「与椭圆C 交于不同的两点 A , B ,求厶OAB 的面积最大时直线「的方程.ax 2 +x21. (12 分)已知函数 f(x) ln(x 1)(a 0).x +1(I)讨论函数f(x)的单调性;(H)当a =1时,关于x 的不等式f (x), kx 2在x 三[0 , •:-)上恒成立,求k 的取值范围.请考生在第22、23题中任选一道作答,如果多做,则按所做的第1题计分.作签时.请用部的数学成绩的优劣. K 2n (ad —be) (a b)(e d)(a e)(b d)2B 铅笔在答题卡上将所选题目题号后的方框涂黑.[选修4-4 :坐标系与参数方程](本小题满分10分)22. (10分)在直角坐标系xOy中,直线/的参数方程为3x 二a t5(t为参数).在以O为极4点、x轴的正半(I)求直线l的普通方程和曲线C的直角坐标方程;(H)已知点P(a,1),设直线I与曲线C的两个交点为A , B,若|FA|£|田| .求a的值. [选修4-5:不等式选讲](本小题满分0分)2 223.已知a 0, b 0且a b =2 .1 4(I)若是…| 2x T| -| x T|恒成立,求x的取值范围; a b(H)证明:(丄!)(a5 b5)-4.a b第11页(共26页)2018年广东省深圳市高考数学一模试卷(文科)参考答案与试题解析一项是符合题目要求的 1.( 5 分)已知集合 A ={x|x-2 :::0} , B={x|e x 」},则 fB=()e1 1A . (0 , 1]B . [—1 , 0)C . [—1 , 2)D . [0 , 2)【解答】 解:A={x|x :::2} , B={x|x …一 1}; ■ Ap|B 二{x|—1, x :: 2}二[一1 , 2). 故选:C .2 + i2. ( 5分)已知R , i 为虚数单位,若复数 z纯虚数,则a=( ) 1 -i A . 0B . 1C . 2D . _1【解答】解::zD a i)(1D — (a⑴是纯虚数,1 _i (1_i)(1+i)2故选:B .3 . ( 5分)其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上损了一个数据,请你推断该数据为 ( )A . 6.1B . 6.28C . 6.5D . 6.81 【解答】解:由表中数据:x =丄(0 1 4 5 6 8^4 ,6 回归方程 y =1.03x 1.13 , .y =1.03 4 1.13 =5.25 ,、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有a -1=0a 1=0 k即 a =1 .。
【省级联考】2018年广东省高考数学一模试卷(文科)(2021年整理)
(完整word)【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改)的全部内容。
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.2.已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞) B.(0,1)C.(﹣1,+∞) D.(﹣1,0)3.“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.5.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B. C. D.26.等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3 B.4 C.log318 D.log3247.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十"的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“"中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>10010.已知函数在其定义域上单调递减,则函数f(x)的图象可能是( )A. B.C.D.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f (c),则2a+2b+2c的取值范围是()A.(16,32) B.(18,34)C.(17,35) D.(6,7)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|= .14.设x,y满足约束条件,则z=x+y的最大值为.15.已知数列{a n}的前n项和为S n,且,则a5= .16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
2018届深圳一模文科试题及答案
绝密★启用前深圳市2018届高三年级第一次调研考试数学(文科) 2018.3第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={xlx-2<0},B={xle x >1e},则A B= A.(0,1] B.[-1,0) C.[-1,2) D.[0,2) 2.已知a R ,i 为虚数单位,若复数1a izi纯虚数,则a= A.0 B.1 C.2 D. 13.其食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场上收集到了一部分不同年份的该酒品,并测定了其芳香度(如下表)。
年份x0 1 4 5 6 8 芳香度y1.31.85.67.49.3由最小二乘法得到回归方程ˆy=1.03x+1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为A.6.1B.6.28C.6.5D.6.8 4.设有下面四个命题:p 1:n N ,n 2>2n ;p 2:x R,“x>1”是“x>2”的充分不必要条件;P 3:命题“若x=y ,则 sin x=siny ”的逆否命题是“若sin x siny ,则x y ”;P 4: 若“pVq ”是真命题,则p 一定是真命题。
其中为真命题的是A.p 1,p 2B.p 2,p 3C.p 2,p 4D.p 1,p 35.已知焦点在x 轴上的双曲线的一条渐近线的倾斜角为6,且其焦点到渐近线的距离为2,则该双曲线的标准方程为A.22132x y B.2213x yc.22164x y D.221124x y6.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为A.12 B.14 C.13 D.167.中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等。
【省级联考】2018年广东省高考数学一模试卷(文科)[1]
【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为【省级联考】2018年广东省高考数学一模试卷(文科)(word版可编辑修改)的全部内容。
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z满足(1+i)z=1,则复数z的虚部为( )A.B.C.D.2.已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞) B.(0,1)C.(﹣1,+∞) D.(﹣1,0)3.“常数m是2与8的等比中项"是“m=4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.5.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B. C. D.26.等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3 B.4 C.log318 D.log3247.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.已知曲线,则下列结论正确的是( )A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“"中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>10010.已知函数在其定义域上单调递减,则函数f(x)的图象可能是( )A. B.C.D.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是( )A.(16,32) B.(18,34)C.(17,35)D.(6,7)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|= .14.设x,y满足约束条件,则z=x+y的最大值为.15.已知数列{a n}的前n项和为S n,且,则a5= .16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2018年广东省高考数学一模试卷(文科)
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足(1+i)z=1,则复数z的虚部为()A.1 2iB.12C.−12i D.−122. 已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0, +∞)B.(0, 1)C.(−1, +∞)D.(−1, 0)3. “常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.3 20B.3π25C.325D.π205. 已知F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为( )A.2√2B.√3C.√5D.26. 等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()),则下列结论正确的是()8. 已知曲线C:y=sin(2x−π3A.把C向左平移5π个单位长度,得到的曲线关于原点对称12B.把C向右平移π个单位长度,得到的曲线关于y轴对称12C.把C向左平移π个单位长度,得到的曲线关于原点对称3D.把C向右平移π个单位长度,得到的曲线关于y轴对称69. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010. 已知函数f(x)在其定义域上单调递减,则函数f(x)的图象可能是()eA.C.D.11. 已知抛物线C:y 2=x ,M 为x 轴负半轴上的动点,MA ,MB 为抛物线的切线,A ,B 分别为切点,则MA →⋅MB →的最小值为( )A.−14B.−18C.−116D.−1212. 设函数f(x)={|2x −1|,x ≤2−x +5,x >2,若互不相等的实数a ,b ,c 满足f(a)=f(b)=f(c),则2a +2b +2c 的取值范围是( )A.(16, 32)B.(18, 34)C.(17, 35)D.(6, 7)二、填空题(每题5分,满分20分,将答案填在答题纸上)已知单位向量e 1→,e 2→的夹角为30∘,则|e 1→−√3e 2→|=________.设x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3,则z =x +y 的最大值为________.已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,则a 5=________.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE ,△BCF ,△CDG ,△ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE ,△BCF ,△CDG ,△ADH ,使得E ,F ,G ,H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a(√33bc+a).(1)证明:a=2√3cosA;(2)若A=π3,B=π6,求△ABC的面积.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001∼6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.如图,在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.已知椭圆C:x2a +y2b=1(a>b>0)的离心率为√32,且C过点(1,√32).(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.已知函数f(x)=e x−x2−ax.(1)证明:当a≤2−2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1−x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,圆C1:(x−2)2+(y−4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=π3(ρ∈R).(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=π6(ρ∈R),设C2与C1的交点为O,M,C3与C1的交点为O,N,求△OMN的面积.[选修4-5:不等式选讲]已知函数f(x)=3|x−a|+|3x+1|,g(x)=|4x−1|−|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.参考答案与试题解析2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】复数的运算【解析】把已知等式变形,再利用复数代数形式的乘除运算化简得答案.【解答】由(1+i)z=1,得z=11+i=1−i(1+i)(1−i)=12−12i,则复数z的虚部为−12.2.【答案】C【考点】并集及其运算【解析】先求出集合A,B,由此能求出A∪B.【解答】∵集合A={x|x>0},B={x|x2<1}={x|−1<x<1},∴A∪B={x|x>−1}=(−1, +∞).3.【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】利用等比中项公式求解.【解答】∵m是两个正数2和8的等比中项,∴m=±√2×8=±4.故m=±4是m=4的必要不充分条件,4.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:根据题意可得,黑色部分的面积为S1=π(42−1)=15π,圆靶的面积为S=102π=100π,由题意此点取自黑色部分的概率是:P=15π100π=320.故选A.5.【答案】C【考点】双曲线的离心率双曲线的特性【解析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c=√a2+b2=√5a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c=√a2+b2=√5a,则双曲线C的离心率e=ca=√5.故选C.6.【答案】A【考点】等差数列的通项公式【解析】由等差数列的性质得log3(2x)+log3(4x+2)=2log3(3x),求出x=4,等差数列的前三项分别是log38,log312,log318,由此能求出第四项.【解答】∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x−4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312−log38=log332,∴第四项为log318+log332=log327=3.7.B【考点】由三视图求体积【解析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积.【解答】由题意,该几何体是长方体截去两个半圆柱,∴ 表面积为:4×6×2+2(4×6−4π)+2×2π×4=96+8π,8.【答案】B【考点】函数y=Asin (ωx+φ)的图象变换【解析】直接利用三角函数的图象平移逐一核对四个选项得答案.【解答】把C 向左平移5π12个单位长度,可得函数解析式为y =sin[2(x +5π12)−π3]=sin(2x +π2)=cos2x ,得到的曲线关于y 轴对称,故A 错误;把C 向右平移π12个单位长度,可得函数解析式为y =sin[2(x −π12)−π3]=sin(2x −π2)=−cos2x ,得到的曲线关于y 轴对称,故B 正确;把C 向左平移π3个单位长度,可得函数解析式为y =sin[2(x +π3)−π3]=sin(2x +π3),取x =0,得y =√32,得到的曲线既不关于原点对称也不关于y 轴对称,故C 错误; 把C 向右平移π6个单位长度,可得函数解析式为y =sin[2(x −π6)−π3]=sin(2x −23π), 取x =0,得y =−√32,得到的曲线既不关于原点对称也不关于y 轴对称,故D 错误. ∴ 正确的结论是B .9.【答案】D【考点】程序框图【解析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】n =1,s =0,n=3,s=4,…,n=99,s=992−12,n=100,s=10022,n=101>100,结束循环,10.【答案】A【考点】函数的图象变化【解析】由题意可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,结合选项即可得到所求图象.【解答】函数f(x)e x在其定义域R上单调递减,可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m, 0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,11.【答案】C【考点】抛物线的性质【解析】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,则A(t24, t2),B(t24, −t2),∴ M(−t 24, 0), ∴ MA →⋅MB →=(t 22, t 2)⋅(t 22, −t 2)=t 44−t 24=14(t 2−12)2−116,则当t 2=12,即t =±√22时,MA →⋅MB →的最小值为−116 12.【答案】B【考点】分段函数的应用【解析】不妨设a <b <c ,利用f(a)=f(b)=f(c),结合图象可得a ,b ,c 的范围,即可1求出【解答】互不相等的实数a ,b ,c满足f(a)=f(b)=f(c),可得a ∈(−∞, 0),b ∈(0, 1),c ∈(4, 5),则0<2a <1,0<2b <1,16<2c <32,2a +2b +2c ∈(18, 34)二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】1【考点】平面向量数量积的性质及其运算律【解析】根据单位向量e 1→,e 2→的夹角为30∘即可求出e 1→∗e 2→的值,从而可求出(e 1→−√3e 2→)2的值,进而得出|e 1→−√3e 2→|的值.【解答】单位向量e 1→,e 2→的夹角为30∘;∴ e 1→∗e 2→=cos30∘=√32,e 1→2=e 2→2=1; ∴ (e 1→−√3e 2→)2=e 1→2−2√3e 1→∗e 2→+3e 2→2=1−2√3×√32+3=1; ∴ |e 1→−√3e 2→|=1.【答案】2【考点】简单线性规划【解析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3的可行域如图,则z =x +y 经过可行域的A 时,目标函数取得最大值,由{x −y =64x +5y =6解得A(4, −2),【答案】14【考点】等差数列的前n项和【解析】利用a5=S5−S4即可得出.【解答】a5=S5−S4=32×52+12×5−(32×42+12×4)=14,【答案】500√3π27【考点】球的体积和表面积【解析】根据题意,设正方形ABCD的边长为x,E,F,G,H重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x,从而求解四棱锥的外接球的体积.【解答】连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=x2,IE=6−x2.由四棱锥的侧面积是底面积的2倍,可得4∗x2(6−x2)=2x2,解得:x=4.设外接球的球心为Q,半径为R,可得OC=2√2,OP=√42−22=2√3,R2= (2√3−R)2+(2√2)2.∴R=√3该四棱锥的外接球的体积V=43πR3=500√3π27.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【考点】三角形求面积【解析】(1)直接利用已知条件和余弦定理求出结论.(2)利用(1)的结论,进一步利用正弦定理求出结果.【解答】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【答案】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【考点】独立性检验【解析】(1)根据题意,由频率分布表分析可得2×2列联表,由独立性检验计算公式计算K2的值,结合独立性检验的意义可得答案;(2)根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,由列举法分析可得从中任选3人和男性人数超过女性人数的情况数目,由古典概型计算公式计算可得答案.【解答】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【答案】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【考点】平面与平面垂直点、线、面间的距离计算【解析】(1)推导出EF // AD,AE⊥EF,AE⊥CF,从而AE⊥平面EBCF,由此能证明平面AEFD⊥平面EBCF.(2)过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,设点F到平面ABCD的距离为ℎ,由V F−ABC=V A−BCF,能求出点F到平面ABCD的距离.【解答】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【答案】由题意可得{ca =√321 a2+34b2=1a2=b2+c2,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0). 联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12. 【考点】 椭圆的离心率 【解析】(1)由题意可得{ c a =√321a +34b =1a 2=b 2+c 2,解得即可;(2)设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).与椭圆的方程联立可得(1+4k 2)x 2+8ktx +4t 2−4=0.由△>0,可得1+4k 2>t 2.得到根与系数的关系.可得y 1x 1⋅y2x 2=k 2,直线OP ,l ,OQ 的斜率成等比数列,化为4k 2=1,即可证明 【解答】由题意可得{ ca =√321a 2+34b 2=1a 2=b 2+c 2 ,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12.【答案】(1)证明:f′(x)=e x −2x −a ,令g(x)=e x −2x −a ,则g′(x)=e x −2, 则当x ∈(−∞, ln2)时,g′(x)<0, x ∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x =ln2时取最小值g(ln2)=2−2ln2−a , 当a ≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R 上单调递增; (2)解:当x >0时,e x −x 2−ax ≥1−x , 即a ≤e x x−x −1x +1,令ℎ(x)=e x x−x −1x +1(x >0),则ℎ′(x)=(x−1)(e x −x−1)x 2,令φ(x)=e x −x −1,(x >0), 则φ′(x)=e x −1>0,x ∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0, x ∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减, x ∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增, 故ℎ(x)min =ℎ(1)=e −1, 故a ∈(−∞, e −1]. 【考点】利用导数研究不等式恒成立问题 利用导数研究函数的单调性 【解析】(1)求出函数的导数,求出函数的单调区间,得到函数的最小值,从而证明结论;(2)问题转化为a≤e xx −x−1x+1,令ℎ(x)=e xx−x−1x+1(x>0),根据函数的单调性求出ℎ(x)的最小值,从而求出a的范围.【解答】(1)证明:f′(x)=e x−2x−a,令g(x)=e x−2x−a,则g′(x)=e x−2,则当x∈(−∞, ln2)时,g′(x)<0,x∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2−2ln2−a,当a≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R上单调递增;(2)解:当x>0时,e x−x2−ax≥1−x,即a≤e xx −x−1x+1,令ℎ(x)=e xx −x−1x+1(x>0),则ℎ′(x)=(x−1)(e x−x−1)x2,令φ(x)=e x−x−1,(x>0),则φ′(x)=e x−1>0,x∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0,x∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减,x∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增,故ℎ(x)min=ℎ(1)=e−1,故a∈(−∞, e−1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】解:(1)∵圆C1的普通方程为x2+y2−4x−8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y=√3x;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ,得ρ1=2+4√3,ρ2=4+2√3,S△OMN=12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.【考点】直线的极坐标方程圆的极坐标方程极坐标刻画点的位置【解析】此题暂无解析【解答】解:(1)∵ 圆C 1的普通方程为x 2+y 2−4x −8y =0,把x =ρcosθ,y =ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0, 故C 1的极坐标方程是ρ=4cosθ+8sinθ, C 2的平面直角坐标系方程是y =√3x ;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ, 得ρ1=2+4√3,ρ2=4+2√3,S △OMN =12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.[选修4-5:不等式选讲] 【答案】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14,不等式g(x)<6,x ≤−2时,4x −1−x −2<6,解得:x >−1,不等式无解; −2<x <14时,1−4x −x −2<6,解得:−75<x <14,x ≥14时,4x −1−x −2<6,解得:3>x ≥14, 综上,不等式的解集是(−75, 3);因为存在x 1∈R ,存在x 2∈R ,使得f(x 1)=−g(x 2)成立,所以{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,又f(x)=3|x −a|+|3x +1|≥|(3x −3a)−(3x +1)|=|3a +1|, 故g(x)的最小值是−94,可知−g(x)max =94,所以|3a +1|≤94,解得−1312≤a ≤512, 所以实数a 的取值范围为[−1312, 512]. 【考点】函数与方程的综合运用绝对值不等式的解法与证明 绝对值三角不等式 【解析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题转化为{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,求出f(x)的最小值和g(x)的最小值,得到关于a 的不等式,解出即可. 【解答】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14 ,不等式g(x)<6,x≤−2时,4x−1−x−2<6,解得:x>−1,不等式无解;−2<x<14时,1−4x−x−2<6,解得:−75<x<14,x≥14时,4x−1−x−2<6,解得:3>x≥14,综上,不等式的解集是(−75, 3);因为存在x1∈R,存在x2∈R,使得f(x1)=−g(x2)成立,所以{y|y=f(x), x∈R}∩{y|y=−g(x), x∈R}≠⌀,又f(x)=3|x−a|+|3x+1|≥|(3x−3a)−(3x+1)|=|3a+1|,故g(x)的最小值是−94,可知−g(x)max=94,所以|3a+1|≤94,解得−1312≤a≤512,所以实数a的取值范围为[−1312, 512].。
2018年广东省高考一模数学试卷(文科)【解析版】
2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.26.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=.14.(5分)设x,y满足约束条件,则z=x+y的最大值为.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,且BC =2AD =4,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE ⊥CF ,得到如下的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD ⊥EC ,求点F 到平面ABCD 的距离.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.【解答】解:由(1+i)z=1,得,则复数z的虚部为.故选:D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)【解答】解:∵集合A={x|x>0},B={x|x2<1}={x|﹣1<x<1},∴A∪B={x|x>﹣1}=(﹣1,+∞).故选:C.3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵m是两个正数2和8的等比中项,∴m=±=±4.故m=±4是m=4的必要不充分条件,故选:B.4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.【解答】解:由题意此点取自黑色部分的概率是:P==,故选:A.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.2【解答】解:根据题意,F是双曲线C:﹣=1(a>0,b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c==a,则双曲线C的离心率e==,故选:C.6.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log324【解答】解:∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x﹣4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312﹣log38=,∴第四项为=log327=3.故选:A.7.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π【解答】解:由题意,该几何体是长方体截去两个半圆柱,∴表面积为:4×6×2+2(4×6﹣4π)+2×2π×4=96+8π,故选:B.8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin(2x﹣)=﹣cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin (2x﹣),取x=0,得y=﹣,得到的曲线既不关于原点对称也不关于y轴对称,故D 错误.∴正确的结论是B.故选:B.9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>100【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=,n=100,s=,n=101>100,结束循环,故选:D.10.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.【解答】解:函数在其定义域R上单调递减,可得[]′=≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m,0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,故选:A.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.【解答】解:设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,则A(,),B(,﹣),将点A的坐标代入x=ty+m,得m=﹣,∴M(﹣,0),∴=(,)•(,﹣)=﹣=(t2﹣)2﹣,则当t2=,即t=±时,的最小值为﹣故选:C.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)【解答】解:互不相等的实数a,b,c满足f(a)=f(b)=f(c),可得a∈(﹣∞,﹣1),b∈(﹣1,0),c∈(4,5),对应的函数值接近1时,函数趋向最小值:1+1+24=18,当函数值趋向0时,表达式趋向最大值:1+1+25=34.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=1.【解答】解:单位向量的夹角为30°;∴,;∴=;∴.故答案为:1.14.(5分)设x,y满足约束条件,则z=x+y的最大值为2.【解答】解:x,y满足约束条件的可行域如图,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(4,﹣2),所以z=x+y的最大值为:2.故答案为:2.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=14.【解答】解:a5=S5﹣S4=﹣=14,故答案为:14.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.【解答】解:连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=,IE=6﹣.由四棱锥的侧面积是底面积的2倍,可得,解得:x=4.设外接球的球心为Q,半径为R,可得OC=,OP=,.∴.该四棱锥的外接球的体积V=.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.【解答】证明:(1)在△ABC中,角A,B,C所对的边分别为a,b,c,,则:,整理得:,由于:b2+c2﹣a2=2bc cos A,则:2bc cos A=,即:a=2cos A.解:(2)由于:A =,所以:.由正弦定理得:,解得:b=1.C =,所以:.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.【解答】解:(1)根据题意,由频率分布表分析可得:则K2=≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;(2)根据题意,设步行数在3001~6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1,2,a),(1,2,b),(1,2,c),(1,a,b),(1,a,c),(1,b,c),(2,a,b),(2,a,c),(2,b,c),(a,b,c);共10种情况,其中男性人数超过女性人数的情况有:(1,2,a),(1,2,b),(1,2,c),共3种,则选中的人中男性人数超过女性人数的概率P=.19.(12分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.【解答】证明:(1)∵在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD =4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF∥AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.解:(2)如图,过点D作DG∥AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴,∴EB===2,设点F到平面ABCD的距离为h,∵V F﹣ABC =V A﹣BCF,∴S△ABC•h=S△BCF•AE,AB=4,=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵=4,AE=EB=2,∴h==2,∴点F到平面ABCD的距离为2.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.【解答】解:(1)由题意可得,解得a=2,b=1,c=,故椭圆C的方程为+y2=1,证明:(2):设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx+t(t≠0).联立,化为(1+4k2)x2+8ktx+4t2﹣4=0.△=64k2t2﹣4(4t2﹣4)(1+4k2)>0,化为1+4k2>t2.∴x1+x2=﹣,x1x2=,∴y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2,∵直线OP,l,OQ的斜率成等比数列,∴•=k2,即k2x1x2+kt(x1+x2)+t2=kx1x2,∴+t2=0,∵t≠0,∴4k2=1,结合图形可知k=﹣,∴直线l的斜率为定值为﹣.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.【解答】解:(1)证明:f′(x)=e x﹣2x﹣a,令g(x)=e x﹣2x﹣a,则g′(x)=e x﹣2,则x∈(﹣∞,ln2]时,g′(x)<0,x∈(ln2,+∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2﹣2ln2﹣a≥0,故f′(x)≥0,即函数f(x)在R递增;(2)当x>0时,e x﹣x2﹣ax≥1﹣x,即a≤﹣x﹣+1,令h(x)=﹣x﹣+1(x>0),则h′(x)=,令φ(x)=e x﹣x﹣1,(x>0),则φ′(x)=e x﹣1>0,x∈(0,+∞)时,φ(x)递增,φ(x)>φ(0)=0,x∈(0,1)时,h′(x)<0,h(x)递减,x∈(1,+∞)时,h′(x)>0,h(x)递增,故h(x)min=h(1)=e﹣1,故a∈(﹣∞,e﹣1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.【解答】解:(1)∵圆C1的普通方程为x2+y2﹣4x﹣8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2﹣4ρcosθ﹣8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y =x;(2)分别将θ=,θ=代入ρ=4cosθ+8sinθ,得ρ1=2+4,ρ2=4+2,则△OMN 的面积为×(2+4)×(4+2)×sin (﹣)=8+5.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.【解答】解:(1)g(x)=|4x﹣1|﹣|x+2|.g(x )=,不等式g(x)<6,x≤﹣2时,4x﹣1﹣x﹣2<6,解得:x>﹣1,不等式无解;﹣2<x <时,1﹣4x﹣x﹣2<6,解得:﹣<x <,x ≥时,4x﹣1﹣x﹣2<6,解得:3>x,综上,不等式的解集是(﹣,3);(2)因为存在x1∈R,存在x2∈R,使得f(x1)=﹣g(x2)成立,所以{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,又f(x)=3|x﹣a|+|3x+1|≥|(3x﹣3a)﹣(3x+1)|=|3a+1|,故g(x )的最小值是﹣,可知﹣g(x)max =,所以|3a+1|≤,解得﹣≤a ≤,所以实数a的取值范围为[﹣,].第21页(共21页)。
(完整word版)2018深圳一模数学文科含答案
深圳市2018届高三年级第一次调研考试 — 数学(文科)泅.3枣掠霊樹共W 贡•共紳出UM 含圣瘩訓).全商満肾 E 分肩试用时L 功为钵, 注就事琉;1.答匿前■先将启己匪姓窑.誓帝讦号察耳在嘗越卡上.3. 选岸题的柞答I 毎小龍选±##后"用込B 韬笔把昏題卡上IT 应亜目药答案掠号笫 黑.写在试昭也*謹稿砥和答題t 上的非袴顋区城肉尢迪.h 非选择81的吊答:用签字笔直接答在簷晒卡上对应的程聽区蛾内*写在试甄卷,草 稿抵和答區卡上的非答題匕瑕均兀处・4, 诜粤胚的作菩:免把一听址斟呂的题号莊碁貶卡上棺定妁怕臂用闕梧樂険賄暮案韩 任輪基卡上对应的薯JK 区城阿■写在试題轄,草橋韓和答題卡上的菲営袒區域均无敷.乩考技络束后』请聃峑试曙卷郴饕題卡一芹上交.第[卷(选择题共60分}一、這择題三加瓏共迂小担,瞬小题5井.拱閃井•在毎小翹绘出的四吓廉项中卜只有一助罡咼合隸目建求的一】•己E 集會“Qk 1 mv 对汕如匕姑2丄几则冲门占一e扎 ecu] B. [-1.D) €. [-1.2)a[o t £>Z 已知k rl 对虑魁单忡"若复救-長|为规虔敢,则佰匸A, 0 Ek I C.2 D, ±1h 某食品研究部门为了解一种澗品的储蔵年出耳芳香度之阖的相戋丧茶,在市场上收弟 到了一带汀取悶年扮的该疽品•井创定了其芳香童〔如下査h團量小二乘注痔到囲0方粒;=1- 03T-KL 1芸但不小心SEiftlB 信酒列鏗幡上…禍检忍 襪•污啟f 亠咎牡据*9M 舵推斷谨数据为 A.G P 1 b 乩胡 G G ・生Eh G"A. y<,T? C. J<_y7血山€11严工>打是怙a 旷的充分不必萎杀杵|A *诒■酸1若 J —>»B flih ± —sin 尹的逆否'iMt 是"若 sin x^»n y F fU y w )P ・;暑〉¥<■是桑命融r 则P-定抱:a 危晒・其中为真命趁的是A P"扭 pt ■ Ps C* 时机 D.吋 P ,5rtl 弑墨电在工铀上的职盘线恼-篆議近理的協把角为乎•且其撫点到渐近燼的距离为乩卿谏瑕曲战的标准方怪为A 令-乡=1B 耳-宀1 G 普一¥=】D.誇—¥口1吭.两名冋学分3赢不同的I 几虬中一人没韦幷刘书.另-人廿得3本韦的柢率为7・中学眉浆》中宵关于松竹井生耶的冋题.松长五尺、竹怅两尺•松日 自半•竹日自蜡.笹付何Hifi 丘弄意思呈现宿粒树高-尺、仃子髙E 尺•帳轴每天氏曲 己為度的一丰,竹于毎天长自己高捉的一flh 问在SSJLS 会出现松穩和竹了 服高” 如图是®fXS 想的一牛看呼儒朗"若焉人的『亠弭『一豔珈出的FT 为氣嗚程序框(E 中的 <>』卩应埴人靳期图’网搐舐上小正方形的边扶为匚某几何休的三視图如圈烏示•關據皿何秋曲外遂球表面秧为G ISir9硒数/砒缶曙是林St旧>0」护I V評的椰井图象如图所樺』」得到音A/ft左平務豈牛檢庫单枚氐向右平荐;;牛拴度津怕U向左甲移:卒长隍单企D向右平移爭个歩度单位10.设導痊数列山.;・"S足匕=加山・nos: a4" co?'d(jsinF十歸X gcg缶一如II'<U ="tos Cd5 +5)・艺畫/€ (—2乂齢则效列MJ的前帀顶相乳的峨大{§为A.WQ K B. 54«匚打軒 D. 300x11.巳知頭裁戸工】昂定又圧H上的討函毂*且在区间W*十8〕上有3/<x)+ .rf r(.r)>U fiJSi. 3!f J C JC?"J?/Cxl、令 a =叩曙(+)]・&=冨{|呃2}”耳¥仁7)刚A t d<fr<r B, i<a<rC.5<r<aD. c<b<a1盅巴MF为血物块,=4忑工的徑血丁过点F的直娃交品桝蛭千也/两点(点虫咅第—彙堪】.若:4f=3FT*则LU AD为直徑閑鲂的咏准方崔気A.(H_晋)+(^—2)B-y E. y_2)* + (y_Mr 二学G〔工一5庙)‘卜廿一3沪=科 D (r-2^y+ Cy^2)*-e4第口卷{非选择题共旳分}恋魅理梧必琴JS和逛再阻两邮井第13 -?]融为鏗淆瞩‘邯追減理宏兰棉必瑕作答•摘22亠訂晅为选老观■毒生帳蜡娶茨作答,二、地空題:室朋共《小團侦小预$井康2◎乩13. -< - 2U),5 —CjFt^lX若向型一3 耶平行I 胃I 旳=___________ I■/jr+y+EpQ、】盒昔?;JK “y滿足约車枭件「丁*£『一2耳D・M r-2T->的■小值为___________ ・工f —EWQ I11曲罐,=廿一「卜認的一条切线輕过坐插原点.训苗切统方軽为_________ ,Ifr, ?!□ , jt A £fC t fl H z ABC y U* 1AC = 2CB = 2 vi. P 甘山一动駅必12旷侧AP的最小值为匸朋穽ES亦融小盟,共珂分请缔辂苔诃框宅iG在签EI乐丄.芥写出之孚说昭■.谨明过禅或漓莫步履・IT. I本小題満分比分〉设数列MJ的就n朋利为肌皿•人< I】求敢列厲}的通頊公式;%11〕段岔=1+4岳01"»求敷列的前FT娈刹T at小腿満分12如阿•在三梭柱中■底面ABC为等边三角昭,平05目CU E曲亠平蛊且£爲BA-45\< 1顾明川CUAA"5】若乩%一虑片史2求三售柱AH&A上£ 的休枳.19. {車小门構分12仞勒6点中芳毋金部區一新生廿嵐&R两十琨烦議聿成按的为值,方整同啲嘏tfP.ASl部乘用捋绕形式的撤学方式十日鬣部采用篇蚁的撰于信亘诧的自主学月教学拧式* 期末考试忙分側从两牛级歸中备逝収酬舉1“苦学生椚故学城曜谩行能计「潯利黑下飪拥,若记比攒不抚于分老芳出扰券"(T斶掘上衷数据匸别怙计仏D濟个虽部杓优看”的槪率;(II ^STfir的列曲段•幷根据列联走判断是否育鹑隣的把捶认为*优需”与敕学方式育关?(®>^«_L,ft数据死盅下闿的尿車甘亦白序图・曲摄攥跑率分布直方图■分舸衣出A*B悶小纯部舲牛杓歎的枯计值(带出彌D・<Hh请根掘以上计算结果初歩分折A.H两令圾邱的敷学或缄的优治・PH董:T T r T T ■■ ■L J ・■ ■,v ■■k 馳■- ■・■ ■ ■ N k -.■申—IP •■ ■«■ riw ■ ■■■■ 1■审 4 ■壬-M --祸婀附点'_ 抓胡一kFCd +-^) G+cJ) Co已知帳園「©亠£ =1U>^>O )的离吃率为二宜茂4卄狰=4勺椭IE 韦11員香一牛变百rc I }羞稲卿c 的方程和贞T 內聲标』5 )0为宝标原点TOT 平厅诵宜线厂与椭團C 5:于不冋的两点A,臥求△期圧 的面职朋大时豆镀F 觸方稈.0.03(10卿 0肥$0.020 血 O.Q15(L0L& -T-_ 4 --O«C 三论斥G.005厂驰宰•・尸■捕莘 却噩« v F ■ P ■ ■■亠 >■・-=■ ■ • ■ ■ ■ *1---------- -----亠亠.八 "",■电rw tv *■ ■:■ ■ ■■!!■■■ ■■ *JB ■ ■ J ■ d::1:!:L ::Kitt 110120 L3Q140130A 承却2L (本小固御分12什)已帅歯数"工〉一空二亍(I [讨论函数2曲单调性F< 11)当「」“时卓于丁的不等式NX2在丁€「x + 卍、上恒虑宜冲' 肋收值iX希生在第律二3题中任31—15作普,妇果梦晞,用按所粧的JS 1题好分一作書Bh甲■电即诅用ZB铅笔在善盘卡上棉所选题目邀暑肓曲方框盘制・爼一f本小魅雷片16廿)选慢4—心里嫌.舉写糅戰方程(3■T = a 十=t t盎自対至标吾屮■宜戟!怖拎数方甩为、'(t为8S).*WG为械瓠]円+3A抽的止半軸曲腥辘的撮坐傍乘叩』缎「的方■程为护"血+紅。
【高三数学试题精选】2018届高三数学文第一次调研考试(一模)试题(深圳市有答案)
2018届高三数学文第一次调研考试(一模)试题(深圳市
有答案)
5 深圳市2 c.2 D.3
解析为纯虚数,所以, 2,选B。
3 袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()
A. B. c. D.
解析随机选取三个球,共有4种可能,构成等差数列的有234、246两种,故所求的概率为
P=,选c。
4设,则大小关系正确的是()
A. B. c D.
解析由对数及指数的性质知a>0,b>0,c<0,且,
=1,所以,,选B。
5 的内角的对边分别为,已知,则的面积为()
A. B. c D.
解析因为所以,,
由余弦定理,得,解得b=2,
所以,三角形面积S==,选A。
6若双曲线的焦点到渐近线的距离是焦距的,则该双曲线的离心率为()
A. B. c 2 D.
解析设双曲线为,其中一条渐近线为,一个焦点为
F(c,0),依题意,有,又,解得b=,
,即,故选D。
7将函数的图象上各点的纵坐标不变,横坐标伸长到原的3倍,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省深圳市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.﹣3 B.﹣2 C.2 D.33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.4.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c大小关系正确的是()A.a>b>c B.b>a>c C.b>c>a D.c>b>a5.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.6.若双曲线的焦点到渐近线的距离是焦距的,则该双曲线的离心率为()A.B.C.2 D.7.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A.B.C.()D.()8.函数f(x)=•cosx的图象大致是()A.B.C.D.9.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)210.执行如图所示的程序框图,若输入p=2018,则输出i的值为()A.335 B.336 C.337 D.33811.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B.C.D.12.若f(x)=sin3x+acos2x在(0,π)上存在最小值,则实数a的取值范围是()A.(0,)B.(0,]C.[,+∞)D.(0,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=.14.已知α是锐角,且cos(α+)=,则cos(α﹣)=.15.直线ax﹣y+3=0与圆(x﹣2)2+(y﹣a)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是.16.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设S n为数列{a n}的前n项和,且S n=2a n﹣n+1(n∈N*),b n=a n+1.(1)求数列{b n}的通项公式;(2)求数列{nb n}的前n项和T n.18.(12分)如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若∠EAG=60°,求三棱锥F﹣BDE的体积.19.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.(12分)已成椭圆C: +=1(a>b>0)的离心率为.其右顶点与上顶点的距离为,过点P(0,2)的直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)设M是AB中点,且Q点的坐标为(,0),当QM⊥AB时,求直线l 的方程.21.(12分)已知函数f(x)=(ax+1)lnx﹣ax+3,a∈R,g(x)是f(x)的导函数,e为自然对数的底数.(1)讨论g(x)的单调性;(2)当a>e时,证明:g(e﹣a)>0;(3)当a>e时,判断函数f(x)零点的个数,并说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系中xOy中,曲线E的参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线E的普通方程和极坐标方程;(2)若直线l与曲线E相交于点A、B两点,且OA⊥OB,求证: +为定值,并求出这个定值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|,g(x)=|x+3|﹣x.(1)当a=1,解不等式f(x)<g(x);(2)对任意x∈[﹣1,1],f(x)<g(x)恒成立,求a的取值范围.2018年广东省深圳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4}B.{4,6}C.{6,8}D.{2,8}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:∵A={2,4,6,8},B={x|x2﹣9x+18≤0}={x|(x﹣3)(x﹣6)≤0}={x|3≤x≤6},∴A∩B={4,6},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.﹣3 B.﹣2 C.2 D.3【考点】复数代数形式的乘除运算.【分析】由复数代数形式的乘除运算化简复数,又根据复数(a∈R)为纯虚数,列出方程组,求解即可得答案.【解答】解:==,∵复数(a∈R)为纯虚数,∴,解得:a=﹣2.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件的个数,由此能求出所选的三个球上的数字能构成等差数列的概率.【解答】解:袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,基本事件总数n==4,所选的三个球上的数字能构成等差数列包含的基本事件有:(2,3,4),(2,4,6),共有2个,∴所选的三个球上的数字能构成等差数列的概率是p==.故选:C.【点评】本题考查概率的求法及应用,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.4.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c大小关系正确的是()A.a>b>c B.b>a>c C.b>c>a D.c>b>a【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:a=0.23=0.008,b=log0.30.2>log0.30.3=1,c=log30.2<1,∴b>a>c,故选:B.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.【考点】正弦定理.【分析】由题意cosC=,a=1,c=2,余弦定理求解b,正弦定理在求解sinB,那么△ABC的面积即可.【解答】解:由题意cosC=,a=1,c=2,那么:sinC=,cosC==,解得b=2.由,可得sinB=,那么△ABC的面积=故选A【点评】本题主要考查了余弦定理,正弦定理的运用,属于基础题.6.若双曲线的焦点到渐近线的距离是焦距的,则该双曲线的离心率为()A.B.C.2 D.【考点】双曲线的简单性质.【分析】利用双曲线的焦点到渐近线的距离是焦距的,列出关系式求解离心率即可.【解答】解:设双曲线方程:,可得渐近线方程为:bx﹣ay=0,焦点坐标(c,0),双曲线的焦点到渐近线的距离是焦距的,可得:,整理得:5b2=4c2,即c2=5a2,解得e=.故选:D.【点评】本题考查双曲线的简单性质的应用,考查计算能力.7.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A.B.C.()D.()【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.【分析】先根据三角函数图象变换规律写出所得函数的解析式,再根据三角函数的性质进行验证:若f(a)=0,则(a,0)为一个对称中心,确定选项.【解答】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为=sin2x当x=时,y=sinπ=0,所以是函数y=sin2x的一个对称中心.故选A.【点评】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高.8.函数f(x)=•cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】先判断函数的奇偶性,再判断函数值,问题得以解决.【解答】解:f(﹣x)=•cos(﹣x)=•cosx=﹣f(x),∴f(x)为奇函数,∴函数f(x)的图象关于原点对称,当x∈(0,)时,cosx>0,>0,∴f(x)>0在(0,)上恒成立,故选:C【点评】本题考查了函数图象的识别,关键是掌握函数的奇偶性和函数值,属于基础题9.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h)2【考点】由三视图求面积、体积.【分析】由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆环,明确其半径求面积.【解答】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆环,小圆半径为r,则为\frac{h}{2}=\frac{r}{2}$,得到r=h,所以截面圆的面积为πh2;故选B.【点评】本题考查了几何体得到三视图以及截面面积的求法;关键是明确几何体形状,然后得到截面的性质以及相关的数据求面积.10.执行如图所示的程序框图,若输入p=2018,则输出i的值为()A.335 B.336 C.337 D.338【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出输出i的值.【解答】解:模拟程序的运行,可得程序框图的功能是统计1到2018这些数中能同时被2和3整除的数的个数i,由于:2018=336×6+1,故程序框图输出的i的值为337.故选:C.【点评】本题考查了程序框图的应用问题,解题时模拟程序框图的运行过程,正确得出程序框图的功能是解题的关键,属于基础题.11.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B.C.D.【考点】球的体积和表面积.【分析】求出平面ACB1截此球所得的截面的圆的半径,即可求出平面ACB1截此球所得的截面的面积.【解答】解:由题意,球心与B的距离为=,B到平面ACB1的距离为=,球的半径为1,球心到平面ACB1的距离为﹣=,∴平面ACB1截此球所得的截面的圆的半径为=,∴平面ACB1截此球所得的截面的面积为=,故选D.【点评】本题考查平面ACB1截此球所得的截面的面积,考查学生的计算能力,属于中档题.12.若f(x)=sin3x+acos2x在(0,π)上存在最小值,则实数a的取值范围是()A.(0,)B.(0,]C.[,+∞)D.(0,+∞)【考点】三角函数的最值.【分析】设t=sinx,由x∈(0,π)和正弦函数的性质求出t的范围,将t代入f (x)后求出函数的导数,求出临界点,根据条件判断出函数的单调性,由导数与函数单调性的关系列出不等式,求出实数a的取值范围.【解答】解:设t=sinx,由x∈(0,π)得t∈(0,1],∵f(x)=sin3x+acos2x=sin3x+a(1﹣sin2x),∴f(x)变为:y=t3﹣at2+a,则y′=3t2﹣2at=t(3t﹣2a),由y′=0得,t=0或t=,∵f(x)=sin3x+acos2x在(0,π)上存在最小值,∴函数y=t3﹣at2+a在(0,1]上递减或先减后增,即>0,得a>0,∴实数a的取值范围是(0,+∞),故选:D.【点评】本题考查正弦函数的性质,导数与函数单调性的关系,以及构造法、换元法的应用,考查化简、变形能力.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|=5.【考点】平面向量的坐标运算.【分析】⊥,可得=0,解得x.再利用向量模的计算公式即可得出.【解答】解:∵⊥,∴=x+6=0,解得x=﹣6.∴=(﹣5,5).∴|+|==5.故答案为:5.【点评】本题考查了向量垂直与数量积的关系、向量模的计算公式,考查了推理能力与计算能力,属于基础题.14.已知α是锐角,且cos(α+)=,则cos(α﹣)=.【考点】两角和与差的余弦函数.【分析】由已知利用诱导公式可求sin(α﹣)=,结合角的范围,利用同角三角函数基本关系式计算可解.【解答】解:∵cos(α+)=sin[﹣(α+)]=sin(α﹣)=,∵α是锐角,α﹣∈(﹣,),∴cos(α﹣)===.故答案为:.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.直线ax﹣y+3=0与圆(x﹣2)2+(y﹣a)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是a≤﹣.【考点】直线与圆相交的性质.【分析】由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,利用|MN|≥2,建立不等式,即可得到a的范围.【解答】解:由圆的方程得:圆心(2,a),半径r=2,∵圆心到直线ax﹣y+3=0的距离d=,|MN|≥2,∴,解得:a≤﹣,故答案为:a≤﹣.【点评】此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,熟练掌握公式及定理是解本题的关键.16.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=3.【考点】简单线性规划.【分析】先画出可行域,得到角点坐标.利用k与0的大小,分类讨论,结合目标函数的最值求解即可.【解答】解:实数x,y满足不等式组的可行域如图:得:A(1,3),B(1,﹣2),C(4,0).①当k=0时,目标函数z=kx﹣y的最大值为12,最小值为0,不满足题意.②当k>0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y 过C(4,0)时,Z取得最大值12.当直线z=kx﹣y过A(3,1)时,Z取得最小值0.可得k=3,满足题意.③当k<0时,目标函数z=kx﹣y的最大值为12,最小值为0,当直线z=kx﹣y 过C(4,0)时,Z取得最大值12.可得k=﹣3,当直线z=kx﹣y过,B(1,﹣2)时,Z取得最小值0.可得k=﹣2,无解.综上k=3故答案为:3.【点评】本题主要考查简单线性规划以及分类讨论思想.解决本题计算量较大.属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2018•深圳一模)设S n为数列{a n}的前n项和,且S n=2a n﹣n+1(n∈N*),b n=a n+1.(1)求数列{b n}的通项公式;(2)求数列{nb n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(1)求出数列的首项,利用通项与和的关系,推出数列b n的等比数列,求解通项公式.(2)利用错位相减法求解数列的和即可.【解答】解:(1)当n=1时,a1=S1=2a1﹣1+1,易得a1=0,b1=1;当n≥2时,a n=S n﹣S n﹣1=2a n﹣n+1﹣[2a n﹣1﹣n+1+1],整理得a n=2a n﹣1+1,∴b n=a n+1=2(a n﹣1+1)=2b n﹣1,∴数列{b n}构成以首项为b1=1,公比为2等比数列,∴数列{b n}的通项公式b n=2n﹣1,n∈N•;(2)由(1)知b n=2n﹣1,则nb n=n•2n﹣1,则T n=1×20+2×21+3×22+…+n•2n﹣1,①∴2T n=1×2+2×22+3×23+…+n×2n,②由①﹣②得:﹣T n=20+21+22+23+…+2n﹣1﹣n•2n==2n﹣1﹣n•2n,∴T n=(n﹣1)2n+1.【点评】本题考查数列的递推关系式的应用,数列求和,考查计算能力.18.(12分)(2018•深圳一模)如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若∠EAG=60°,求三棱锥F﹣BDE的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)连接EG,说明BD⊥AC,证明BD⊥ED,推出BD⊥平面ACFE,然后证明平面ACEF⊥平面ABCD;(2)说明点F到平面BDE的距离为点C到平面BDE的距离的两倍,利用V F﹣BDE =2V C﹣BDE,转化求解三棱锥F﹣BDE的体积即可.【解答】解:(1)证明:连接EG ,∵四边形ABCD 为菱形, ∵AD=AB ,BD ⊥AC ,DG=GB , 在△EAD 和△EAB 中,AD=AB ,AE=AE ,∠EAD=∠EAB , ∴△EAD ≌△EAB , ∴ED=EB , ∴BD ⊥ED , ∵AC ∩EG=G , ∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACEF ⊥平面ABCD ;(2)∵EF ∥GC ,EF=2GC ,∴点F 到平面BDE 的距离为点C 到平面BDE 的距离的两倍,所以V F ﹣BDE =2V C ﹣BDE ,作EH ⊥AC ,∵平面ACEF ⊥平面ABCD ,EH ⊥平面ABCD ,∴V C ﹣BDE =V E ﹣BCD ==,∴三棱锥F ﹣BDE 的体积为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.19.(12分)(2018•深圳一模)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)利用分段函数的性质即可得出.(2)利用(1),结合频率分布直方图的性质即可得出.(3)由题意可知X可取50,150,250,350,450,550.结合频率分布直方图的性质即可得出.【解答】解:(1)当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=.(2)由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020.(3)由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5.【点评】本题考查了分段函数的性质、频率分布直方图的性质、随机变量的分布列及其数学期望,考查了推理能力与计算能力,属于中档题.20.(12分)(2018•深圳一模)已成椭圆C: +=1(a>b>0)的离心率为.其右顶点与上顶点的距离为,过点P(0,2)的直线l与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)设M是AB中点,且Q点的坐标为(,0),当QM⊥AB时,求直线l 的方程.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)椭圆的离心率为.其右顶点与上顶点的距离为,列出方程组,求出a=,b=,由此能求出椭圆C的方程.(2)若直线l的斜率不存在,直线方程为x=0;若直线l的斜率存在,设其方程为y=kx+2,与椭圆方程联立,得(2+3k2)x2+12kx+6=0,由此利用根的判别式、韦达定理、直线垂直,结合已知条件能求出直线l的方程.【解答】解:(1)∵椭圆C: +=1(a>b>0)的离心率为.其右顶点与上顶点的距离为,∴由题意知:,解得a=,b=,∴椭圆C的方程为:.(2)①若直线l的斜率不存在,此时M为原点,满足QM⊥AB,∴方程为x=0;②若直线l的斜率存在,设其方程为y=kx+2,A(x1,y1),B(x2,y2),将直线方程与椭圆方程联立,得(2+3k2)x2+12kx+6=0,△=72k2﹣48>0,,设M(x0,y0),则,,由QM⊥AB,知,化简得3k2+5k+2=0,解得k=﹣1或k=﹣,将结果代入△=72k2﹣48>0验证,舍掉k=﹣,此时,直线l的方程为x+y﹣2=0,综上所述,直线l的方程为x=0或x+y﹣2=0.【点评】本题考查椭圆方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、直线垂直、椭圆等知识点的合理运用.21.(12分)(2018•深圳一模)已知函数f(x)=(ax+1)lnx﹣ax+3,a∈R,g (x)是f(x)的导函数,e为自然对数的底数.(1)讨论g(x)的单调性;(2)当a>e时,证明:g(e﹣a)>0;(3)当a>e时,判断函数f(x)零点的个数,并说明理由.【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(1)求导,由导数与函数单调性的关系,即可求得g(x)的单调区间;(2)由g(e﹣a)=﹣a2+e a,构造函数h(x)=﹣x2+e x,求导,当x>e时,h′(x)>0,函数单调递增,即可求得h(x)=﹣x2+e x>﹣e2+e e>0,(3)由(1)可知,函数最小值为g()=0,故g(x)恰有两个零点x1,x2,则可判断x1,x2是函数的极大值和极小值,由函数零点的存在定理,求得函数f (x)只有一个零点.【解答】解:(1)对函数f(x),求导得g(x)=f′(x)=alnx+,g′(x)=﹣=,①当a≤0时,g′(x)<0,故g(x)在(0,+∞)上为减函数;②当a>0时,′(x)>0,可得x>,故g(x)的减区间为(0,),增区间为(,+∞);(2)证明:g(e﹣a)=﹣a2+e a,设h(x)=﹣x2+e x,则h′(x)=e x﹣2x,易知当x>e时,h′(x)>0,函数h(x)单调递增,h(x)=﹣x2+e x>﹣e2+e e>0,∴g(e﹣a)>0;(3)由(1)可知,当a>e时,g(x)是先减再增的函数,其最小值为g()=aln+a=a(ln+1)<0,而此时g()=1+,g(e﹣a)>0,且e﹣a<<,故g(x)恰有两个零点x1,x2,∵当x∈(0,x1)时,f′(x)=g(x)>0;当x∈(x1,x2)时,f′(x)=g(x)<0;当x∈(x2,+∞)时,f′(x)=g(x)>0,∴f(x)在x1,x2两点分别取到极大值和极小值,且x1∈(0,),由g (x 1)=alnx 1+=0,知a=﹣,∴f (x 1)=(ax 1+1)lnx 1﹣ax 1+3=lnx 1++2,∵lnx 1<0,∴lnx 1+≤﹣2,但当lnx 1+=﹣2时,lnx 1=,则a=e ,不合题意, 所以f (x 1)<0,故函数f (x )的图象与x 轴不可能有两个交点.∴函数f (x )只有一个零点.【点评】本题考查导数的综合应用,考查导数与函数的单调性及及的关系,考查函数零点的判断,考查计算能力,属于中档题.[选修4-4:坐标系与参数方程]22.(10分)(2018•深圳一模)在直角坐标系中xOy 中,曲线E 的参数方程为(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出曲线E 的普通方程和极坐标方程;(2)若直线l 与曲线E 相交于点A 、B 两点,且OA ⊥OB ,求证: +为定值,并求出这个定值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线E 的参数方程消去参数,能求出曲线E 的普通方程,进而能求出曲线E 的极坐标方程.(2)不妨设设点A ,B 的极坐标分别为A (ρ1,θ),B (),从而得到,由此能证明(定值).【解答】解:(1)∵曲线E 的参数方程为(α为参数),∴消去参数得曲线E 的普通方程为,∴曲线E的极坐标方程为,∴所求的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.(2)证明:不妨设设点A,B的极坐标分别为A(ρ1,θ),B(),则,即,∴=,即(定值).【点评】本题考查参数方程、普通方程、极坐标方程的互化,考查代数式和为定值的证明,是中档题,解题时要认真审题,注意普通方程、极坐标方程的互化公式的合理运用.[选修4-5:不等式选讲]23.(2018•深圳一模)已知f(x)=|x+a|,g(x)=|x+3|﹣x.(1)当a=1,解不等式f(x)<g(x);(2)对任意x∈[﹣1,1],f(x)<g(x)恒成立,求a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)把a=1代入f(x)后化简f(x)<g(x),对x分类讨论,分别去掉绝对值求出x的范围,最后再求并集可得答案;(2)由条件求出g(x),由绝对值不等式的解法化简|x+a|<3,求出a的表达式,由x的范围和恒成立求出a的取值范围.【解答】解:(1)当a=1,f(x)=|x+1|,由f(x)<g(x)可得|x+1|<|x+3|﹣x,即|x+3|﹣|x+1|﹣x>0,当x≤﹣3时,原不等式等价于﹣x﹣2>0,即x<﹣2,∴x≤﹣3,当﹣3<x<﹣1时,原不等式等价于x+4>0,即x>﹣4,∴﹣3<x<﹣1,当x≥﹣1时,原不等式等价于﹣x+2>0,即x<2,∴﹣1≤x<2,综上所述,不等式的解集为(﹣∞,2);(2)当x∈[﹣1,1]时,g(x)=|x+3|﹣x=3,∵对任意x∈[﹣1,1],f(x)<g(x)恒成立,∴对任意x∈[﹣1,1],|x+a|<3恒成立,∴﹣3<x+a<3,即﹣3﹣x<a<3﹣x,当x∈[﹣1,1]时恒成立,∴a的取值范围﹣2<a<2.【点评】本题考查绝对值不等式的解法,恒成立问题转化为求最值问题,以及分类讨论思想,考查化简、变形能力.。