三角形面积的多种求法-模板

合集下载

超全六年级阴影部分的面积(详细答案)【范本模板】

超全六年级阴影部分的面积(详细答案)【范本模板】

六年级阴影部分的面积1.求阴影部分的面积。

(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。

梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。

解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。

解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。

由图形可知AED ∆是等腰直角三角形,所以AE=AD,O E=OF=AE -A O=9-6=3cm,B O=BC-OC=9—3=6cm 。

1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。

4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。

解:方法一:过C 点作CF AD ⊥交A D于点F,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50—30)÷2=102cm 。

方法二:BC=S ABCD ÷AE=50÷5=10cm,BE=BC —EC=10—6=4cm,ABE S ∆=BE ×A E÷2=4×5÷2=102cm5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为24.25平方厘米,求图形中三角形的高。

解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭—24。

25=21103.1422⎛⎫⨯⨯ ⎪⎝⎭-24。

25=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm.6、如图,一个长方形长是10cm,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米?解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =25.942cm 。

高三数学二轮复习解三角形练习含试题答案

高三数学二轮复习解三角形练习含试题答案

解三角形[明考情]高考中主要考查正弦定理、余弦定理在解三角形中的应用.求三角形的面积问题一般在解答题的17题位置. [知考向]1.利用正弦、余弦定理解三角形.2.三角形的面积.3.解三角形的综合问题.考点一 利用正弦、余弦定理解三角形方法技巧 (1)公式法解三角形:直接利用正弦定理或余弦定理,其实质是将几何问题转化为代数问题,适用于求三角形的边或角.(2)边角互化法解三角形:合理转化已知条件中的边角关系,适用于已知条件是边角混和式的解三角形问题.1.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =bsin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc=-55ac ac=-55. (2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255.2.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan∠PBA .解 (1)由已知得∠PBC =60°,∠PBA =30°.在△PBA 中,由余弦定理,得PA 2=3+14-2×3×12cos 30°=74,∴PA =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α,故tan α=34,即tan∠PBA =34. 3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1a +c =3a +b +c. (1)求角A 的大小;(2)若c b =12+3,a =15,求b 的值.解 (1)由题意,可得a +b +c a +b +a +b +c a +c =3,即c a +b +ba +c=1, 整理得b 2+c 2-a 2=bc ,由余弦定理知,cos A =b 2+c 2-a 22bc =12,因为0<A <π,所以A =π3.(2)根据正弦定理,得cb =sin C sin B =sin (A +B )sin B =sin A cos B +cos A sin B sin B =sin Atan B+cos A =32tan B +12=12+3, 解得tan B =12,所以sin B =55.由正弦定理得,b =a sin Bsin A=15×5532=2.4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B . 在△ABC 中,sin A ≠0, 即得tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵sin C =2sin A ,由正弦定理得c =2a , 由余弦定理b 2=a 2+c 2-2ac cos B , 即9=a 2+4a 2-2a ·2a cos π3,解得a =3,∴c =2a =2 3. 考点二 三角形的面积方法技巧 三角形面积的求解策略(1)若所求面积的图形为不规则图形,可通过作辅助线或其他途径构造三角形,转化为三角形的面积.(2)若所给条件为边角关系,则运用正弦、余弦定理求出其两边及其夹角,再利用三角形面积公式求解.5.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cosA )=c .(1)求角C 的大小;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .因为0<C <π,所以cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25,可得a +b =5.所以△ABC 的周长为5+7.6.在△ABC 中,已知C =π6,向量m =(sin A ,1),n =(1,cos B ),且m ⊥n .(1)求A 的大小;(2)若点D 在边BC 上,且3BD →=BC →,AD =13,求△ABC 的面积. 解 (1)由题意知m ·n =sin A +cos B =0,又C =π6,A +B +C =π,所以sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0. 所以sin A -32cos A +12sin A =0,即sin ⎝⎛⎭⎪⎫A -π6=0.又0<A <5π6,所以A -π6∈⎝ ⎛⎭⎪⎫-π6,2π3,所以A -π6=0,即A =π6.(2)设|BD →|=x ,由3BD →=BC →,得|BC →|=3x , 由(1)知,A =C =π6,所以|BA →|=3x ,B =2π3.在△ABD 中,由余弦定理,得(13)2=(3x )2+x 2-2·3x ·x cos 2π3,解得x =1,所以AB =BC =3,所以S △ABC =12BA ·BC ·sin B =12·3·3·sin 2π3=934.7.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B 的值;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去)或cos B =1517.故cos B =1517.(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6, 得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.8.(2017·延边州一模)已知函数f (x )=sin 2ωx -sin 2⎝⎛⎭⎪⎫ωx -π6⎝ ⎛⎭⎪⎫x ∈R ,ω为常数且12<ω<1,函数f (x )的图象关于直线x =π对称. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,f ⎝ ⎛⎭⎪⎫35A =14,求△ABC 面积的最大值.解 (1)f (x )=12-12cos 2ωx -⎣⎢⎡⎦⎥⎤12-12cos ⎝ ⎛⎭⎪⎫2ωx -π3=12cos ⎝ ⎛⎭⎪⎫2ωx -π3-12cos 2ωx =-14cos 2ωx +34sin 2ωx =12sin ⎝ ⎛⎭⎪⎫2ωx -π6.令2ωx -π6=π2+k π,解得x =π3ω+k π2ω,k ∈Z .∴f (x )的对称轴为x =π3ω+k π2ω,k ∈Z .令π3ω+k π2ω=π, 解得ω=2+3k6,k ∈Z .∵12<ω<1, ∴当k =1时,ω=56,∴f (x )=12sin ⎝ ⎛⎭⎪⎫53x -π6.∴f (x )的最小正周期T =2π53=6π5.(2)∵f ⎝ ⎛⎭⎪⎫35A =12sin ⎝⎛⎭⎪⎫A -π6=14,∴sin ⎝⎛⎭⎪⎫A -π6=12.∴A =π3.由余弦定理得,cos A =b 2+c 2-a 22bc =b 2+c 2-12bc =12,∴b 2+c 2=bc +1≥2bc , ∴bc ≤1.∴S △ABC =12bc sin A =34bc ≤34,∴△ABC 面积的最大值是34. 考点三 解三角形的综合问题方法技巧 (1)题中的关系式可以先利用三角变换进行化简.(2)和三角形有关的最值问题,可以转化为三角函数的最值问题,要注意其中角的取值. (3)和平面几何有关的问题,不仅要利用三角函数和正弦、余弦定理,还要和三角形、平行四边形的一些性质结合起来.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解 (1)在△ABC 中,因为a >b , 所以由sin B =35,得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =bsin B , 得sin A =a sin Bb =31313. 所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.所以sin ⎝⎛⎭⎪⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226.10.△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,1+tan A tan B =2c3b .(1)求角A 的大小;(2)若△ABC 为锐角三角形,求函数y =2sin 2B -2sin B cosC 的取值范围.解 (1)因为1+tan A tan B =2c 3b ,所以由正弦定理,得1+sin A cos B cos A sin B =sin (A +B )cos A sin B =2sin C3sin B .因为A +B +C =π,所以sin(A +B )=sin C ,所以sin C cos A sin B =2sin C3sin B ,因为sin C ≠0,sin B ≠0,所以cos A =32,故A =π6. (2)因为A +B +C =π,A =π6,所以B +C =5π6. 所以y =2sin 2B -2sin B cosC =1-cos 2B -2sin B cos ⎝ ⎛⎭⎪⎫5π6-B=1-cos 2B +3sin B cos B -sin 2B =1-cos 2B +32sin 2B -12+12cos 2B =12+32sin 2B -12cos 2B =sin ⎝ ⎛⎭⎪⎫2B -π6+12.又△ABC 为锐角三角形,所以π3<B <π2⇒π2<2B -π6<5π6,所以y =sin ⎝⎛⎭⎪⎫2B -π6+12∈⎝ ⎛⎭⎪⎫1,32.故函数y =2sin 2B -2sin B cosC 的取值范围是⎝ ⎛⎭⎪⎫1,32.11.(2017·咸阳二模)设函数f (x )=sin x cos x -sin 2⎝ ⎛⎭⎪⎫x -π4(x ∈R ), (1)求函数f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫C 2=0,c =2,求△ABC 面积的最大值.解 (1)函数f (x )=sin x cos x -sin 2⎝⎛⎭⎪⎫x -π4(x ∈R ).化简可得f (x )=12sin 2x -12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x -12. 令2k π-π2≤2x ≤2k π+π2(k ∈Z ),则k π-π4≤x ≤k π+π4(k ∈Z ),即f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),则k π+π4≤x ≤k π+3π4(k ∈Z ),即f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫C 2=0,得sin C =12, 又因为△ABC 是锐角三角形, 所以C =π6.由余弦定理得c 2=a 2+b 2-2ab cos C ,将c =2,C =π6代入得4=a 2+b 2-3ab ,由基本不等式得a 2+b 2=4+3ab ≥2ab ,即ab ≤4(2+3), 所以S △ABC =12ab sin C ≤12·4(2+3)·12=2+3,即△ABC 面积的最大值为2+ 3.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2a -c ,cos C ),n =(b ,cos B ),m ∥n .(1)求角B 的大小;(2)若b =1,当△ABC 的面积取得最大值时,求△ABC 内切圆的半径.解 (1)由已知可得(2a -c )cos B =b cos C ,结合正弦定理可得(2sin A -sin C )cos B =sinB cosC ,即2sin A cos B =sin(B +C ),又sin A =sin(B +C )>0,所以cos B =12,所以B =π3.(2)由(1)得B =π3,又b =1,在△ABC 中,b 2=a 2+c 2-2ac cos B ,所以12=a 2+c 2-ac ,即1+3ac =(a +c )2.又(a +c )2≥4ac ,所以1+3ac ≥4ac , 即ac ≤1,当且仅当a =c =1时取等号.从而S △ABC =12ac sin B =34ac ≤34,当且仅当a =c =1时,S △ABC 取得最大值34.设△ABC 内切圆的半径为r ,由S △ABC =12(a +b +c )r ,得r =36.例 (12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n . (1)求角B 的大小;(2)设BC 的中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. 审题路线图向量m ∥n ―→边角关系式――――→利用正弦定理转化△ABC 三边关系式――――→余弦定理求得角B ――――→引进变量(设角θ)用θ表示a +2c (目标函数)―→辅助角公式求最值―→求S △ABC 规范解答·评分标准 解 (1)因为m ∥n ,所以(a +b )(sin A -sin B )-c (sin A -sin C )=0,………………………………………………………………………………………………1分 由正弦定理,可得(a +b )(a -b )-c (a -c )=0,即a 2+c 2-b 2=ac . ……………………3分由余弦定理可知,cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.…………5分(2)设∠BAD =θ,则在△BAD 中,由B =π3可知,θ∈⎝ ⎛⎭⎪⎫0,2π3.由正弦定理及AD =3,有BDsin θ=ABsin ⎝ ⎛⎭⎪⎫2π3-θ=3sinπ3=2,所以BD =2sin θ,AB =2sin ⎝⎛⎭⎪⎫2π3-θ=3cos θ+sin θ,所以a =2BD =4sin θ,c =AB =3cos θ+sin θ,………………………………………8分 从而a +2c =23cos θ+6sin θ=43sin ⎝ ⎛⎭⎪⎫θ+π6.由θ∈⎝⎛⎭⎪⎫0,2π3可知,θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当θ+π6=π2,即当θ=π3时,a +2c 取得最大值4 3 (11)分此时a =23,c =3,所以S △ABC =12ac sin B =332.………………………………………………………………………………………………12分 构建答题模板[第一步] 找条件:分析寻找三角形中的边角关系.[第二步] 巧转化:根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化. [第三步] 得结论:利用三角恒等变换进行变形,得出结论. [第四步] 再反思:审视转化过程的合理性.1.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan Acos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. (1)证明 由题意知,2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B.化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B ,因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A 为锐角,向量m =(2sin A ,-3),n =⎝⎛⎭⎪⎫cos 2A ,2cos 2A 2-1,且m ∥n .(1)求A 的大小;(2)如果a =2,求△ABC 面积的最大值.解 (1)由m ∥n ,可得2sin A ·⎝ ⎛⎭⎪⎫2cos 2A 2-1+3cos 2A =0,即2sin A ·cos A +3cos 2A =0,所以sin 2A =-3cos 2A ,即tan 2A =- 3.因为A 为锐角,故0°<2A <180°,所以2A =120°,A =60°.(2)如果a =2,在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,可得4=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤4,所以S =12bc sin A ≤12×4×32=3, 故△ABC 面积的最大值为 3.3.在海岸A 处,发现北偏东45°方向距A 为3-1海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)解 设缉私船追上走私船所需时间为t 小时,如图所示,则CD =103t 海里,BD =10t 海里.在△ABC 中,因为AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°, 根据余弦定理,可得BC =(3-1)2+22-2·2·(3-1)cos 120°=6(海里). 根据正弦定理,可得sin∠ABC =AC ·sin 120°BC =2·326=22. 所以∠ABC =45°,易知CB 方向与正北方向垂直,从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得sin∠BCD =BD ·sin∠CBD CD =10t ·sin 120°103t=12, 所以∠BCD =30°,∠BDC =30°, 所以DB =BC =6海里.则有10t =6,t =610≈0.245(小时)=14.7(分钟).故缉私船沿北偏东60°方向,最快需约14.7分钟才能追上走私船.4.(2017·济南一模)已知f (x )=23sin x cos x -cos(π+2x ).(1)求f (x )的单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,c =3,a +b =23,求△ABC 的面积.解 (1)f (x )=23sin x cos x -cos(π+2x ).化简可得f (x )=3sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z . ∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)由(1)可知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵f (C )=1,即2sin ⎝⎛⎭⎪⎫2C +π6=1, 0<C <π,可得2C +π6=5π6,∴C =π3. 由a +b =23,可得a 2+b 2=12-2ab . ∵c =3,根据余弦定理cos C =a 2+b 2-c 22ab, 可得12-2ab -c 22ab =12,解得ab =3. 故△ABC 的面积S =12ab sin C =12×3×32=334. 5.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎪⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22, 所以A =π4或A =3π4,因为b >a ,所以A =π4, f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12. 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12, 所以32-1≤f (x )+4cos ⎝⎛⎭⎪⎫2A +π6≤2-12. 所以所求取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.。

各种计算公式【范本模板】

各种计算公式【范本模板】

计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a。

a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径 ?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a。

a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长 S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a ×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b:宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

高考数学解答题答题模板

高考数学解答题答题模板

典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2.(1)若f (α2)=-34,α∈(0,π2),求cos α的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算辅助角公式得f (x )――→对称性周期性求出ω()2f α−−−−和差公式cos α (2)y =f (x )―――→图象变换y =g (x )―――→整体思想g (x )的递增区间评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π3)时没有考虑范围扣1分;3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.典例2 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 1.第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.2.第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a b, (1)求B 的大小;(2)若a +c =57,b =7,求AB →·BC →的值. 解 (1)∵3cos C +sin C =3ab, 由正弦定理可得:3cos C +sin C =3sin Asin B, ∴3cos C sin B +sin B sin C =3sin A , 3cos C sin B +sin B sin C =3sin(B +C )3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0<B <π,∴B =π3.(2)由余弦定理可得:2ac cos B =a 2+c 2-b 2=(a +c )2-2ac -b 2, 整理得:3ac =(a +c )2-b 2, 即:3ac =175-49. ∴ac =42,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|·cos B =-ac ·cos B =-21.典例3 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图 数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征―――――→选定求和方法分组法及裂项法、公式法求和评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练3 已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n ·a n +1,n ∈N *,T n 为数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)a 21=S 1=a 1,∵a 1≠0,∴a 1=1. ∵a 22=S 3=a 1+a 2+a 3,∴(1+d )2=3+3d ,解得d =-1或2.当d =-1时,a 2=0不满足条件,舍去,∴d =2. ∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. ①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n +8)(2n +1)n =2n +8n +17恒成立即可.∵2n +8n≥8,等号在n =2时取得,∴λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n -8)(2n +1)n =2n -8n -15恒成立即可.∵2n -8n 是随n 的增大而增大,∴n =1时,2n -8n 取得最小值-6,∴λ<-21.综上①②可得λ的取值范围是(-∞,-21).典例4 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 中点M ―――――→考虑平行关系长度关系 平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面P AD (2)平面P AD ⊥平面ABCD P A ⊥AD ―――→面面垂直的性质P A ⊥平面ABCD ―→P A ⊥DE ――――――――→正方形ABCD 中E 、H 为AB 、BC 中点DE ⊥AH ――――→线面垂直的判定定理DE ⊥平面P AH ――――→面面垂直的判定定理平面P AH ⊥平面DEF评分细则 1.第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面P AD同样给分;2.第(2)问证明P A⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC中点得DE⊥AH不扣分;证明DE⊥平面P AH只要写出DE⊥AH,DE⊥P A,缺少条件不扣分.跟踪演练4(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB . 又OC ⊂平面MOC , 所以平面MOC ⊥平面VAB .(3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33.典例5 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)求证:DE⊥平面ACD;(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.审题路线图(1)(2)CA、CB、CD两两垂直―→建立空间直角坐标系―→写各点坐标―→求平面AED与平面ABE的法向量―→将所求二面角转化为两个向量的夹角评分细则 1.第(1)问中证明DC ⊥BC 和AC ⊥BC 各给1分;证明DE ∥BC 给1分;证明BC ⊥平面ACD 时缺少AC ∩DC =C ,AC ,DC ⊂平面ACD ,不扣分.2.第(2)问中建系给1分;两个法向量求出1个给2分;没有最后结论扣1分;法向量取其他形式同样给分.跟踪演练5 如图,在几何体ABCDQP 中,AD ⊥平面ABPQ ,AB ⊥AQ ,AB ∥CD ∥PQ ,CD =AD =AQ =PQ =12AB ,(1)证明:平面APD ⊥平面BDP ; (2)求二面角A —BP —C 的正弦值.方法一 (1)证明 设AQ =QP =1,则AB =2, 易求AP =BP =2, 由勾股定理可得BP ⊥AP ,而AD ⊥平面ABPQ ,所以BP ⊥DA , 又AP ∩AD =A ,故BP ⊥平面APD .而BP ⊂平面BDP ,所以平面APD ⊥平面BDP .(2)解 设M 、N 分别为AB 、PB 的中点,连接CM ,MN ,CN .易得CM ⊥平面APB ,MN ⊥PB , 故∠CNM 为二面角A —BP —C 的平面角. 结合(1)计算可得,CM ⊥MN ,CM =1, MN =22,CN =62, 于是在Rt △CMN 中,sin ∠CNM =63. 所以二面角A —BP —C 的正弦值为63. 方法二 (1)证明 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =2,依题意得A (0,0,0),B (0,2,0),C (0,1,1),D (0,0,1), Q (1,0,0), P (1,1,0),BP →=(1,-1,0),AP →=(1,1,0),AD →=(0,0,1),那么BP →·AP →=0,BP →·AD →=0,因此,BP ⊥AP ,BP ⊥AD .又AP ∩AD =A ,故BP ⊥平面APD , 而BP ⊂平面BDP , 所以平面APD ⊥平面BDP .(2)解 设平面CPB 的一个法向量为n =(x ,y ,z ), 而BC →=(0,-1,1),则BP →·n =0,BC →·n =0, 那么x -y =0,-y +z =0,令x =1可得n =(1,1,1). 又由题设,平面ABP 的一个法向量为m =(0,0,1). 所以,cos 〈m ,n 〉=m·n|m||n |=33, 可得sin 〈m ,n 〉=63. 所以二面角A —BP —C 的正弦值为63.典例6 (12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一块,其综合指标为m ,从长势等级不是一级的人工种植地中任取一块,其综合指标为n ,记随机变量X =m -n ,求X 的分布列及其均值. 审题路线图 (1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求均值评分细则 1.第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;2.第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率时每个式子给1分;分布列正确写出给1分.跟踪训练6(2016·课标全国乙)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元). 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元). 可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.典例7 (12分)(2015·山东)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.审题路线图 (1)椭圆C上点满足条件―→求出a 222e a b c =+已知离心率 基本量法求得椭圆C 方程(2)①P 在C 上,Q 在E 上――→P 、Q 共线设坐标代入方程―→求出|OQ ||QP |. ②直线y =kx +m 和椭圆E 方程联立――→通法研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB关系得S △ABQ 最大值评分细则 1.第(1)问中,求a 2-c 2=b 2关系式直接得b =1,扣1分;2.第(2)问中,求|OQ ||OP |时,给出P ,Q 坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.跟踪演练7 已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点(2,22).(1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b 2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2,故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,即m 2-4k 24(m 2-1)=k 2. 又m ≠0,所以k 2=14,即k =±12.由于直线OP ,OQ 的斜率存在,且Δ>0, 得0<m 2<2,且m 2≠1,设d 为点O 到直线l 的距离,则d =|2m |5,|PQ |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=5(2-m 2), 所以S =12|PQ |d =m 2(2-m 2)<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).典例8 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎨⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎪⎨⎪⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3, P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0. ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4,由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.典例9 (12分)(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.(2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g(a)=ln a+a-1给2分;(5)通过分类讨论得出a的范围,给2分.跟踪演练9已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a的取值范围;(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.解(1)由f(0)=1,f(1)=0,得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]e x,f′(x)=[ax2+(a-1)x-a]e x.依题意对任意x∈(0,1),有f′(x)<0.当a>0时,因为二次函数f(x)=ax2+(a-1)x-a的图象开口向上,而f′(0)=-a<0,所以有f′(1)=(a-1)e<0,即0<a<1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x .(ⅰ)当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.(ⅱ)当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x <0,g (x )在x =0处取得最大值g (0)=2, 在x =1取得最小值g (1)=0.(ⅲ)当0<a <1时,由g ′(x )=0得x =1-a2a>0.①若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.②若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值121()2e ,2aaa g a a--=在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.典例10 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)求出导数给1分;(2)讨论时漏掉m=0扣1分;两种情况只讨论正确一种给2分;(3)确定f′(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x=0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分.跟踪演练10已知函数f(x)=ln x+1x.(1)求函数f(x)的单调区间和极值;(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;(3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1) (n ∈N *,n ≥2).(1)解 f ′(x )=-ln xx2,由f ′(x )=0⇒x =1,列表如下:因此函数f (x )的增区间为(0,1),减区间为(1,+∞), 极大值f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ⇔ln (x -1)+1x -1≤k ⇔f (x -1)≤k ,所以f (x -1)max ≤k ,∴k ≥1,(3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1⇒ln x x ≤1-1x ,当且仅当x =1时取等号. 令x =n 2 (n ∈N *,n ≥2). 则ln n 2n 2<1-1n 2⇒ln n n 2<12(1-1n2)<12(1-1n (n +1))=12(1-1n +1n +1)(n ≥2), ln 222+ln 332+…+ln n n2 <12(1-12+13)+12(1-13+14)+…+12(1-1n +1n +1) =12(n -1+1n +1-12)=2n 2-n -14(n +1).。

第六单元第4课时 三角形的面积(2)(课件)五年级数学上册 最新人教版

第六单元第4课时 三角形的面积(2)(课件)五年级数学上册 最新人教版
教材第94页第6题
1. 已知一个三角形的面积和底(如下图),求高。
176m²
h = S×2÷a
= 176×2÷22
22m
= 16(m)
根据S=ah÷2,可以得到h = S×2÷a。
易错点:不要忘记三角形的面积先乘2,再除以底才能求高。
教材第92页第7题
1. 已知一个三角形的面积和底(如下图),求高。
等,已知三角形的底是 16 cm,平行四边形的
底是(
)cm。
8
(4)一个三角形与一个平行四边形的底相等,面积
也相等,已知三角形的高是18cm,则平行四边
形的高是(
9
)cm。
(5)一个平行四边形的面积是15 cm2,在这个平行
四边形内画一个最大的三角形,则三角形的面
积是( 7.5 cm2)。
(6)一个三角形与一个平行四边形的等底等高,已

72
三角形面积与平行四边形面积的关系
4.(易错题)一个三角形和一个平行四边形的
面积相等,底也相等。已知三角形的高是12,
那么平行四边形的高是( A )。
A.6
B.9
C.12
D.24
三角形与平行四边形面积相等,底(高)相等,
则三角形的高(底)是平行四边形高(底)的2倍。
三角形面积与平行四边形面积的关系
知它们的面积和是30平方厘米,这个三角形是
( 10 )平方厘米。
(7)一个三角形与一个平行四边形的等底等高,平
行四边形面积比三角形面积多25平方厘米,这
个三角形是( 25
)平方厘米
计算下列三角形的面积,你发现了什么?
5 cm
3 cm
5×3÷2=7.5(cm2)

初二上册第11章《三角形》

初二上册第11章《三角形》

1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

)4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:、不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形—钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

《③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【推荐】专题19+解三角形-备战2019高考技巧大全之高中数学黄金解题模板

【高考地位】正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】类型一 判断三角形的形状使用情景:已知边与三角函数之间的等式关系解题模板:第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式;第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状; 第三步 得出结论.例1在ABC ∆中,已知cos cos a B b A =,那么ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 【答案】A考点:正弦定理.【点评】解决这类问题的方法通常有两种思路:一是将等式两边的边运用正弦定理全部转化为正弦角的形式,使得式子只有三角形式;二是运用余弦定理将右边的cos B 化为边的形式,使得等式只有边与边之间的等式关系.【变式演练1】在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若,则ABC ∆为. A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】试题分析:根据 定理,那么A B C cos sin sin =,根据π=++C B A ,所以()B A C +=sin sin ,所以()A B B A cos sin sin <+,整理为:0cos sin <B A ,三角形中0sin >A ,所以0cos <B ,考点:1.正弦定理;2.解斜三角形.【变式演练2】在C ∆AB 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若,且a ,b ,c 成等比数列,则C ∆AB 一定是( )A .不等边三角形B .钝角三角形C .等腰直角三角形D .等边三角形 【答案】D考点:1.等比数列;2.解三角形.类型二 解三角形中的边和角使用情景:三角形中解题模板:第一步 直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理;第二步 利用相应的正弦、余弦定理的计算公式即可得出所求的结论.例2、 设ABC ∆的内角A , B , C 所对的边长分别为a , b , c ,若则A =( )【答案】C【解析】第一步,直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理:根据正弦定理第二步,利用相应的正弦、余弦定理的计算公式即可得出所求的结论:a b <,则A 为锐角,则,选C.考点:正弦定理.【点评】正弦定理主要解决两类三角问题:其一是已知二边及其一边的对角求其中一角的情况;其二是已知一边及其一对角求另一边的情况.【变式演练3】已知△ABC 中,a x =,2b =,45B =︒,若三角形有两解,则x 的取值范围是( ) A .2x > B .2x <【答案】C 【解析】考点:三角形解的个数的判定.【变式演练4】在ABC ∆中,角,,A B C 的对边为,,a b c ,若,则角B 为( )A【答案】A 【解析】试题分析:由余弦定理,又(0,)B π∈,A .考点:余弦定理.【变式演练5】在ABC ∆中,,则cos C =( )A 【答案】D 【解析】考点:正弦定理与余弦定理.类型三 解决与面积有关问题使用情景:三角形中解题模板:第一步 主要利用正、余弦定理求出三角形的基本元素如角与边;第二步 结合三角形的面积公式直接计算其面积.例3 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,则ABC ∆的面积为____________.【解析】第一步,主要利用正、余弦定理求出三角形的基本元素如角与边:,所以30C =︒,所以60,90A B =︒=︒. ,所以2b c =,又,所以2c =,第二步,结合三角形的面积公式直接计算其面积:考点:正弦定理.【方法点睛】解三角形问题,多为边和角的求值问题,其基本步骤是:(1)确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;(2)根据条件和所求合理选择正弦定理与余弦定理,使边化角或角化边;(3)求解.【变式演练6】在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,如果a ,b ,c 成等差数列,30B =︒,△ABC 的面积为则b 为( )AC 【答案】B 【解析】考点:1.余弦定理;2.面积公式.【变式演练7】顶点在单位圆上的ABC ∆中,角,,A B C 所对的边分别为,,a b c .若522=+c b ,,则ABC S ∆= .【解析】试题分析:由题意和正弦定理可得(r 为△ABC 外接圆半径1),∵a 2=b 2+c 2-2bccosA ,代入数据可得3=4±bc,解得bc=2,∴S △考点:余弦定理;正弦定理【变式演练8】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知(1)求c 及ABC ∆的面积S ; (2)求()C A +2sin .【答案】(1(2【高考再现】1.【2017全国I 卷文,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c C =A B C D 【答案】B 【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,B . 【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cos C 2sin cos C cos sin C B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.3. 【2018年全国卷Ⅲ理数高考试题】的内角的对边分别为,,,若的面积为,则A .B .C .D . 【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。

三角形的面积教学设计_模板

三角形的面积教学设计_模板

三角形的面积教学设计_模板三角形的面积教学设计(一)教学目标:1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

2、通过操作使学生进一步学习用转化的思想方法解决新问题。

3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

教学重点:理解并掌握三角形面积的计算公式。

教学难点:理解三角形面积的推导过程。

教法与学法:教法:演示讲解、指导实践。

学法:小组合作、动手操作。

教学准备:三角形卡片、多媒体课件教学过程:一、情境引入师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

二、探究新知1、复习平行四边形面积的求法师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

2、第一次操作实践师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。

(教师巡回指导)3、交流反馈师:同学们都拼好了,谁来说说你是怎样拼的?生:我用两个直角三角形拼成了一个平行四边形。

师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现?生:要用完全相同的三角形来拼。

《三角形的面积》教学设计

《三角形的面积》教学设计

《三角形的面积》教学设计一、教学目标【知识与技能】经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。

【过程与方法】通过操作、观察和比较,发展空间观念,渗透转化思想,培养分析、综合、抽象概括和动手解决实际问题的能力。

【情感态度与价值观】在探索活动中获得积极的情感体验,进一步增强学习数学的兴趣。

二、教学重难点【重点】三角形面积计算公式。

【难点】三角形面积计算公式的推导过程。

三、教学过程(一)导入新课复习回顾:平行四边形的面积计算公式以及推导过程。

用PPT课件展示红领巾,并提问你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?(二)探究新知1.操作转化。

(1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?(2)学生分组操作,教师巡视指导。

学生操作预设:如果学生只用一个三角形时无法利用割补法将三角形转化成已学过的图形,教师可适时引导换一种思考方式,用两个相同的三角形试试。

学生展示汇报。

只要用两个完全一样的三角形就能拼成一个平行四边形。

2.观察思考。

(1)观察拼成的平行四边形和原来的三角形,你发现了什么?(2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。

3.概括公式。

(1)你能自己写出三角形的面积计算公式吗?(2)总结公式。

①板书公式:三角形的面积=底×高÷2。

②用字母表示三角形面积计算公式。

(三)巩固提高1.红领巾的底是100 cm,高是33 cm,求它的面积是多少。

2.已知一个三角形的面积是26cm,底是4cm,求三角形的一边长。

(四)小结作业小结:师生共同总结本节课的收获。

作业:找一找生活中三角形的物体,量一量底和高,算一算面积是多少?四、板书设计(更多模板,请在教师之梦微信公众号后台回复“教学设计”进行查看)《变迁中的家园》说课稿尊敬的各位老师大家下午好:我说课的课题是《三角形的面积》。

解三角形的答题模板

解三角形的答题模板

解三角形的答题模板正弦定理、余弦定理及其在现实生活中的应用是高考的热点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及测量、几何计算有关的实际问题.正、余弦定理的考查常与同角三角函数的关系、诱导公式、和差倍角公式甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.[典例] (满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.规范审题模板1.审条件,挖解题信息观察条件―→A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ――――――――――→等式中既有边又有角,应统一 sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A2.审结论,明解题方向观察所求结论―→求证:B -C =π2――――――――――――――――→应求角B -C 的某一个三角函数值 sinB -C =1或cos B -C =0.3.建联系,找解题突破口考虑到所求的结论只含有B ,C ,因此应消掉sin B sin⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A 中的角A4A −−−−→代入=sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =22―――――――――――――→利用两角和与差的三角函数公式sin B -C =1――――――――――――――→要求角的值,还应确定角的取值范围由0<B ,C <3π4,解得B -C =π2教你快速规范审题1.审条件,挖解题信息观察条件―→a =2,A =π4,B -C =π2―――――――→可求B ,C 的值 B =5π8,C =π8 2.审结论,明解题方向观察所求结论―→求△ABC 的面积―――――→应具有两边及其夹角 由asin A =b sin B =c sin C ,得b =2sin 5π8,c =2sin π83.建联系,找解题突破口 △ABC 的边角都具备――――――――――→利用面积公式求结论S =12bc sin A =2sin5π8sin π8=2cos π8sin π8=12教你准确规范解题(1)证明:由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ,应用正弦定理,得 sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,(2分)sin B ⎝⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -cos B sin C =1,(5分)即sin(B -C )=1,由于0<B ,C <34π,从而B -C =π2.(6分)(2)B +C =π-A =3π4,因此B =5π8,C =π8.(8分)由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,(10分)所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.(12分)常见失分探因易忽视角B -C 的范围,直接由sin B -C =1,求得结论.教你一个万能模板解三角形问题一般可用以下几步解答:第一步利用正弦定理或余弦定理实现边角互化(本题为边化角)―→第二步三角变换、化简、消元,从而向已知角(或边)转化―→第三步 代入求值―→第四步反思回顾,查看关键点,易错点,如本题中公式应用是否正确。

五年级上册数学课件 6.2三角形面积 练习课 人教版(共15张PPT)

五年级上册数学课件 6.2三角形面积 练习课 人教版(共15张PPT)

答:种这片草坪需要912元。
布置作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
教学反思
本节课主要是针对学生学习了三角形面积计算后安排的练习课。 在本节课的练习中发现了一些问题。学生对三角形面积计算掌握 情况比较好,知道求三角形面积需要先知道底和高,也知道要除 以2。但在具体的解决实际问题方面掌握情况不理想。从这也反映 了学生对基本概念还是不够清楚,综合运用能力比较差。另外, 学生动手画图的能力也不理想。针对这些问题,要从两个方面入 手:一是需要通过各种形式的练习进行强化;二是在进行概念教 学时要加大教学的力度,尤其是在学生较难理解的地方,要结合 具体的教学内容采取各种形式进行强化,加深学生的理解。
S = ah÷2 = 3×4÷2 = 6(cm2)
S = ah÷2 = 4×0.9÷2 = 1.8(dm2)
S = ah÷2 = 2.5×2.8÷2 = 3.5(m2)
答:三个图形的面积分别为6cm2、1.8dm2、3.5m2。
3.已知一个三角形的面积和底(如下图),求高。
由S = ah÷2变形,得 h 2S 2176 16(m) a 22
求三角形的面积,高和底必须是相对应的,这一点,应该作为练 习的重点。练习题设计得很好,出示了几个三角形,告诉了底和 高的数据,其中有一个三角形已知的数据不是对应的底和高,可 以让学生把得出的三角形面积公式应用在练习中。学生先自己一 个人得到答案,老师再组织学生讨论,最后经过大家共同努力, 得到满意的结果。对于直角三角形,两条直角边就可以作为底和 高。在学生的思维中,斜边才是底,这应该是由于惯性,在这一 知识点上,老师也应该设计一些练习,来突破难点。
4.下面中那几对三角形的面积相等?(两条虚线相 互平行。)你还能画出和三角形ABC面积相等的三 角形吗?

勾股定理经典例题(含答案)【范本模板】

勾股定理经典例题(含答案)【范本模板】

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b, (2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a。

思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13,CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,。

求:BC的长。

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长。

解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半)。

根据勾股定理,在中,。

根据勾股定理,在中,.∴。

举一反三【变式1】如图,已知:,,于P。

求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有。

∴又∵(已知),∴.在中,根据勾股定理有,∴。

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E.∵∠A=∠60°,∠B=90°,∴∠E=30°。

五年级上册《三角形的面积》优秀教学设计

五年级上册《三角形的面积》优秀教学设计

五年级上册《三角形的面积》优秀教学设计人教版五年级上册《三角形的面积》优秀教学设计模板(通用5篇)五年级上册《三角形的面积》优秀教学设计1教学内容:人教版义务教育课程标准实验教科书五年级上册第84―86页。

教学目标:1.知识与技能:(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:三角形面积公式的探索过程。

教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:一、创设情境,揭示课题师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。

(板书:三角形面积的计算)[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。

]二、探索交流、归纳新知1.寻找思路:(出示一个平行四边形)师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)(2)观察:沿平行四边形对角线剪开成两个三角形。

师:两个三角形的形状,大小有什么关系?(完全一样)三角形面积与原平行四边形的面积有什么关系?[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]师:你想用什么办法探索三角形面积的计算方法?(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。

小学数学《三角形的面积》说课稿

小学数学《三角形的面积》说课稿

小学数学《三角形的面积》说课稿(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!小学数学《三角形的面积》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《笔算除法》。

勾股定理(毕达哥拉斯定理)及各种证明方法【范本模板】

勾股定理(毕达哥拉斯定理)及各种证明方法【范本模板】

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

勾股定理是余弦定理的一个特例。

勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。

“勾三股四弦五”是勾股定理最基本的公式。

勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。

(3,4,5)就是勾股数.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方.勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b,斜边长为c ,那么. 勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。

【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状。

∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB。

∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º。

∴ EFGH 是一个边长为b―a 的正方形,它的面积等于。

∴ ∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上。

三角形面积计算_模板

三角形面积计算_模板
谁能自己再叙述一下这幅图的意思?(在学生独立叙述的基础上指名叙述图意。)
要求还剩几颗?怎样列式?
板书:
这个算式表示什么意思?你知道这样的算式叫什么算式吗?(板书:连减)谁会读这个算式?
(2)研究算法
结合题意,互相说一说怎样计算在学生讨论的基础理论上归纳出:先算,再算。
板书:
学生练习说的计算过程。
(3)练习。(出示“做一做”的第二题)
有几只小鸡在吃米?又走来几只小鸡?求一共有几只小鸡?怎样列式计算?
出示:
为什么用加法?(要求一共有几只小鸡,就要把吃米的3只小鸡和又走来的2只小鸡含并起来,所以用加法计算。)
现在一共有几只小鸡在吃米,走了几只?求还剩几只?怎样列式计算?
出示:
为什么要用减法?(要求还剩几只,就要从整体5只里面去掉走了的2只小鸡,所以用减法计算。)
板书:
学生自己叙述的计算过程。
(3)练习:(出示“做一做”中的第一道题)
学生摆学具并列式计算。
订正时问:这幅图是什么意思?你是怎么算的?
2.教学连减
(1)理解连减的意义
一共有几颗星星?剪去了几颗?还剩几颗?你是怎么想的?(8减3等于5)又剪去了几颗?现在还剩几颗?你是怎么算的?(5减1等于4)
如果把这幅图连起来看,就是有8颗五角星,先剪去了3颗,又剪去了1颗,求还剩几颗?
“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)
(2)课堂练习。
做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。
做练习十九的第4题。学生独立解答。教师巡视,集体订正。
教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档