化工热力学 第3章概念题
化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
化工热力学-第3章(自学考试参考)

把压缩因子的普遍化式子代入到剩余焓和剩余熵普 遍化后的式子,就可得到:
H RfTr, P r, SRfTr, P r,
44
(2)计算方法
两种方法——普维法和普压法
1) 普维法 是以两项维里方程为基础计算 在恒压下对T求导:
Z 1 BP RT
Z TP
PTB
R T
P
RPT1TBP
TB2
B
f(T)
25
dH cpdT
H dH
=
H
0
T T0
C
p
dT
H
*
H
* 0
C
* p
dT
同理:
S* S0
T CpdTRln p
T T0
p0
H * , S * — 所求状态(T,p)的H和S,理想气体;
H0*, S0* — 任意选择的基准态(T0,P0)所对应H和S。
26
⒊ H R 和 S R 的计算式
1 V V T p
∴ V V
T p
19
有了H,S的基本计算式就可以解决热力 学其它函数的计算问题。
如:
U=H-PV A=U-TdS=H-PV-TS G=H-TS
20
计算原理及方法(Clculative Pinciple and Method of Thermodynamic Properties)
HR0pVRdpT0PVTRPdP (恒T)
SR
P 0
VR T
dP P
(恒T)
35
▪做图
VR
p
V R dp
0
P求
P
36
VR P1 P2 P3
V R T
化工热力学复习习题

5
4
1
3(T降低
)
2
V
1)过热蒸汽等温冷凝为过冷液体;
2)过冷液体等压加热成过热蒸汽;
T
4
3)饱和蒸汽可逆绝热膨胀;
C 5 4)饱和液体恒容加热;
5)在临界点进行的恒温膨胀
1
2
3(T降低
)
S
第四章 流体混合物(溶液)的热力学性质
一. 基本概念
1.偏mol性质定义
2.化学位
3.混合性质变化: M M
xi
M i
0
4.超额性质:
M E M M id
5.混合过程的超额性质变化 M E M M id
6.恒T、P下,G—D Eq
XidMi 0
化学位
偏摩尔性质
i
[
(nU ni
)
]nV
,nS
,n
j
i
i U i
化学位:在V,S和其它组
Ui
(nU ) [ ni ]T ,P ,nj i
45 188.45
50 209.33
95 397.96
解:以1kg水为计算基准,
输入的功 放出的热
(3)基团贡献关联式
判断、选择、填空题 1、正规溶液混合焓变为零,混合体积为零。 ×
2、对于理想溶液,i组分在溶液中的逸度系数和i纯组分的逸度系数
相等。 √ 3、偏摩尔量的定义可写为:
Mi
nM ni
T , p ,n ji
4、不同状态下的理想气体混合,焓、熵都守恒。 ×
第二章 流体的pVT关系
一.p、V、T、CP是流体的最基本性质,是热力学计算基础 查找文献 实验得(实测) 计算 (由第二章介绍方法计算)
化工热力学:3.1-4 混合物的热力学性质

4
3、真实气体混合物的非理想性
纯气体的非理想性 混合作用的非理想性
4、研究思路
查出每一个纯物质的Tc、Pc, 选定混合规则 计算虚拟临界特征数据 计算PVT性质(用与计算纯物质同样的方法)
5
§3.1.1 虚拟临界参数法
1、虚拟临界常数法是将混合物看成一个虚拟的纯物 质,从而将纯物质对比态原理的计算方法用到混合 物上。
Mi
M i 即为偏摩尔性质
27
说明:
Mi
[
(nM ni
)
]T
,
P
,
n
j
i
1.偏摩尔性质的物理意义是:在T、P和其它组分量nj
均不变情况下,向无限多的溶液中加入1mol的组分i所
引起的一系列热力学性质的变化。
2.只有广度性质才有偏摩尔性质,而偏摩尔性质 是强度性质。
3.纯物质的偏摩尔性质就是它的摩尔性质。
的体积。
硫酸(1)与水(2)混合后溶液的焓=??? ∵混合过程有显著放热现象,混合后溶液的焓
H≠X1*H1+X2*H2 。 因此硫酸和水在溶液中所“具有”的焓并不等于其
纯态的焓。
25
结论:溶液性质不能用纯物质摩尔性质Mi的线性加 和来表达即:M≠ ∑Xi*Mi
M—U,H,A,G,V,S 等广度性质。
,nj
i
[
(nG ni
)
]T
,
P
,n
j
i
Gi
[
(nG ni
)
]T
,
P
,n
j
i
=μi
31
注意化学位与偏摩尔性质的区别!
化学位的定义 偏摩尔性质的定义 它们的区别就在于下标!
《化工热力学》(第二、三版_陈新志)课后习题答案

《化⼯热⼒学》(第⼆、三版_陈新志)课后习题答案第1章绪⾔⼀、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)第2章P-V-T关系和状态⽅程⼀、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压⼒⼤于临界压⼒时,纯物质就以液态存在。
(错。
若温度也⼤于临界温度时,则是超临界流体。
)4. 由于分⼦间相互作⽤⼒的存在,实际⽓体的摩尔体积⼀定⼩于同温同压下的理想⽓体的摩尔体积,所以,理想⽓体的压缩因⼦Z=1,实际⽓体的压缩因⼦Z<1。
(错。
如温度⼤于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压⼒或温度的不同⽽改变。
(错。
纯物质的三相平衡时,体系⾃由度是零,体系的状态已经确定。
)8. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的热⼒学能相等。
(错。
它们相差⼀个汽化热⼒学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的吉⽒函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若⼀个状态⽅程能给出纯流体正确的临界压缩因⼦,那么它就是⼀个优秀的状态⽅程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热⼒学能、吉⽒函数的变化值均⼤于零。
(错。
只有吉⽒函数的变化是零。
)12. ⽓体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适⽤于任何流体,⼀般能⽤于正常流体normal fluid)14. 在压⼒趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指⼀类⾮极性的球形流,如Ar等,与所处的状态⽆关。
化工热力学3-1Chapter3纯流体的热力学性质计算

T T 1
p 1
T T 1
注意:可观察附录的水蒸汽表中水在恒温下H,S随p的变化
*
20
§3.2 热力学性质的计算
3.2.2 直接应用Maxwell关系式和微分能量方程求解H,S 3.2.2.3工质为理想气体时 1)H*、 S*普遍式
∵pV=RT,当p为常数时两边对T求导 p(dV/dT)=R(V/T)p=R/p V-T(V/T)p=V-TR/p=0
H T T 1 2c p d T p p 1 2 V T V T p d p(3 1 8 ) 的 积 分 式 ,P 3 2
ST T 1 2c T pd T p p 1 2 V T pd p(3 1 5 )的 积 分 式 ,P 3 1
H*
T2 T1
Esys=U+Ek+Ep=UU=Q+W、dU=dQ+dW 对于可逆过程: dQR=TdS、dWR=-pdVdU=TdS-pdV (3-1)
*
9
§3.1 热力学性质间的关系
Chapter3.纯流体的热力学性质计算
3.1.1 单相流体系统基本方程——微分能量表达式 (2)复习H、A、G定义,推导dH、dA、dG
dU = dH = dA = dG = 0
Chapter3.纯流体的热力学性质计算 概述
二、本章要解决的主要问题 1.通过学习热力学性质的基本微分方程解决可直 接测量的状态函数与不可直接测量的状态函数之 间的关系; 2.纯物质的热力学性质的计算,重点为H、S的 计算; 3.常用热力学性质数据图表的应用。
(3-8) (3-9) (3-10) (3-11)
“TV”在同一边,等式带
*
“”
14
§3.1 热力学性质间的关系
化工热力学整理

第一章1.化工热力学的作用地位:化工热力学是将热力学原理应用于化学工程技术领域。
它的主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。
化工热力学是化学工程学的重要组成部分,是化工过程研究、开发与设计的理论基础。
2.热力学第零定律:当两个物体分别与第三个物体处于热平衡时,则这两个物体彼此之间也必定处于热平衡。
这是经验的叙述,称热平衡定律,又称热力学第零定律。
热力学第一定律即能量守恒定律:在任何过程中能量不能创造也不能消灭,只能按照严格的当量从一种形式转变为另一种形式。
热力学第二定律:任何体系都是自动地趋向平衡状态,一切自动过程都是不可逆的3.相律定义:'2R R K F--+-=π式中F 称为自由度,也就是独立的强度性质的数目,π、R 和'R 分别是相数、独立的化学反应数和其它的强度性质的限制数。
4.热力学基本方程 对于均相系统,热力学基本方程一共有四个,它们是:∑∑==++-=Ki ii L l l l dn dY X pdV TdS dU 11μ,∑∑==+++=Ki i i Ll l l dn dY X Vdp TdS dH 11μ∑∑==++--=Ki i i Ll l l dn dY X pdV SdT dA 11μ,∑∑==+++-=Ki i i Ll l l dn dY X Vdp SdT dG 11μ),,,(),,,(),,,(),,,(i l i l i l i l n Y P T G TS H G n Y V T A TS U A n Y P S H PV U H n Y V S U U =-==-==+==这四个基本方程可由热力学第一和第二定律导得。
推导前需要一个有关状态或平衡态的基本假定:对于一个均相系统,如果不考虑除压力以外的其它广义力,为了确定平衡态,除了系统中每一种物质的数量外,还需确定两个独立的状态函数。
化工热力学

第1章绪言一、判断题1. 凡是体系的温度升高时,就一定吸热,而温度不变时,则体系既不吸热也不放热。
(否) 等温等压的相变化或化学变化始、终态温度不变,但有热效应。
气体的绝热压缩,体系温度升高,但无吸收热量。
2. 当n 摩尔气体反抗一定的压力做绝热膨胀时,其内能总是减少的。
(是) 绝热:Q=0;反抗外压作功:W<0;△U=Q+W=W<0。
3. 封闭体系中有两个相α,β。
在尚未达到平衡时,α,β两个相都是均相敞开体系;达到平衡时,则α,β两个相都等价于均相封闭体系。
( 是)4. 理想气体的焓和热容仅是温度的函数。
( 是)5. 理想气体的熵和吉氏函数仅是温度的函数。
( 否) 理想气体的熵和吉氏函数不仅与温度有关,还与压力或摩尔体积有关。
6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。
( 否) V 也是强度性质。
7. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有。
( 是) 状态函数的变化仅决定于初、终态与途径无关。
8. 状态函数的变化与途径无关,仅决定于初、终态。
( 是)9.一个绝热刚性容器,总体积为V t,温度为T,被一个体积可以忽略的隔板分为A、B两室。
两室装有不同的理想气体。
突然将隔板移走,使容器内的气体自发达到平衡。
计算该过程的Q、W、△J 和最终的T和P。
假设初始压力为(a)两室均为P;(b)左室为P,右室是真空。
二.选择题10. 对封闭体系而言,当过程的始态和终态确定后,下列哪项的值不能确定:AA .Q B. Q + W, →U C .W(Q=0),→U D. Q(W=0),→U11. 下列各式中哪一个不受理想气体条件的限制AA△H = △U+P△V B C P,m - C V,m=R C PVT = 常数D W = nRTln(V2╱V1)12.对于内能是体系的状态的单值函数概念的错误理解是:CA体系处于一定的状态,具有一定的内能B对应于某一状态,内能只能有一数值,不能有两个以上的数值C状态发生变化,内能也一定跟着变化D对应于一个内能值,可以有多个状态13.真实气体在__ D __的条件下,其行为与理想气体相近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:纯流体的热力学性质计算
一、是否题
1. 热力学基本关系式dH=TdS+VdP 只适用于可逆过程。
2. 当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质)。
3. 纯物质逸度的完整定义是,在等温条件下,f RTd dG ln =。
4. 当0→P 时,∞→P f 。
5. 因为⎰
⎪⎭⎫ ⎝⎛-=P dP P RT V RT 01ln ϕ,当0→P 时,1=ϕ,所以,0=-P RT V 。
6. 吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-。
7. 由于偏离函数是两个等温状态的性质之差,故不可能用偏离函数来计算性质随着温度的
变化。
8. 系统经过一绝热可逆过程,其熵没有变化。
9. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。
10. 象dU=TdS-PdV 等热力学基本方程只能用于气相,而不能用于液体或固相。
11. []
()00ln ,P P R P T S S ig +-与参考态的压力P 0无关。
12. 理想气体的状态方程是PV=RT ,若其中的压力P 用逸度f 代替后就成为了真实流体状态方
程。
13. 逸度与压力的单位是相同的。
14. 由于偏离函数是在均相体系中引出的概念,故我们不能用偏离函数来计算汽化过程的热
力学性质的变化。
15. 由一个相当精确的状态方程,就可以计算所有的均相热力学性质随着状态的变化。
二、选择题
1. 对于一均相体系,V
P T S T T S T ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∂∂∂∂等于(D 。
P
V V P V P T V T P T C C T S T T S T ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂) A. 零 B. C P /C V C. R D. P
V T V T P T ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂
2. 一气体符合P=RT/(V-b )的状态方程从V 1等温可逆膨胀至V 2,则体系的∆S 为(C 。
b V b V R dV b V R dV T P dV V S S V V V V V V V T --=-=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰12ln 21
2121∆) A. b V b V RT --12ln B. 0 C. b V b V R --12ln D. 12ln V V R 3. 吉氏函数变化与P-V-T 关系为()P RT G P T G x ig ln ,=-,则x G 的状态应该为(C 。
因为
()()P RT P P RT P T G P T G ig ig ln ln 1,),(00===-)
A. T 和P 下纯理想气体
B. T 和零压的纯理想气体
C. T 和单位压力的纯理想气体
4. 对于一均匀的物质,其H 和U 的关系为(B 。
因H =U +PV ) A. H ≤U B. H>U C. H=U
D. 不能确定 5. P
S T T S P T V P ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂∂∂等于(D 。
因为V
V P T T T T T P S T P S T T P P T T V V P P S V P S P V P T S P T V P T S P T V P ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂)
A. T V S ⎪⎭⎫ ⎝⎛∂∂
B. V T P ⎪⎭⎫ ⎝⎛∂∂
C. S T V ⎪⎭⎫ ⎝⎛∂∂
D. V
T P ⎪⎭⎫ ⎝⎛-∂∂
三、填空题
1. 状态方程P V b RT ()-=的偏离焓和偏离熵分别是______________________________________________________________和__________________________________________________________;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?____;其计算式分别是()()1122,,P T H P T H -_________________________________________________________和()()1122,,P T S P T S -______________________________________________________。
2. 对于混合物体系,偏离函数中参考态是_________________________________________。
3. 由vdW 方程P=RT /(V-b )-a/V 2计算,从(T,P 1)压缩至(T,P 2)的焓变为______________________________________________________________;其中偏离焓是_________________________________________。