作业调度算法(先来先服务算法-短作业算法)

合集下载

操作系统中常用作业调度算法的分析

操作系统中常用作业调度算法的分析

操作系统中常用作业调度算法的分析作业调度算法是操作系统中非常重要的一部分,它负责决定哪个进程应该被调度执行、以及在什么时候执行。

不同的作业调度算法会对系统的性能和资源利用率产生不同的影响,因此了解和分析常用的作业调度算法对于优化系统性能至关重要。

在操作系统中,常用的作业调度算法包括先来先服务(FCFS)、短作业优先(SJF)、最高响应比优先(HRRN)、优先级调度、轮转调度和多级反馈队列调度等。

下面对这些常见的作业调度算法进行详细分析。

1. 先来先服务(FCFS)先来先服务是最简单的作业调度算法之一,它按照作业到达的先后顺序来进行调度。

当一个作业到达系统后,系统会将其放入就绪队列,然后按照先来先服务的原则,依次执行队列中的作业。

FCFS算法的优点是实现简单、公平性好,但缺点也非常明显。

由于该算法没有考虑作业的执行时间,因此可能导致长作业等待时间过长,影响系统的响应时间和吞吐量。

2. 短作业优先(SJF)短作业优先算法是一种非抢占式作业调度算法,它会根据作业的执行时间来进行调度。

当一个作业到达系统后,系统会根据其执行时间与就绪队列中其他作业的执行时间进行比较,选取执行时间最短的作业进行执行。

SJF算法的优点是能够最大程度地减少平均等待时间,提高系统的响应速度和吞吐量。

但这种算法也存在缺陷,即当有长作业不断地进入系统时,可能导致短作业一直得不到执行,进而影响系统的公平性。

3. 最高响应比优先(HRRN)最高响应比优先算法是一种动态优先级调度算法,它根据作业的响应比来进行调度。

作业的响应比定义为(等待时间+服务时间)/ 服务时间,响应比越高的作业被优先调度执行。

HRRN算法的优点是能够最大程度地提高系统的响应速度,同时保持较高的公平性。

但由于需要不断地计算和更新作业的响应比,因此算法的复杂度较高。

4. 优先级调度优先级调度算法是一种静态优先级调度算法,它根据作业的优先级来进行调度。

每个作业在进入系统时就会被赋予一个优先级,系统会按照作业的优先级来决定执行顺序。

作业调度算法

作业调度算法

作业调度算法先来先服务算法是最简单的调度算法之一、它按照作业到达的先后顺序进行调度,即先到达的作业先执行,后到达的作业后执行。

这种算法的优点是实现简单,适用于一些简单的场景。

然而,它的缺点也很明显,即平均等待时间较长,可能会导致长作业时间的作业一直占用CPU,造成资源浪费。

短作业算法是一种基于作业的执行时间长度进行调度的算法。

它会优先执行执行时间最短的作业。

这种算法的优点是能够最大程度地减少平均等待时间,使得短作业能够快速得到执行。

然而,缺点是可能会导致长作业长时间等待,造成长作业的响应时间增长。

这两种算法在不同的场景下有着不同的应用。

先来先服务算法适用于任务到达时间相对较为平均的场景,能够保证公平性,使得每个作业都有机会得到执行。

而短作业算法适用于任务执行时间差距较大的场景,能够尽可能减少平均等待时间,并且能够提升系统的响应速度。

需要注意的是,这两种算法都存在一种问题,即长作业会一直占用CPU,可能造成短作业长时间等待。

为了解决这个问题,可以引入抢占式调度算法,例如短作业剩余时间优先算法(Shortest Remaining Time Next,SRTN)。

SRTN算法在执行过程中会动态地检测作业的执行时间,一旦有更短的作业到达,就会抢占当前的作业,提高了系统的性能。

总的来说,先来先服务算法和短作业算法都是作业调度中常用的算法。

在实际应用中,可以根据具体情况选择合适的算法,或者结合多种算法来获取更好的调度效果。

作业调度算法的选择对于系统的性能和资源利用率具有重要的影响,需要根据实际需求进行综合权衡。

作业调度算法

作业调度算法

网络复习题pv操作作业调度算法2008-01-20 00:12:32| 分类:操作系统篇| 标签:|举报|字号大中小订阅Author:bingyu三种基本的作业调度算法:(1)先来先服务调度算法:先来先服务算法是按作业到的先后顺序进行调度的.(2)短作业优先调度算法:这个算法将JCB中估计的运算时间进行比较后,先取计算时间最短的作业为下一次服务的对象.(3)优先数调度算法:这个算法是综合,考虑有关因素,如:作业的缓急程度,作业的长短,作业的等待时间,外部设备的使用情况等等.1.有4道作业,他们的提交时间及执行时间如下:试计算在单道程序环境下,采用先来先服务调度算法和短作业优先调度算法时的平均周转时间和平均带权周转时间,并指出他们的调度顺序。

(时间单位:小时,以十进制进行计算。

)(1)先来先服务算法:作业的执行顺序为:1-2-3-41.交:10.0 开:10.0 执:2.0 完:12.0 周:2.0 权:12.交:10.2 开:12.0 执:1.0 完:13.0 周:2.8 权:2.83.交:10.4 开:13.0 执:0.5 完:13.5 周:3.1 权:6.24.交:10.5 开:13.5 执:0.3 完:13.8 周:3.3 权:11平均周转时间为:T=1/4(2.0+2.8+3.1+3.3)=2.8平均带权周转时间:W=1/4(1+2.8+6.2+11)=5.25(2)短作业优先算法:作业的执行顺序:4-3-2-11.交:10.5 开:10.5 执:0.3 完:10.8 周:0.3 权:12.交:10.4 开:10.8 执:0.5 完:11.3 周:0.9 权:1.83.交:10.2 开:11.3 执:1.0 完:12.3 周:2.1 权:2.14.交:10.0 开:12.3 执:2.0 完:14.3 周:4.3 权:2.15平均周转时间为:T=1/4(0.3+0.9+2.1+4.3)=1.9平均带权周转时间:W=1/4(1+1.8+2.1+2.15)=1.7625。

关于作业调度算法

关于作业调度算法

关于作业调度算法作业调度算法是指在计算机系统中对作业进行合理安排和调度的一种方法。

作业调度算法的目标是优化系统资源的利用,提高作业的响应时间和吞吐量,提高系统的整体性能。

在实际应用中,作业调度算法起着至关重要的作用。

作业调度算法有很多种,每种算法都有其适用的场景和特点。

下面将介绍几种常见的作业调度算法。

1.先来先服务(FCFS)算法:先来先服务算法是通过按照作业到达的顺序进行调度的算法。

简单来说,就是按照作业提交的先后顺序进行调度。

这种算法的特点是简单、公平,但是对于作业的响应时间和系统的吞吐量效果较差。

2.短作业优先(SJF)算法:短作业优先算法是根据作业的执行时间进行调度的算法。

它的原理是,执行时间短的作业能够更快地完成,从而能够提高系统的响应时间和吞吐量。

然而,这种算法容易导致长作业等待时间过长,从而影响长作业的执行效率。

3.最高响应比优先(HRRN)算法:最高响应比优先算法是根据作业的等待时间和执行时间的比值进行调度的算法。

它的原理是,等待时间长的作业和执行时间短的作业都有更高的响应比,因此优先调度等待时间长的作业。

这种算法能够兼顾作业的响应时间和系统的吞吐量。

4.时间片轮转(RR)算法:时间片轮转算法是指将CPU的执行时间分成多个时间片,每个时间片的长度固定,作业按照时间片的顺序进行调度。

当作业的执行时间超过一个时间片时,将被放入一个等待队列,并在下一个时间片重新调度。

这种算法能够保证每个作业都能获得一定的执行时间,但不能很好地兼顾作业的响应时间。

5.最短剩余时间(SRT)算法:最短剩余时间算法是在短作业优先算法的基础上进行优化得到的。

在该算法中,系统会根据当前作业的执行时间和剩余执行时间来选择下一个要执行的作业。

这种算法能够更加准确地估计作业的完成时间,从而提高系统的响应时间和吞吐量。

除了以上几种常见的作业调度算法,还有很多其他的算法可以根据系统的特点和需求进行选择和优化,如最短作业优先(SJN)算法、优先级调度算法、多级反馈队列调度算法等。

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先1.引言操作系统的调度算法是指在多进程环境中,操作系统为进程分配CPU 的顺序和策略。

先来先服务(FCFS)调度算法是最简单的调度算法之一,它按照进程到达的顺序为其分配CPU。

而短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU,执行时间越短的进程越先执行。

本文将分别介绍FCFS调度算法和SJF调度算法,并对其进行评价和比较。

2.先来先服务(FCFS)调度算法2.1调度原理FCFS调度算法的原理非常简单,按照进程到达的顺序为其分配CPU。

当一个进程进入就绪队列后,如果CPU空闲,则立即为其分配CPU。

如果CPU正忙,则进程进入等待队列,等待CPU空闲后再分配。

在该算法中,进程的运行时间不考虑,只考虑进程到达的时间。

2.2优点与缺点FCFS调度算法的主要优点是实现简单,无需对进程的运行时间进行估计。

但FCFS算法存在一定的缺点。

首先,长作业在短作业前面等待的时间较长,可能导致长作业的响应时间过长。

其次,如果有一个进程出现阻塞或响应时间过长,其后面的进程也会受到影响,造成整个系统的性能下降。

3.短作业优先(SJF)调度算法3.1调度原理短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU。

当一个进程进入就绪队列后,如果其执行时间比当前正在运行的进程短,则优先为该进程分配CPU。

如果当前没有运行的进程或者当前运行的进程执行完毕,则立即为该进程分配CPU。

在该算法中,进程的到达时间不考虑,只考虑进程的执行时间。

3.2优点与缺点SJF调度算法的主要优点是可以最大程度地减少平均等待时间,提高系统的吞吐量。

短作业可以快速执行完毕,从而让更多的作业得以执行。

但SJF算法存在一定的缺点。

首先,需要对进程的执行时间有一个准确的估计,对于实时系统或动态系统来说,估计执行时间可能会有一定的误差。

其次,在长作业激增的情况下,短作业可能会一直得不到CPU的分配,造成长时间的等待。

作业调度算法(先来先服务算法,短作业算法)

作业调度算法(先来先服务算法,短作业算法)

题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。

通过代码的具体实现,加深对算法的核心的理解。

二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。

当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。

然后把它放入就绪队列。

2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。

作业的长短是以作业所要求的运行时间来衡量的。

SJF算法可以分别用于作业和进程调度。

在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。

3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。

如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。

该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<>#include<>#include<>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;typedef struct sjf_work{s truct work s_work; d = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time) {temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time +w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5); }void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);P NODE pTail = pHead;p Tail->pNext = NULL; 来先服务算法该算法严格按照各作业到达时间来为其分配进程和资源,实验的结果见截图,最后算出该算法五个作业的平均周转时间。

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先先来先服务调度算法是一种非抢占式的调度算法,它按照作业到达的先后顺序将作业分配给CPU。

具体来说,当一个作业进入就绪队列时,调度程序将把它放在队列的末尾,然后从队列的头部选择一个作业执行。

只有当一个作业执行完成后,作业队列的头部才会选择下一个作业执行。

先来先服务调度算法的优点是简单易实现,没有复杂的排序操作,适用于短作业和长作业混合的场景。

其缺点是没有考虑作业的执行时间,导致长作业会占用CPU很长时间,影响其他作业的响应时间。

短作业优先调度算法是一种抢占式的调度算法,它根据作业的执行时间选择优先级。

具体来说,当一个作业进入就绪队列时,调度程序会比较该作业的执行时间和其他就绪作业的执行时间,并选择执行时间最短的作业执行。

如果有一个新的作业到达,且其执行时间比当前执行的作业要短,那么调度程序会中断当前作业的执行并切换到新的作业执行。

短作业优先调度算法的优点是能够最大程度上减少作业的等待时间和响应时间,提高系统的吞吐量。

其缺点是需要对作业的执行时间有较准确的估计,否则可能导致长作业陷入饥饿状态。

此外,由于需要频繁进行作业的切换,短作业优先调度算法在实现上相对复杂。

在实际应用中,先来先服务调度算法适用于短作业和长作业混合的场景,或者作业的执行时间无法估计准确的情况下。

例如,在批处理系统中,作业的执行时间往往是固定的,先来先服务调度算法可以保证公平性,并且能够有效利用CPU资源。

而短作业优先调度算法适用于多任务环境下,作业的执行时间可以估计准确的情况下。

例如,在交互式系统中,用户的操作往往是短暂的,短作业优先调度算法可以最大限度地减少用户的等待时间,提高系统的响应速度。

总之,先来先服务调度算法和短作业优先调度算法是操作系统中常用的两种调度算法。

它们分别适用于不同的应用场景,在实际应用中可以根据具体需求选择不同的调度算法。

几种操作系统调度算法

几种操作系统调度算法

几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。

不同的调度算法有不同的优缺点,适用于不同的场景和需求。

下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。

这种算法实现简单,并且公平。

但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。

2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。

这种算法可以减少平均等待时间,提高系统的吞吐量。

然而,对于长作业时间的进程来说,等待时间会相对较长。

3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。

优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。

具有较高优先级的进程将具有更高的执行优先级。

这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。

4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。

这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。

但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。

5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。

新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。

这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。

以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。

作业调度算法先来先服务算法短作业算法页

作业调度算法先来先服务算法短作业算法页

作业调度算法: 先来先服务算法、短作业优先算法引言在计算机操作系统中,作业调度算法是一种重要的技术,用于管理和调度计算机系统中的作业。

作业调度算法决定了如何分配计算机资源,以便最大化系统的效率和吞吐量。

本文将介绍两种常见的作业调度算法:先来先服务算法(First Come First Serve,FCFS)和短作业优先算法(Shortest Job First,SJF)。

先来先服务算法(FCFS)先来先服务算法是最简单的作业调度算法之一。

按照作业提交的顺序进行调度,先提交的作业先执行,后提交的作业则等待。

这种调度算法不考虑作业的执行时间或优先级,只根据作业提交的先后顺序来进行调度。

算法流程1.将作业按照提交的先后顺序排列。

2.按照排列顺序执行作业。

优点•算法实现简单,易于理解和实现。

•适用于短作业或者作业提交顺序代表了作业的优先级的情况。

缺点•短作业可能因为长作业的存在而等待时间过长,导致响应时间较长。

•不考虑作业执行时间,可能导致平均等待时间和平均周转时间较长。

•无法适应不同作业的执行时间需求。

短作业优先算法(SJF)短作业优先算法是一种将作业按照执行时间长度进行排序的作业调度算法。

在短作业优先算法中,最短执行时间的作业先执行,以此类推。

该算法可以最大程度地减少作业的等待时间和周转时间。

算法流程1.将作业按照执行时间长度从短到长进行排序。

2.按照排列顺序执行作业。

优点•可以最大程度地减少作业的等待时间和周转时间。

•适用于短作业和长作业相互混合的情况。

缺点•难以准确估计作业的执行时间,可能导致长作业等待时间过长。

•需要预先知道作业的执行时间长度才能进行排序。

•不适用于长作业占主导地位的情况。

性能对比与选择先来先服务算法和短作业优先算法都有其优点和缺点。

选择合适的算法取决于具体的应用场景和需求。

•如果作业都很短,并且没有严格的截止时间要求,先来先服务算法可以简单高效地满足需求。

•如果作业的执行时间非常重要,并且具有较严格的截止时间要求,短作业优先算法可以最大程度地减少作业的等待时间和周转时间。

先来先服务和短作业优先调度算法

先来先服务和短作业优先调度算法

先来先服务调度算法和短作业优先调度算法
作业
提交 时间
运行 时间
开始 时间
1 8.00 2.00 8.00
1 8.00 2.00 8.00
2 8.50 0.50 10.00
2 8.50 0.50 10.30
3 9.00 0.10 10.50
3 9.00 0.10 10.00
4 9.50 0.20 10.60
可有效降低作业/进程的平均等待时间。 4
SJ(P)F缺点:
(1) 该算法对长作业不利,如作业C的周转时间由10增 至16,其带权周转时间由2增至3.1。更严重的是,如果有 一长作业(进程)进入系统的后备队列(就绪队列),由于调度 程序总是优先调度那些(即使是后进来的)短作业(进程),将 导致长作业(进程)长期不被调度。(不利长作业)
(2) 该算法完全未考虑作业的紧迫程度,因而不能保证 紧迫性作业(进程)会被及时处理。(不及时)
(3) 由于作业(进程)的长短只是根据用户所提供的估计 执行时间而定的,而用户又可能会有意或无意地缩短其作 业的估计运行时间,致使该算法不一定能真正做到短作业 优先调度。(不完全可靠)
5
调度算法练习题
6
4 9.50 0.20 10.10
先来先服务调度算法
平均周转时间
t = 1.725
平均带权周转时间 w = 6.875
完成 周转 带权周转 执行 时间 时间 时间 顺序
10.00 2.00
1
1
10.00 2.00
1
1
10.50 2.00
4
2
10.80 2.30 4.6
4
10.60 1.60 16
3
10.10 1.10 11

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。

也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。

FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。

简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。

2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。

通常后来的短作业不抢先正在执⾏的作业。

也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。

当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。

3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。

第⼀次写,有很多不⾜的地⽅。

希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。

#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。

只能说我的拼英。

emm,。

尴尬。

int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。

先来先服务和短作业优先调度算法

先来先服务和短作业优先调度算法

先来先服务和短作业优先调度算法在先来先服务调度算法中,操作系统先根据作业的提交顺序将作业按顺序放入就绪队列中,然后按队列的顺序依次执行作业。

当一个作业执行完成后,下一个作业才会开始执行。

优点:1.简单易实现:先来先服务调度算法的实现非常简单,只需按照作业到达的顺序进行调度即可。

2.公平性:先来先服务调度算法保证了作业的公平性,因为作业的执行顺序完全按照作业到达的顺序进行。

3.低开销:先来先服务调度算法没有额外的开销,只需进行简单的作业切换即可。

缺点:1.平均等待时间长:如果一个长作业先到达,那么后面的短作业就不得不等待较长的时间,导致平均等待时间较长。

2.未能充分利用资源:由于先来先服务调度算法没有对作业的执行时间进行优化,可能导致资源利用率较低,造成浪费。

短作业优先调度算法(Shortest Job First SJF)短作业优先调度算法是根据作业的执行时间来进行调度的。

它的原理是选择执行时间最短的作业优先执行,以此来减少作业的等待时间和周转时间。

在短作业优先调度算法中,操作系统会根据作业的执行时间将作业按照升序排序,然后按照顺序执行作业。

如果有多个作业的执行时间相同,那么可以按照先来先服务的原则进行调度。

优点:1.最小化平均等待时间:短作业优先调度算法根据作业的执行时间来进行调度,能够尽量减少作业的等待时间和周转时间,从而最小化平均等待时间。

2.高资源利用率:由于选择执行时间最短的作业优先执行,能够更加有效地利用系统资源。

缺点:1.难以预测执行时间:在实际情况下,很难准确地预测作业的执行时间,可能导致短作业优先调度算法的准确性下降。

2.可能导致长作业饥饿:如果有长作业在短作业优先调度算法中不断到达,那么短作业可能会一直被优先执行,从而造成长作业饥饿的问题。

总结:先来先服务调度算法和短作业优先调度算法都是常见的调度算法之一,各有其优缺点。

先来先服务调度算法简单易实现,但可能导致平均等待时间长;短作业优先调度算法能够最小化平均等待时间和提高资源利用率,但难以准确预测执行时间可能导致长作业饥饿的问题。

计算机中的操作系统调度算法

计算机中的操作系统调度算法

计算机中的操作系统调度算法在计算机领域中,操作系统扮演着至关重要的角色,它负责管理和调度计算机的各种资源,确保系统的高效运行。

其中,操作系统调度算法起着关键作用,它决定了各个进程在计算机系统中获得CPU的使用权,并根据一定的策略进行任务的优先级排序。

本文将介绍几种常见的操作系统调度算法,并比较它们的优缺点。

一、先来先服务调度算法(FCFS)先来先服务调度算法是最简单的一种算法。

它按照进程到达的顺序进行调度,即先到达的进程先被执行,直到该进程执行完毕或发生阻塞。

FCFS调度算法的优点在于实现简单,公平性高,不存在饥饿问题。

然而,由于不考虑进程的执行时间,导致长作业先执行会影响后续短作业的响应时间,造成了平均等待时间较长的问题。

二、短作业优先调度算法(SJF)短作业优先调度算法是根据进程所需的执行时间进行调度的算法,即优先选择执行时间最短的进程。

它能够提高系统的吞吐量和响应时间,减少平均等待时间。

然而,SJF调度算法容易出现饥饿问题,长作业可能一直等待短作业的执行而无法得到CPU的使用权。

三、优先级调度算法优先级调度算法是根据进程的优先级确定执行顺序的算法。

每个进程都具有一个优先级,优先级高的进程先被调度。

优先级可以根据进程的重要性、紧急程度等因素来确定。

优先级调度算法能满足不同进程的需求,提高系统的响应能力。

然而,该算法容易导致低优先级进程饥饿问题,同时需要合理地确定和动态调整进程的优先级。

四、时间片轮转调度算法(RR)时间片轮转调度算法是一种基于时间片的调度方法。

每个进程被分配一个时间片,在时间片用完之前,进程会被暂停并放回队列尾部,然后CPU运行下一个进程。

时间片轮转调度算法保证了公平性和响应时间,能够使得每个进程都有机会执行。

然而,该算法对于长时间的作业有一定的劣势,因为长时间的作业可能会被分成多个时间片进行运行,造成一定的上下文切换开销。

总结起来,不同的操作系统调度算法各有特点,在实际应用中需要根据具体场景和需求来选择适合的算法。

关于作业调度算法

关于作业调度算法

关于作业调度算法作业调度算法是一种用来管理计算机系统中作业的执行顺序的方法。

在计算机系统中,有很多不同的作业需要执行,作业调度算法可以根据不同的策略和需求,确定作业的执行顺序,以提高系统的效率和性能。

作业调度算法的目标是尽量减少作业的等待时间和系统的响应时间,同时以最小化系统资源的使用为前提。

通过合理的作业调度算法,可以充分利用计算机系统的资源,提高系统的吞吐量和效率。

常见的作业调度算法包括先来先服务(FCFS)、短作业优先(SJF)、最高优先级优先(HPF)、时间片轮转(RR)等。

这些算法根据不同的原则和需求,选择适合的作业执行顺序。

先来先服务(FCFS)是一种最简单的作业调度算法,它按照作业的提交顺序进行调度。

这种算法适用于作业的执行时间相对较均匀的情况,但如果有长时间的作业阻塞其他作业的执行,就可能导致系统的响应时间变长。

短作业优先(SJF)算法则根据作业的执行时间进行排序,在每次调度时选择执行时间最短的作业。

这种算法可以最大限度地减少作业的等待时间,但如果有一些长时间的作业等待执行,可能会导致长作业等待时间过长。

最高优先级优先(HPF)算法根据作业的优先级确定执行顺序,优先级越高的作业越先执行。

这种算法可以根据作业的重要性进行调度,但如果有一些优先级较低的作业等待执行,可能会导致长时间的等待。

时间片轮转(RR)算法将系统的时间片分配给每个作业,每个作业在一个时间片内执行一定的时间,然后切换到下一个作业。

这种算法可以均衡地利用系统的资源,但如果一些作业需要很长的时间完成,可能会导致其他作业的等待时间变长。

除了这些常见的作业调度算法,还有一些其他的算法,如多级反馈队列调度(MLFQ)、最短剩余时间优先(SRTF)等。

这些算法根据具体的系统需求和性能目标,选择适合的调度策略。

总之,作业调度算法是计算机系统中非常重要的一部分,它可以根据不同的策略和需求,对作业的执行顺序进行管理,提高系统的效率和性能。

操作系统各种调度算法

操作系统各种调度算法

操作系统各种调度算法⼀、批处理作业调度算法1.先来先服务调度算法First Come,First Served.(FCFS):就是按照各个作业进⼊系统的⾃然次序来调度作业。

这种调度算法的优点是实现简单,公平。

其缺点是没有考虑到系统中各种资源的综合使⽤情况,往往使短作业的⽤户不满意,因为短作业等待处理的时间可能⽐实际运⾏时间长得多。

2.短作业优先调度算法shortest job first(SPF): 就是优先调度并处理短作业,所谓短是指作业的运⾏时间短。

⽽在作业未投⼊运⾏时,并不能知道它实际的运⾏时间的长短,因此需要⽤户在提交作业时同时提交作业运⾏时间的估计值。

3.最⾼响应⽐优先算法Hightest response-radio next(HRN):FCFS可能造成短作业⽤户不满,SPF可能使得长作业⽤户不满,于是提出HRN,选择响应⽐最⾼的作业运⾏。

响应⽐=1+作业等待时间/作业处理时间。

4. 基于优先数调度算法Highest Possible Frequency(HPF):每⼀个作业规定⼀个表⽰该作业优先级别的整数,当需要将新的作业由输⼊井调⼊内存处理时,优先选择优先数最⾼的作业。

5.均衡调度算法,即多级队列调度算法基本概念:作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)作业平均周转时间(T)=周转时间/作业个数作业带权周转时间(Wi)=周转时间/运⾏时间响应⽐=(等待时间+运⾏时间)/运⾏时间⼆、进程调度算法1.先进先出算法(FIFO):按照进程进⼊就绪队列的先后次序来选择。

即每当进⼊进程调度,总是把就绪队列的队⾸进程投⼊运⾏。

2. 时间⽚轮转算法Round Robin(RR):分时系统的⼀种调度算法。

轮转的基本思想是,将CPU的处理时间划分成⼀个个的时间⽚,就绪队列中的进程轮流运⾏⼀个时间⽚。

当时间⽚结束时,就强迫进程让出CPU,该进程进⼊就绪队列,等待下⼀次调度,同时,进程调度⼜去选择就绪队列中的⼀个进程,分配给它⼀个时间⽚,以投⼊运⾏。

操作系统——先来先服务(FCFS)和短作业优先(SJF)调度算法

操作系统——先来先服务(FCFS)和短作业优先(SJF)调度算法

进程号到达时刻服务时间(⼩时)A9:002B9:301C9:400.5D10:300.4进程号到达时刻服务时间(⼩时)开始时间完成时间周转时间(⼩时)带权周转时间A9:00291121B9:3011112 2.5 2.5C9:400.51212:30 2.83 5.66D10:300.412:3012:54 2.46操作系统——先来先服务(FCFS )和短作业优先(SJF )调度算法例题:计算在单CPU 环境下,采⽤FCFS 调度算法、SJF 优先调度算法时的平均周转时间和平均带权周转时间,并指出它们的调度顺序。

公式:周转时间 = 完成时间 - 到达时间带权周转时间 = 周转时间 / 服务时间平均周转时间 = 周转时间 / 进程数量平均带权周转时间 = 带权周转时间 / 进程数量完成时间的计算⽅法不同,分别如下:先来先服务(FCFS )调度算法:FCFS 调度顺序:A 、B 、C 、D (先来先服务)FCFS 完成时间:A (完成时间)=A (到达时间)+A (服务时间)=9+2=11B (完成时间)=A (完成时间)+B (服务时间)=11+1=12C (完成时间)=B (完成时间)+C (服务时间)D (完成时间)=C (完成时间)+D (服务时间)(该进程完成时间 =上⼀进程的完成时间 + 这个进程的服务时间)单位要转化进程号到达时刻服务时间(⼩时)开始时间完成时间周转时间(⼩时)带权周转时间A9:00291121B9:30111:5412:54 3.4 3.4C9:400.511:2411:54 2.4 4.8D10:300.41111:240.9 2.25平均周转时间:(2+2.5+2.38+2.4)/4=2.32平均带权周转时间:(1+2.5+5.66+6)/4=3.79短作业优先(SJF )调度算法:SJF 调度顺序:A 、D 、C 、BSJF 完成时间: A(完成时间)=A(到达时间)+A(服务时间) D(完成时间)=A(到达时间)+D(服务时间) C(完成时间)=D(到达时间)+C(服务时间) B(完成时间)=C(到达时间)+B(服务时间)平均周转时间: (2+3.4+2.45+0.9)/4=2.6875平均带权周转时间: (1+3.4+4.8+2.25)/4=2.8625。

先来先服务调度算法和短作业优先调度算法

先来先服务调度算法和短作业优先调度算法

先来先服务调度算法和短作业优先调度算法先来先服务调度算法是一种简单的调度策略,即按照进程到达时间的顺序来分配CPU时间片。

当一个进程到达CPU时间的时候,它会被加入到就绪队列中,并在队列中等待调度。

当一个进程完成执行或者发生I/O等等中断时,会使得另一个就绪队列中最前面的进程进入执行状态。

FCFS 的核心思想是谁先到谁先服务,且进程的执行顺序是固定的。

FCFS调度算法的优点是简单直观,易于实现。

在短期调度中,它能够保证不会产生饥饿现象,即保证每个进程都有机会执行。

这使得FCFS 成为一种公平的调度算法。

此外,由于该算法不需要频繁的上下文切换,它在处理长作业的性能上会比其他算法高。

然而,先来先服务调度算法也存在一些缺点。

最主要的问题是平均等待时间较长。

由于所有进程都需要按照到达时间顺序执行,如果前面存在一个执行时间较长的进程,那么后面的进程都需要等待很久才能执行。

这会导致平均等待时间增加,系统的响应时间变慢。

此外,FCFS算法无法适应实时环境,即使有一个紧急的进程,也要等待前面的进程执行完成才能运行。

为了解决FCFS调度算法的平均等待时间较长的问题,短作业优先调度算法应运而生。

短作业优先调度算法是根据进程的执行时间进行排序,选择执行时间最短的进程先执行。

该算法的核心思想是尽量选择执行时间短的进程,以减少平均等待时间。

短作业优先调度算法的优点是能够最大程度地减少平均等待时间,提高系统的响应性能。

由于执行时间短的进程能够快速完成,其他进程就能更快地得到执行。

这种调度算法适用于多任务操作系统,在系统内同时存在多个进程的情况下能够提高系统效率。

此外,SJF算法也可以应用于实时系统,并能够满足紧急任务的需求。

然而,短作业优先调度算法也存在一些问题。

首先,该算法需要准确地预测每个进程的执行时间,否则可能会导致执行时间较长的进程一直等待。

其次,该算法可能产生饥饿现象,即执行时间长的进程可能会一直等待执行。

这是因为短作业优先调度算法会优先选择执行时间短的进程,导致执行时间长的进程无法得到及时执行。

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先先来先服务(FCFS)调度算法是一种非抢占式调度算法,在这种算法中,进程按照到达系统的先后顺序执行,并且在一个进程执行完毕之前,不会有其他进程执行。

如果一个进程没有执行完成,后续进程需要等待。

FCFS调度算法的优点是实现简单,公平性好。

由于按照到达时间先后顺序执行进程,能够保证所有进程都能够得到执行的机会。

然而,FCFS调度算法容易出现“饥饿”现象,即如果一个进程占用了较长的CPU时间,其他进程可能需要等待较长时间。

短作业优先(SJF)调度算法是一种非抢占式调度算法,它选择下一个执行的进程是根据预计的执行时间最短的进程。

在SJF调度算法中,进程按照预计的执行时间进行排序,并按照顺序执行。

SJF调度算法的优点是能够最大程度地减少平均等待时间。

因为进程按照预计的执行时间最短的顺序执行,执行时间短的进程优先执行,可以最大限度地减少其他进程等待的时间。

然而,SJF调度算法需要预先知道所有进程的执行时间,并且如果一个进程执行时间长,其他进程需要等待的时间可能会很长。

FCFS调度算法和SJF调度算法都有各自的优点和局限性。

FCFS调度算法适用于进程执行时间相对均匀的情况,可以保证所有进程都能够得到执行的机会。

但是,如果一个进程执行时间很长,可能会导致其他进程等待的时间非常长,容易出现“饥饿”现象。

SJF调度算法适用于进程执行时间差异较大的情况,可以最大程度地减少平均等待时间。

但是,SJF调度算法需要预先知道所有进程的执行时间,而且在实际应用中,很难准确预测进程的执行时间。

在实验中,可以通过编写相应的模拟程序来实现FCFS调度算法和SJF调度算法。

可以设定一个进程队列,每个进程有自己的到达时间和执行时间。

按照FCFS算法,按照到达时间先后顺序执行进程;按照SJF算法,按照执行时间从小到大的顺序执行进程。

通过模拟进程的调度过程,可以观察到FCFS算法和SJF算法的效果差异。

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先操作系统中的进程调度算法是实现多道程序设计的关键,作为操作系统中的调度器,它决定了进程在CPU上执行的顺序,直接影响到系统的性能和响应时间。

本文将重点介绍两种常用的进程调度算法:先来先服务调度算法(FCFS)和短作业优先调度算法(SJF)。

先来先服务调度算法是一种最简单、最基础的调度算法,其实现非常简单:按照进程到达CPU的先后顺序,将其依次调入CPU执行。

当一个进程进入就绪队列后,在CPU空闲的时候,就将其调入CPU执行,直到进程执行完成或者主动放弃CPU时间片。

这种调度算法的优势在于实现简单、公平性好;但其缺点也很明显,由于没有考虑进程的执行时间长短,如果一个长时间的进程先到达就绪队列,则会造成其他进程的等待时间过长,导致系统的响应时间较长。

与FCFS相对的是短作业优先调度算法(Shortest Job First, SJF)。

SJF调度算法会根据进程的相对执行时间长短来进行调度,即将执行时间最短的进程优先调度进入CPU执行。

SJF算法的关键在于如何估计进程的执行时间,通常有两种方法:预测和历史信息。

预测方法是根据进程的相关信息,如进程的大小、执行时间等进行预测;而历史信息方法是根据以往同类任务的执行时间的平均值或历史执行时间进行估算。

在实际操作中,通常采用后者进行调度。

SJF调度算法的优势在于可以最大程度地减少平均等待时间,提高系统的响应效率。

然而,该算法也存在一些问题,如如何准确估算进程的执行时间、对长时间任务不够友好等。

两种调度算法各自都有其优势和劣势,因此在实际操作中需要根据具体的情况选择适用的调度算法。

如果系统中存在大量长时间任务,可以考虑使用FCFS来保证公平性;而如果系统中的任务短且繁琐,可以优先考虑SJF算法来减少平均等待时间。

此外,还有一些改进版的调度算法,如最短剩余时间优先调度算法(Shortest Remaining Time First, SRTF)和多级反馈队列调度算法(Multi-Level Feedback Queue, MLFQ)等,它们在一定程度上兼顾了FCFS和SJF的优势,更适用于实际的操作系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《操作系统》实验报告题目:作业调度算法班级:网络工程:朱锦涛学号:E31314037一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。

通过代码的具体实现,加深对算法的核心的理解。

二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。

当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入存,为它们分配资源和创建进程。

然后把它放入就绪队列。

2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。

作业的长短是以作业所要求的运行时间来衡量的。

SJF算法可以分别用于作业和进程调度。

在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入存。

3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。

如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。

该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验容源程序:#include<stdio.h>#include<stdlib.h>#include<time.h>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;};typedef struct sjf_work{s truct work s_work; //数据域s truct sjf_work * pNext; //指针域}NODE,*PNODE;void FCFS();void SJF();void showmenu();bool Is_empty(PNODE pHead);intt_work(PNODE pHead);PNODE do_work(PNODE pHead,int *w_finish_time,int i);void show(int *w_finish_time,int i,PNODE q,int*w_rel_time);void HRRN();PNODE priorit(PNODE pHead);void do_work_1(PNODE pHead,int *w_finish_time,int i);int main(){i nt choice; //设置选择数s howmenu(); //显示菜单s canf("%d",&choice);w hile(choice != 0) //选择算法{switch(choice){case 1 :printf("您选择的是先来先服务算法:\n");FCFS();break;case 2 :printf("您选择的是短作业优先算法:\n");SJF();break;case 3 :printf("您选择的是高响应比优先调度算法\n");HRRN();break;default:printf("请重新选择!");break;}printf("\n");printf("下面是菜单,请继续,或者按‘0’退出"); showmenu();scanf("%d",&choice);}p rintf("感您使用本系统,再见!");r eturn 0;}void FCFS(){i nt j,k;i nt w_rel_time[5];i nt w_finish_time[5];f loat rel_time = 0;struct work temp;i nt i;s truct work w[5];s rand(time(0));f or(i=0;i<5;i++){w[i].id = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");}for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time){temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time + w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5);}void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++){PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time)q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i ntt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL;f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));q = do_work(pHead,w_finish_time,i);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++)rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}bool Is_empty(PNODE pHead) //判断作业是否做完{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}i f(len == 0)return true; //当没有作业时,返回为真e lsereturn false;}intt_work(PNODE pHead) //计算当前还剩多少作业{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}r eturn len;}PNODE do_work(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i ntt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但不一定是服务时间最短的(如果有的话)p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //执行此次判断后,q现在指向所有条件都满足的作业(如果有的话){if( p->s_work.arrive_time <= w_finish_time[i] ){if( p->s_work.work_time < q->s_work.work_time ){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //用q来接收最先到达的,用p来遍历while( p != NULL ){if( p->s_work.arrive_time<q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time + q->s_work.work_time;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;r eturn q;}void show(int *w_finish_time,int i,PNODE q,int*w_rel_time){w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;w_rel_time[i+1] = w_finish_time[i+1] -q->s_work.arrive_time;p rintf("第%d个系统执行的作业到达时间:%d",i+2,q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d\n",q->s_work.work_time);p rintf("完成时间是:%d ",w_finish_time[i+1]);p rintf("周转时间是:%d \n",w_rel_time[i+1]);}void showmenu(){printf("**********************************\n"); p rintf("请选择你要执行的命令~: \n");p rintf("1:先来先服务算法\n");p rintf("2:短作业优先算法\n");p rintf("3: 高响应比优先算法\n");p rintf("0: 退出菜单\n");p rintf("**********************************\n"); }void HRRN(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;f loat priority; //计算优先权s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++) //定义了十个进程{PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time) q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i ntt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL; //已经找到并执行第一个进程,执行完之后又将其删除了f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));do_work_1(pHead,w_finish_time,i);q = priorit(pHead);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++){rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}void do_work_1(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i ntt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但有可能有另外几个进程也已经到达了,所以要进行下面的判断p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //说明此时有好几个都已经到达了{if(p->s_work.arrive_time <= w_finish_time[i]){p->s_work.wait = w_finish_time[i] -p->s_work.arrive_time;p = p->pNext;}else{p->s_work.wait = 0;p = p->pNext;}}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //此时p指向第一个节点,q指向第二个节点,还是找最先到达的while( p != NULL ){if( p->s_work.arrive_time <q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time +q->s_work.work_time;return;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;}PNODE priorit(PNODE pHead){P NODE p = pHead->pNext;w hile(p != NULL){if(p->s_work.wait > 0){p->s_work.priority = (p->s_work.wait +p->s_work.work_time) / p->s_work.work_time; //计算每一个已经等待的进程的优先等级p = p->pNext;}elsep = p->pNext;}p = pHead->pNext;P NODE q;q = p;p = p->pNext; //p已经指向第二个节点w hile(p != NULL){if(p->s_work.wait > 0){if(p->s_work.priority > q->s_work.priority){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}p rintf("该进程优先级最高,为:%f\n",q->s_work.priority);return q;}实验结果:系统自动为每个算法模拟分配五个作业,同时随机生成作业的编号,作业的到达时间,作业估计运行的时间。

相关文档
最新文档