最短寻道优先调度算法
操作系统概论-02323-新编模拟试题4
1.单选题1.1在磁盘调度中,每次的寻道时间最短的算法是()。
a FCFSb SSTFc SCANd NStepSCAN先来先服务FCFS,最简单的磁盘调度算法。
根据进程请求访问磁盘的先后顺序进行调度。
此算法平均寻道时间较长,寻道距离较大,适用于进程数目较少的场合。
故不选A。
SSTF 最短寻道时间优先算法,该算法选择进程时要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,故选B。
SCAN算法不仅考虑要访问的磁道与当前磁道的距离,更优先考虑磁头当前的移动方向,该算法可防止进程出现“饥饿”现象,故不选C。
NStepSCAN 算法将磁盘请求队列分成若干个长度为N的子队列,按FCFS算法依次调度这些子队列,在队列内部按SCAN算法,对一个队列处理完后,再处理其他队列。
当正在处理某子队列时,如果又出现新的磁盘I/O请求,便将新请求进程放入其他队列,这样可避免磁臂粘着现象,故不选D。
1.2循环缓冲,用于指示生产者进程下一个可用的空缓冲区的指针是()。
a Nextgb Nextic Currentd 以上都可循环缓冲的组成:多个指针:Nextg用于指示消费者进程下一个可用的装有数据的缓冲区。
故不选A、D。
Nexti用于指示生产者进程下一个可用的空缓冲区。
故选B。
Current用于指示进程正在使用的工作缓冲区。
故不选D。
1.3必须作为临界资源以互斥方式访问的设备是()。
a虚拟设备b共享设备c独占设备d以上都是按设备的共享属性分类,分为:(1)独占设备。
必须作为临界资源以互斥方式访问的设备。
故选C。
(2)共享设备。
允许多个进程共同访问的设备,如磁盘。
故不选B、D。
(3)虚拟设备。
通过某种技术将一台物理设备虚拟成若干逻辑设备。
故不选A。
为了实现主机与设备控制器之间()数据的传送,在DMA控制器中设计了4类寄存器。
a按位b按字节c按字d成块为了实现主机与设备控制器之间成块数据的传送,在DMA控制器中设计了4类寄存器:命令/状态寄存器CR、内存地址寄存器MAR、数据计数器DC和数据寄存器DR。
操作系统习题
操作系统习题1.磁盘访问时间由哪⼏部分构成?每部分时间应如何估算?磁盘访问时间包括以下三个部分:(1)寻道时间Ts ,指把磁臂从当前位置移动到指定磁道上所经历的时间。
该时间是启动磁盘的时间s与磁头移动n条磁道所花费的时间之和,即Ts = m×n + s 。
其中m是⼀常数,与磁盘驱动器的速度有关。
(2)旋转延迟时间Tr ,是指定扇区旋转到磁头下⾯所经历的时间。
(3)传输时间Tt ,指把数据从磁盘读出或向磁盘写⼊数据所经历的时间,其与每次所读/写的字节数bytes及旋转速度r有关,具体为Tt = bytes / (r×bytesPerTrack),其中bytesPerTrack为⼀条磁道上的字节数。
当⼀次读/写的字节数相当于半条磁道上的字节数时,Tt与Tr相同,也即Tr = 1 / 2r。
因此可将访问时间Ta表⽰为:Ta = Ts + 1/2r + bytes / (r×bytesPerTrack)。
2.⽬前常⽤的磁盘调度算法有哪些?每种算法优先考虑的问题是什么?⽬前常⽤的磁盘调度算法包括:(1)先来先服务调度算法FCFS。
根据进程请求访问磁盘的先后次序进⾏调度,其优点是公平、简单且每个进程的请求都能依次得到处理,不会出现某⼀进程的请求长期得不到满⾜的情况,但寻道时间可能较长。
(2)最短寻道时间优先调度算法SSTF。
选择所要求访问磁道与磁头当前所在磁道距离最近的进程优先调度,但其并不能保证平均寻道时间最短。
本算法具较好的寻道性能,但可能导致进程饥饿现象。
(3)扫描算法SCAN(⼜称为电梯调度算法),对最短寻道时间优先调度算法略加修改⽽形成。
不仅考虑欲访问磁道与磁头当前所在磁道的间距,更优先考虑的是磁头当前移动的⽅向既能获得较好的寻道性,⼜能防⽌进程饥饿,⼴泛⽤于⼤、中、⼩型机及⽹络中。
扫描算法存在的问题是:当磁头刚从⾥到外移动过某⼀磁道时,恰有⼀进程请求访问此磁道,该进程必须等待,待磁头从⾥向外,然后再从外向⾥扫描完所有要访问的磁道后,才处理该进程的请求,致使该进程的请求被严重推迟。
先来先服务FCFS
一个磁道号
移动距离
(磁道数)
90
10
58
32
55
3
39
16
38
1
18
20Βιβλιοθήκη 150132160
10
184
24
平均寻道长度:27.5
FCFS调度算法示例
SSTF调度算法示例
该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道,距离最短,以使
每次的寻道时间最短,但这种调度算法却不能保证平均寻道时间最短。
(从100#磁道开始)
被访问的下
一个磁道号
移动距离
(磁道数)
55
45
58
3
39
19
18
21
90
72
160
70
150
10
38
112
184
146
平均寻道长度:55.3
(从100#磁道开始)
早期的磁盘调度算法
磁盘调度的目标是使磁盘的平均寻道时间最少。
先来先服务FCFS(First-come,First-served)
一种最简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。
优点
公平、简单,每个进程的请求都能依次得到处理。
缺点
未对寻道进行优化,致使平均寻道时间可能较长。
最短寻道时间优先SSTF(Shortest Seek Time First)
最短寻找时间优先算法和电梯算法
最短寻找时间优先算法和电梯算法1. 引言最短寻找时间优先算法和电梯算法是在计算机科学领域中常用的调度算法。
它们被广泛应用于操作系统、网络通信、数据库等各个领域,以提高系统的效率和性能。
本文将详细介绍最短寻找时间优先算法和电梯算法的原理、应用场景以及实现方式。
2. 最短寻找时间优先算法最短寻找时间优先算法(Shortest Seek Time First, SSTF)是一种基于磁盘寻址的调度算法。
它通过选择离当前磁道最近的请求来减少平均寻道时间,从而提高系统的响应速度。
2.1 原理最短寻找时间优先算法基于以下原理进行调度: - 当前磁头所在的磁道上有待处理的请求时,选择离当前磁头位置最近的请求进行处理; - 当前磁头所在的磁道上没有待处理的请求时,选择距离当前位置最近且方向与当前移动方向相同的请求进行处理。
2.2 应用场景最短寻找时间优先算法适用于磁盘调度、文件系统、数据库管理等场景。
在这些应用中,磁盘的读写操作是常见的任务,而最短寻找时间优先算法能够有效地减少磁头的移动次数,提高读写操作的性能。
2.3 实现方式最短寻找时间优先算法可以通过以下步骤来实现: 1. 读取当前磁头所在的位置;2. 遍历待处理请求列表,计算每个请求与当前位置的距离;3. 选择距离最近的请求进行处理,并更新当前位置; 4. 重复步骤2和3,直到所有请求都被处理完毕。
3. 电梯算法电梯算法(Elevator Algorithm)是一种用于调度电梯运行的算法。
它模拟了电梯上下运行时不同楼层之间的乘客需求,并根据乘客的楼层选择最优的运行路径,以提高电梯系统的效率和性能。
3.1 原理电梯算法基于以下原理进行调度: - 当前电梯运行方向下有人需要上楼时,选择离当前楼层最近且方向相同的楼层作为目标楼层; - 当前电梯运行方向下没有人需要上楼时,选择离当前楼层最近的楼层作为目标楼层; - 当前电梯运行方向下没有人需要上楼且上方也没有人需要下楼时,改变运行方向。
磁盘移臂调度过程模拟设计-电梯算法_最短寻道时间优先
学号:课程设计题目磁盘移臂调度过程模拟设计--电梯算法、最短寻道时间优先算法学院计算机科学与技术学院专业班级姓名指导教师吴利军2013 年 1 月15 日课程设计任务书学生姓名:指导教师:吴利军工作单位:计算机科学与技术学院题目: 磁盘移臂调度过程模拟设计——电梯算法、最短寻道时间优先算法初始条件:1.预备内容:阅读操作系统的文件管理章节内容,理解有关文件组织形式、存储设备的概念。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.编程序模拟磁盘调度的过程,采用指定算法,模拟并输出存取臂的移动顺序,并计算存取臂移动的磁道总数。
能够处理以下的情形:⑴可根据需要输入当前磁头的位置,磁头移动方向;⑵能够输入柱面数,磁道访问序列等参数,并能够显示调度结果(磁盘访问请求的磁道号以及磁头移动的总磁道数)。
2.设计报告内容应说明:⑴课程设计目的与功能;⑵需求分析,数据结构或模块说明(功能与框图);⑶源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他的其他方法(如果有,简要说明该方法);v)对实验题的评价和改进意见,请你推荐设计题目。
时间安排:设计安排一周:周1、周2:完成程序分析及设计。
周2、周3:完成程序调试及测试。
周4、周5:验收,撰写课程设计报告。
(注意事项:严禁抄袭,一旦发现,抄与被抄的一律按0分记)指导教师签名:年月日系主任(或责任教师)签名:年月日磁盘移臂调度过程模拟设计——电梯算法、最短寻道时间优先算法1 课程设计目的与功能操作系统课程设计,主要是在学习操作系统课程并完成操作系统各部分实验的基础上,对操作系统的整体进行一个模拟,通过实践加深对各个部分的管理功能的认识,进一步分析各个部分之间的联系,以达到对完整系统的理解。
操作系统磁盘调度算法例题讲解
操作系统磁盘调度算法例题讲解1. 磁盘调度算法的背景和意义磁盘调度算法是操作系统中的重要组成部分,它的主要目的是优化磁盘访问,提高磁盘I/O操作的效率。
在计算机系统中,磁盘是一个重要的存储介质,它负责存储和读写数据。
然而,由于磁盘访问具有机械运动延迟和寻道时间等特性,使得磁盘I/O操作成为计算机系统中一个性能瓶颈。
为了解决这个问题,人们提出了各种各样的磁盘调度算法。
这些算法通过优化访问顺序、减少寻道时间、提高数据传输率等方式来提高磁盘I/O操作效率。
因此,深入了解和掌握不同类型的磁盘调度算法对于优化计算机系统性能具有重要意义。
2. 先来先服务(FCFS)调度算法先来先服务(First-Come, First-Served)是最简单、最直观的一种磁盘调度算法。
它按请求顺序处理I/O请求。
当一个请求到达时,在当前位置完成当前请求后再处理下一个请求。
然而,在实际应用中,FCFS存在一些问题。
首先,它无法充分利用磁盘的带宽,因为磁盘的读写头可能在处理当前请求时,其他请求已经到达。
其次,由于磁盘请求的随机性,FCFS可能导致某些请求等待时间过长。
3. 最短寻道时间优先(SSTF)调度算法最短寻道时间优先(Shortest Seek Time First)是一种基于当前位置选择下一个最近请求的调度算法。
在SSTF算法中,选择离当前位置最近的请求进行处理。
SSTF算法相对于FCFS算法来说,在减少寻道时间方面有一定的优势。
它能够充分利用磁盘带宽,并且能够减少某些请求等待时间过长的问题。
然而,SSTF算法也存在一些问题。
首先,在某些情况下,由于选择最近的请求进行处理,可能导致某些较远位置上的请求长期等待。
其次,在高负载情况下,由于大量随机访问导致寻道距离变大,SSTF 算法可能会导致饥饿现象。
4. 扫描(SCAN)调度算法扫描(SCAN)是一种按一个方向依次处理I/O请求,并在到达边界后改变方向的调度算法。
SCAN算法从一个方向开始处理请求,直到到达磁盘的边界。
计算机操作系统大题整理
四、应用题(每小题8分,共40分)1.在一单道批处理系统中,一组作业的提交时间和运行时间见下表所示。
作业提交时间运行时间1 8.0 1.02 8.5 0.53 9.0 0.24 9.1 0.1计算以下二种作业调度算法的平均周转时间T和平均带权周转时间W。
先来先服务调度算法。
(2)短作业优先调度算法。
2.考虑某个系统在某时刻的状态如下表所示。
Allocation Max AvailableABCDABCD1520P0 00120012P1 10001750P2 13542356P3 00140656使用银行家算法回答下面的问题:(1)求Need矩阵。
(2)系统是否处于安全状态?如安全,请给出一个安全序列。
(3)如果进程P1发来一个请求(0,4,2,0),这个请求能否立刻被满足?如安全,请给出一个安全序列。
(2) 安全,安全序例为:P0,P2,P1,P3……(3分)(3)能立刻被满足,满足的安全序列为:P0,P2,P1,P3……(3分)3.桌子上有一只盘子,每次只能向其中放入一只水果。
爸爸专向盘子中放苹果,妈妈专向盘子中放桔子,儿子专等吃盘子中的桔子,女儿专等吃盘子中的苹果。
只有盘子为空时,爸爸或妈妈就可向盘子中放一只水果;仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出。
用信号量机制解决该问题。
答:在本题中,应设置三个信号量S、So、Sa,信号量S表示盘子是否为空,其初值为l;信号量So表示盘中是否有桔子,其初值为0;信号量Sa表示盘中是否有苹果,其初值为0。
(2分)father(){ 。
while(1) { 。
P(S); 。
放苹果。
V(Sa); 。
}} 。
mather(){。
while(1) { 。
P(S); 。
放苹果。
V(So);。
}} 。
son(){ 。
while(1) { 。
P(So); 。
从盘中取出桔子; 。
V(S); 。
吃桔子; 。
}。
} 。
daughter(){ 。
while(1) { 。
磁盘调度算法代码
磁盘调度算法代码磁盘调度算法是操作系统中用于优化磁盘访问性能的重要策略之一。
在计算机系统中,数据通常存储在磁盘上,当需要读或写数据时,就需要通过磁盘调度算法来确定磁盘读写的顺序,以提高系统的性能和效率。
1. 磁盘调度算法的背景在了解磁盘调度算法之前,我们先了解一下磁盘的工作原理。
磁盘由一个或多个盘片组成,每个盘片上包含若干磁道,每个磁道又被分为若干扇区。
磁头在读写数据时需要移动到目标扇区所在的磁道上,而磁头的移动会导致一定的寻道时间。
磁盘调度算法的目标就是通过合理的调度磁盘的访问请求,使得磁头的移动距离最短,从而减少磁盘的寻道时间,提高系统的读写性能。
常见的磁盘调度算法有以下几种:•先来先服务(FCFS):按照磁盘请求的到达顺序进行调度。
•最短寻道时间优先(SSTF):选择离当前磁头位置最近的磁道进行访问。
•扫描算法(SCAN):磁头从一端开始扫描磁道,直到扫描到达磁头上方的最后一个磁道,然后返回起始位置继续扫描。
•循环扫描算法(C-SCAN):类似于SCAN算法,但是磁头在扫描到磁头上方的最后一个磁道后,直接返回起始位置继续扫描。
•电梯算法(LOOK):磁头按磁道号的递增或递减顺序移动,直到当前方向上没有更多的磁道请求时改变方向。
2. 磁盘调度算法的代码实现下面以Python语言为例,给出一个简单的磁盘调度算法的代码实现。
这里以最短寻道时间优先(SSTF)算法为例。
首先,需要定义一个函数来计算当前磁头位置到目标磁道的距离:def calculate_distance(current, target):return abs(current - target)然后,我们可以编写一个磁盘调度函数来实现SSTF算法:def sstf(disk_queue, current_head):# 存储按磁道号排序的请求队列sorted_queue = sorted(disk_queue)# 存储已访问的磁道visited = []while sorted_queue:# 存储每个请求到当前磁头的距离distances = []for track in sorted_queue:distance = calculate_distance(current_head, track)distances.append((distance, track))# 根据距离进行排序distances.sort(key=lambda x: x[0])# 获取距离最小的磁道next_track = distances[0][1]# 移动磁头到下一个磁道current_head = next_track# 将访问过的磁道添加到已访问列表中visited.append(next_track)# 从请求队列中移除已访问的磁道sorted_queue.remove(next_track)return visited最后,我们可以使用上述代码来模拟一个磁盘调度的过程:if __name__ == '__main__':disk_queue = [98, 183, 37, 122, 14, 124, 65, 67]current_head = 53visited_tracks = sstf(disk_queue, current_head)print("磁盘访问顺序:", visited_tracks)运行上述代码,输出结果如下:磁盘访问顺序: [65, 67, 37, 14, 98, 122, 124, 183]上述代码实现了简单的SSTF算法,并模拟了一个磁盘访问的过程。
操作系统实验页面置换算法先来先服务最短寻道优先
学号P7******* 专业计算机科学与技术姓名实验日期2017/12/7教师签字成绩实验报告【实验名称】磁盘调度——先来先服务策略最短寻道策略【实验目的】磁盘调度中寻道时间直接影响到数据访问的快慢,通过本次实验学习如何处理好磁盘寻道时间。
【实验原理】1. 先来先服务算法先来先服务算法根据进程请求访问磁盘的先后次序进行调度。
2. 最短寻道时间优先算法最短寻道时间优先算法要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短。
【数据结构和符号说明】ypedef struct Track{int id;//磁道序列int state=0;//是否访问过,未被访问置状态为0} Track;Track track[N];//最大磁道数为100Track track1[N];int step[N];//移动距离int num,i,current_track,num1;//需要访问的次数函数说明:void init()//初始化程序void input()//输入函数void FCFS()//先来先服务int abs(int a,int b)//相减的绝对值int Serch_min_pos()//寻找到当前磁道最短的需求磁道void SSTF()//最短寻道优先void output(Track a[])//输出函数void output_average_track()//输出平均寻道时间int show()//显示用户界面先来先服务(FCFS)最短寻道时间优先(SSTF)寻找当前磁道最近需求磁道代码:#include<stdio.h>#define N 100typedef struct Track{int id;//磁道序列int state=0;//是否访问过,未被访问置状态为0} Track;Track track[N];//最大磁道数为100Track track1[N];int step[N];//移动距离int num,i,current_track,num1;void init()//初始化程序{num=0;for (i=0; i<num; i++){track[i].state=-1;//id置为1track1[i].state=-1;step[i]=-1;//移动距离为-1}}void input()//输入函数{printf("输入当前磁道\n");scanf("%d",¤t_track);num1=current_track;printf("输入要访问的磁道数目\n");scanf("%d",&num);printf("输入要访问磁道序列\n");for(i=0; i<num; i++)scanf("%d",&track[i].id);}void FCFS()//先来先服务{for(i=0; i<num; i++){if((current_track-track[i].id)<0)//求移动距离step[i]=track[i].id-current_track;elsestep[i]=current_track-track[i].id;//取绝对值track[i].state=1;//状态置为1current_track=track[i].id;//更新当前磁道}}int abs(int a,int b)//相减的绝对值{return a-b>0?a-b:b-a;}int Serch_min_pos()//寻找到当前磁道最短的需求磁道{int min=45536;//最小距离标志int pos;for(int i=0; i<num; i++)if(track[i].state==1)continue;else if(min>abs(track[i].id,current_track))//寻找最小距离{min=abs(track[i].id,current_track);pos=i;}track[pos].state=1;return pos;//返回在数组中的位置}void SSTF()//最短寻道优先{for(i=0; i<num; i++)//计数器{track1[i]=track[Serch_min_pos()];//更新到要输出的数组中step[i]=abs(track1[i].id,current_track);//移动距离current_track= track1[i].id;//标志}}void output(Track a[])//输出函数{printf("\n\n <从%d号磁道开始>\n",num1);printf("==================================================\n");//排班printf("被访问的下一个磁道\t\t移动距离(磁道数)\n");for(i=0; i<num; i++)printf("\t%4d\t\t||\t%4d\n",a[i].id,step[i]);printf("==================================================\n"); }void output_average_track()//输出平均寻道时间{double sum=0;//和for(i=0; i<num; i++)sum+=step[i];printf(" 平均寻道长度%3.2f\n\n\n",sum/num);//输出}int show()//显示用户界面{int choose;//选择printf("\n******************早期的磁盘调度算法******************\n");printf("\t\t1、先来先服务(FCFS)\n");printf("\t\t2、最短寻道时间优先(SSTF)\n");printf("\t\t3、退出(EXIT)\n");scanf("%d",&choose);return choose;}int main(){do{init();switch(show())//返回值是选择{case 1://FCFSinput();FCFS();output(track);output_average_track();break;case 2://最短寻道input();SSTF();output(track1);output_average_track();break;case 3://退出return 0;default:break;}}while(1);return 0;}截图:主界面开始,输入选择先来先服务还是最短寻道优先,输入当前磁道,输入要访问的磁道,输入要访问的磁道序列。
最短作业优先调度算法
最短作业优先调度算法一、前言最短作业优先调度算法(Shortest Job First,简称SJF)是一种常见的进程调度算法,主要用于处理多个进程同时请求资源的情况。
SJF算法的核心思想是优先调度执行时间最短的进程,以提高系统的响应速度和效率。
二、SJF算法的原理SJF算法是一种非抢占式调度算法,即一旦一个进程被分配到CPU上运行,它将一直运行直到完成或者被阻塞。
该算法基于每个进程的执行时间来进行排序,并按照顺序依次执行。
三、SJF算法的实现1. 首先需要获取所有待调度进程的执行时间,并按照从小到大的顺序进行排序。
2. 将排序后的进程依次加入就绪队列中。
3. 从就绪队列中选择执行时间最短的进程,并将其分配给CPU进行运行。
4. 如果该进程在运行过程中发生阻塞,则将其移到阻塞队列中等待唤醒。
5. 当一个进程完成时,检查就绪队列中是否还有未完成的进程,如果有,则重复步骤3;否则结束调度。
四、SJF算法存在的问题1. SJF算法假设能够准确地知道每个进程的执行时间,但实际上这是很难做到的。
如果估算不准,可能会导致进程等待时间过长或者资源浪费。
2. SJF算法容易出现“饥饿”现象,即某些进程由于执行时间较长而一直无法被调度执行。
3. SJF算法可能会导致运行时间较短的进程优先级过高,而忽略了其他因素如优先级、进程类型等。
五、SJF算法的改进针对SJF算法存在的问题,可以采取以下措施进行改进:1. 引入抢占式调度机制,在某些情况下可以强制中断正在运行的进程,并将CPU分配给更紧急的任务。
2. 采用动态优先级调度策略,将每个进程的优先级根据其等待时间进行动态调整。
当一个进程等待时间越长时,其优先级越高。
3. 综合考虑多种因素来确定每个进程的优先级。
除了执行时间外,还应考虑其他因素如I/O操作、内存需求、用户优先级等。
六、总结SJF算法是一种简单有效的调度算法,在处理大量短作业请求时具有较好的性能表现。
但是,由于其存在的问题,需要根据实际情况进行合理的改进和调整,以提高系统的性能和稳定性。
《计算机操作系统》复习知识点及名词解释
《计算机操作系统》复习知识点一. 名词解释题1. 中断2. 进程控制块(PCB)3. 虚时钟4. 段式管理5. 文件控制块(FCB)6. 对换(SWAPPING)7. 系统调用8. 绝对路径名9. 特别文件10. 虚设备技术11. 管道 12. 中断接收 13. 恢复现场 14. 页式管理 15. 作业步16. 字符流文件 17. 通道 18. 页面淘汰 19. 多道程序设计 20. 死锁21. 当前目录 22. 快表 23. 作业调度 24. 原语 25. 中断屏蔽 26. 地址映射27. 文件目录 28. 死锁避免 29. 原语 30. 作业控制块 31. CPU状态32. 虚存 33. 磁盘调度 34. 缓冲技术 35. 中断 36. 进程调度 37. 虚设备39. 死锁预防 40. 文件目录 41. 原语 42. 交换技术 43. 互斥区二. 填空题1. 分时系统追求的目标是_____.2. 用户进程从目态(常态)转换为管态(特态)的唯一途径是____.3. 从静态的观点看, 操作系统中的进程是由程序段、数据和____三部分组成.4. 在系统内核中必须包括的处理模块有进程调度、原语管理和____.5. 批处理操作系统中, 作业存在的唯一标志是____.6. 操作系统中的一种同步机制, 由共享资源的数据及其在该数据上的一组操作组成, 该同步机制称为________.7. 在可变分区存储管理中, 为实现地址映射, 一般由硬件提供两个寄存器, 一个是基址寄存器, 另一个是____.8. 联想寄存器(相联存储器)的最重要、最独到的特点是____.9. 在虚拟段式存储管理中, 若逻辑地址的段内地址大于段表中该段的段长, 则发生____中断.10. 文件系统中若文件的物理结构采用顺序结构, 则文件控制快FCB 中关于文件的物理位置应包括____.11. 在操作系统设计时确定资源分配算法, 以消除发生死锁的任何可能性, 这种解决死锁的方法是____.12. 选择对资源需求不同的作业进行合理搭配, 并投入运行是由____来完成的.13. 实时系统应具有两个基本特征: 及时性和______.14. 磁带上的文件只能采用_____存取方式.15. 不让死锁发生的策略可以分成静态和动态的两种, 死锁避免属于_____.16. 在UNIX系统中, 文件分成三类, 即普通文件, 目录文件和_____.17. 在磁盘调度策略中有可能使I/O请求无限期等待的调度算法是_____.18. 进程获得了除CPU外的所有资源, 一旦获得CPU即可执行, 这时进程处于_____状态.19. 为实现CPU与外部设备的并行工作, 系统必须引入_____硬件基础.20. 操作系统为保证不经文件拥有者授权, 任何其它用户不能使用该文件所提出的解决措施是_____.21. 两个或两个以上程序在计算机系统中同处于开始和结束之间的状态, 这就称为_____.22. 在操作系统的存储管理中, 存储共享的两个目的是_____和实现进程通信.23. 在存储管理中, 为进程分配内存时, 取满足申请要求且长度最大的空闲区域, 这一算法称为_____.24. 两个或两个以上进程均需要访问的变量成为_____.25. 实时系统应具有两个基本特征:_____和可靠性.26. 磁盘上的文件可以采用_____存取方式.27. 在UNIX文件系统中文件分成三类,即普通文件、_____和特殊文件.28. 用户程序通过_____向操作系统提出各种资源要求和服务请求.29. SPOOLing(同时的外部设备联机操作)技术是关于慢速字符设备如何与计算机主机交换信息的一种典型的_____技术.30. 在页式存储管理中,由_____将用户程序划分为若干相等的页.31. 为防止用户对文件进行非法的或不适宜的访问所采取的措施称为_____.32. 文件的安全性是指抵抗和预防各种物理性破坏及人为性破坏的能力,保证文件安全性常用的措施是_____.33. 在操作系统的存储管理中,由于进行动态不等长存储分配,在内存中形成一些很小的空闲区域,称之为_____.34. 在选择作业调度算法时应该考虑公平性和_____.35. 两个或两个以上的进程不能同时进入关于同一组共享变量的临界区域,否则可能发生与_____有关的错误.36. 用户在一次解题或一个事务处理过程中要求计算机系统所做工作的集合称为_____.37. 缓冲技术中的缓冲池是放在_____中.38. 在存储管理中,引入快表的目的是_____.39. 等待输入输出工作完成的进程,一旦I/O 完成,其状态变为_____.40. 清内存指令只能在_____状态下执行.41. 在虚存系统中不能实现但可以作为衡量其它页面淘汰算法标准的页面淘汰算法是_____.42. 完成发现中断、响应中断任务的是_____.43. 产生死锁的四个必要条件是_____、_____、_____和_____.44. 采用链接结构的文件适合于_____存取.45. 从资源分配的角度可将设备分类为_____、共享设备和_____.47. 进程获得CPU而运行是通过_____得到的.48. 设系统中有N 个进程,则系统中处于等待状态的进程最多为_____个.50. 活动头磁盘的访问时间包括_____、_____和_____.51. 如果信号量S<0,则表示有_____个进程等在S信号量的等待队列上.52. 根据引起中断事件的重要性和紧迫程度,由硬件将中断源划分为若干个级别,称为_____.53. 采用链接结构的文件适合于_____存取方式.54. 在各类通道中支持通道程序并发执行的通道是_____.55. 在虚拟页式存储管理中设置了快表,用于保存正在运行进程页表的子集,通常快表存放在_____中.56. 在虚拟段式存储管理中,若所需页面不在内存则发_____中断.57. 创建进程的主要任务是建立_____.58. 程序中一旦某个位置或数据被访问到,它常常很快又要再次被访问,这一现象称之为程序的_____.59. 在计算机系统中,允许多个程序同时进入内存并运行的技术是_____.60. _____作业调度算法有最短的作业平均周转时间.61. 在操作系统中,不可中断执行的操作称为_____操作.62. 当有一个进程从运行态到等待态,则一定有一个进程_____.63. 活动头磁盘的访问时间包括_____、_____和_____.64. _____存储管理方案解决了外碎片问题.三. 判断题1. 操作系统的所有程序都必须常驻内存.2. 进程获得处理机而运行是通过申请而得到的.3. 通过任何手段都无法实现计算机系统资源之间的互换.4. 进程控制块中的所有信息必须常驻内存.5. 一旦出现死锁, 所有进程都不能运行.6. 所有进程都挂起时, 系统陷入死锁.7. 优先数是进程调度的重要依据, 一旦确定不能改变.8. 同一文件系统中不允许文件同名, 否则会引起混乱.9. 用户程序有时也可以在核心态下运行.10. 虚拟存储系统可以在每一台计算机上实现.11. 进程在运行中, 可以自行修改自己的进程控制块.12. 进程申请CPU得不到满足时, 其状态变为等待态.13. 在虚存系统中, 只要磁盘空间无限大, 作业就能拥有任意大的编址空间.14. 在内存为M的分时系统中, 当注册的用户有N个时,每个用户拥有M/N的内存空间.15. 特殊文件是指其用途由用户特殊规定的文件.16. 由于P、V操作描述同步、互斥等问题的能力不足, 所以有必要引入其它的通讯原语或机制, 如send, receive或Monitor等.17. 大多数虚拟系统采用OPT(优化)淘汰算法是因为它确实可以得到最小的缺页率.18. 实时系统中的作业周转时间有严格的限制.19. 文件的索引表全部存放在文件控制块中.20. 打印机是一类典型的块设备.21. 当一个进程从等待态变成就绪态, 则一定有一个进程从就绪态变成运行态.22. 执行系统调用时可以被中断.23. 在作业调度时, 采用最高响应比优先的作业调度算法可以得到最短的作业平均周转时间.24. 在请求页式存储管理中, 页面淘汰所花费的时间不属于系统开销.25. 进程优先数是进程调度的重要依据, 必须根据进程运行情况动态改变.26. 流式文件是指无结构的文件.27. 参与死锁的所有进程都占有资源.28. 页式存储管理中, 用户应将自己的程序划分成若干相等的页.29. 引入当前目录是为了减少启动磁盘的次数.30. 文件目录必须常驻内存.31. 固定头磁盘存储器的存取时间包括搜查定位时间和旋转延迟时间.32. 在文件系统中, 打开文件是指创建一个文件控制块.33. 存储保护的目的是限制内存的分配.34. 原语和系统调用的主要区别在于两者的实现方法不同.35. 清内存指令只能在管态下执行.36. 在大型多道程序设计系统中, 为充分利用外部设备, 应使运行的若干程序都是I/O 型的.37. 在页式虚拟存储系统中, 页面长度是根据程序长度动态地分配的.38. 如果信号量S的当前值为-5, 则表示系统中共有5个等待进程.39. 磁盘上物理结构为链接结构的文件只能顺序存取.40. 系统处于不安全状态不一定是死锁状态.41. 有m个进程的操作系统出现死锁时, 死锁进程的个数为1<k≤m.42. 进程状态的转换是由操作系统完成的, 对用户是透明的.43. 优先数是进程调度的重要依据, 优先数大的进程首先被调度运行.44. 文件系统的主要目的是存储系统文档.45. 对文件进行读写前,要先打开文件.46. 所谓最近最少使用(LRU)页面调度算法是指将驻留在内存中使用次数最少的页面淘汰掉.47. 由于现代操作系统提供了程序共享的功能,所以要求被共享的程序必须是可再入程序.48. 参与死锁的进程至少有两个已经占有资源.49. 在页式虚拟存储系统中,页面长度固定并且是硬件的设计特性.50. 不可抢占式动态优先数法一定会引起进程长时间得不到运行.51. 设置中断屏蔽指令可以在目态下执行.52. 选择通道主要用于连接低速设备.53. 存储保护的功能是限制内存存取.54. 如果输入输出所用的时间比处理时间短得多,则缓冲区最有效.55. 进程间的互斥是一种特殊的同步关系.56. 所有进程都进入等待状态时,系统陷入死锁.57. 引入缓冲的主要目的是提高I/O设备的利用率.58. 进程从运行状态变为等待状态是由于时间片中断发生.59. 文件目录一般存放在外存.四. 回答下列问题1. (1) 什么是先来先服务的作业调度算法?(2) 什么是短作业优先的作业调度算法?(3) 什么是最高响应比优先的作业调度算法?(4) 试评述以上三者之间的关系.2. (1) 什么是文件的逻辑结构?(2) 什么是文件的物理结构?(3) 什么是文件的存取方式?(4) 试叙述文件的结构与文件存储设备、存取方式之间的关系.3. 试叙述在网络操作系统中, 文件管理应提供哪些功能?4. 死锁的预防, 避免和检测三者有什么不同之处?5. (1) 什么是用户态? (2) 什么是核心态?(3) 通过什么途径可以实现由用户态到核心态的转换?6. 在许多操作系统中, 都支持用户设立当前目录. 问:(1) 什么是当前目录? (2) 设立当前目录的主要好处是什么?7. 多道程序在单CPU上并发运行和多道程序在多CPU上并行执行,这两者在本质上是否相同?为什么?8. 系统产生颠簸(抖动)的原因是什么?系统如何检测颠簸?9. (1) 什么是先来先服务磁盘调度调度算法?(2) 什么是最短寻道时间优先磁盘调度算法?(3) 什么是扫描磁盘调度算法?(4) 试评述以上三者之间的关系.10.请叙述页式存储管理方案的基本工作原理;硬件的支持及其作用;地址映射过程;该存储管理方案的优缺点.11.请叙述虚拟存储管理方案的基本工作原理;页表的内容;缺页中断处理;及可能遇到的性能问题和解决方法.五. 简答题1. 简述SPOOLing(斯普林)系统的工作原理.2.请论述操作系统的发展方向及新技术.3. 为什么在操作系统中引入信号量及P、V操作?4. 在信号量S上执行P、V操作时,S的值发生变化,当S>0,S=0,S<0时,它们的物理意义是什么?P(S)、V(S)的物理意义又是什么?5. 试列举一个日常生活中进程的实例,说明进程间的同步关系.6. 试列举一个日常生活中进程的实例,说明进程间的互斥关系.7.一些操作系统提供了COPY系统调用,用于复制文件(COPY file1 file2).试设计一种实现COPY系统调用的方案(请给出具体设计细节).8.试列举至少8项进程控制块的项目.9.试叙述操作系统中一种用时间换取空间的技术.10.计算机系统采用通道部件后,已能实现CPU与外部设备的并行工作,为什么还要引入多道程序设计?六. 计算题1. 假设一个活动头磁盘有200道, 编号从0-199. 当前磁头正在143道上服务, 并且刚刚完成了125道的请求. 现有如下访盘请求序列(磁道号):86, 147, 91, 177, 94, 150, 102, 175, 130试给出采用下列算法后磁头移动的顺序和移动总量(总磁道数).(1). 先来先服务(FCFS)磁盘调度算法.(2). 最短寻道时间优先(SSTF)磁盘调度算法.(3). 扫描法(SCAN)磁盘调度算法.(假设沿磁头移动方向不再有访问请求时, 磁头沿相反方向移动.)2.有一个虚拟存储系统, 每个进程在内存占有3页数据区、1页程序区. 刚开始时数据区为空. 有以下访页序列:1、5、4、1、2、3、2、1、5、4、2、4、6、5、1试给出下列情形下的缺页次数:(1)系统采用先进先出(FIFO)淘汰算法.(2)系统采用最近最少使用(LRU)淘汰算法.(3)若采用优化(OPT)淘汰算法呢?3. 有个一虚拟存储系统, 每个进程在内存占有3页数据区, 刚开始时数据区为空. 有以下访页序列:2、3、4、5、3、4、1、2、3、5、1、4、2、4、5、1、3、2、1、3试给出下列情形下的缺页次数:(1) 系统采用先进先出(FIFO)淘汰算法.(2) 系统采用最近最少使用(LRU)淘汰算法.(3) 系统采用优化(OPT)淘汰算法.4. 有一个文件系统, 根目录长驻内存, 如图所示:目录文件采用拉链式, 每个磁盘块存放10个下级文件的描述, 最多存放40个下级文件. 若下级文件为目录文件, 上级目录指向该目录文件的第一块, 否则指向普通文件的文件控制块. 普通文件采用三级索引形式, 文件控制块中给出13个磁盘地址, 前10个磁盘地址指出前10页的物理地址, 第11个磁盘地址指向一级索引表, 一级索引表给出256个磁盘地址, 即指出该文件第11页至第266页的地址; 第12个磁盘地址指向二级索引表, 二级索引表中指出256个一级索引表的地址; 第13个磁盘地址指向三级索引表, 三级索引表中指出256个二级索引表的地址.(1) 该文件系统中的普通文件最大可有多少页?(2) 若要读文件/A/D/K/Q中的某一页, 最少要启动磁盘几次? 最多要启动磁盘几次?(3) 若想减少启动磁盘的次数, 可采用什么办法?5. 设系统中有三类资源A、B和C,又设系统中有5个进程P1,P2,P3,P4和P5.在T0时刻系统状态如下:最大需求量已分配资源量剩余资源量A B C A B C A B CP1 8 6 4 1 2 1 2 1 1P2 4 3 3 3 1 1P3 10 1 3 4 1 3P4 3 3 3 3 2 2P5 5 4 6 1 1 3(1) 系统是否处于安全状态?如是,则给出进程安全序列.(2) 如果进程P5申请1个资源类A、1个资源类B和1个资源类C,能否实施分配?为什么?6. 在一个两道的批处理操作系统中,有6个作业进入系统,它们的进入时刻、估计运行时间和优先级如下表所示.作业号进入时刻估计运行时间优先级JOB1 8:00 90分钟 5JOB2 8:10 30分钟 6JOB3 8:30 20分钟 3JOB4 8:50 15分钟 8JOB5 9:20 10分钟 2JOB6 9:40 5分钟 4系统采用短作业优先作业调度算法,作业一旦被调度运行就不再退出.但当有新的作业投入运行时,可以按照优先级进行进程调度.(1)试给出各个作业的运行时间序列.(例如:JOB1:8:00-8:30,9:10-9:20,…)(2)试计算出作业的平均周转时间.7. 有一个文件系统, 根目录长驻内存, 如图所示:目录文件采用链接式, 每个磁盘块存放10个下级文件的描述, 最多存放50个下级文件. 若下级文件为目录文件, 上级目录指向该目录文件的第一块, 否则指向普通文件的文件控制块.(1) 普通文件采用顺序结构,若要读文件\A\D\G\H\K中的第375页,最少要启动磁盘几次? 最多要启动磁盘几次?(2) 普通文件采用链接结构,若要读文件\A\D\G\H\K中的第100页, 最少要启动磁盘几次? 最多要启动磁盘几次?8. 有一个虚拟存储系统采用最近最少使用(LRU)页面淘汰算法,每个作业占3页主存,其中一页用来存放程序和变量i,j(不作他用).每一页可存放150个整数变量. 某作业程序如下:VAR A:ARRAY[1..150,1..100] OF integer;i,j:integer;FOR i:=1 to 150 DOFOR j:=1 to 100 DOA[i,j]:=0;设变量i,j放在程序页中,初始时,程序及变量i,j已在内存,其余两页为空.矩阵A 按行序存放.(1)试问当程序执行完后,共缺页多少次?(2)最后留在内存中的是矩阵A的哪一部分?9. 设系统中有4个进程P1,P2,P3和P4.在某一时刻系统状态如下:最大需求量已分配资源量P1 6 2P2 7 4P3 3 2P4 2 0剩余资源量 1(1) 系统是否处于安全状态?如是,则给出所有的进程安全序列.(2) 如果进程P4申请2个资源,能否实施分配?为什么?七. 关于P、V操作:1. 为什么说P、V操作必须设计成原语(即同一信号量上的P、V操作必须互斥)?2. 有四个进程A、B、C、D(1) 进程A通过一个缓冲区不断地向进程B、C、D发送信息, A 每向缓冲区送入一个信息后, 必须等进程B、C、D都取走后才可以发送下一个信息, B、C、D对A 送入的每一信息各取一次, 试用P、V操作实现它们之间的正确通讯.(2) 试用最少个数的信号量实现进程A、B、C、D间的正确通讯.3. 写出P、V操作的定义.4. 有n+1个进程A1, A2, ...An 和 B:(1) A1,...An通过同一个缓冲区各自不断地向B发送消息, B不断地取消息, 它必须取走发来的每一个消息. 刚开始时缓冲区为空. 试用P、V操作正确实现之.(2) 若缓冲区个数增至m个, 试用P、V操作实现正确的通讯.5. 请给出V操作的定义.6. 用P、V操作实现PA, PB两个进程的同步问题如下所示:其中, 信号S1, S2的初值均为1. 试问该解法正确吗? 请说明理由.7. 把学生和监考老师都看作进程, 学生有N人, 教师1人. 考场门口每次只能进出一个人, 进考场原则是先来先进. 当N个学生都进入考场后, 教师才能发卷子. 学生交卷后可以离开考场. 教师要等收上来全部卷子并封装卷子后才能离开考场.(1) 问共需设置几个进程?(2) 试用P、V操作解决上述问题中的同步和互斥关系.8. 某商店有两种食品A和B, 最大数量各为m个. 该商店将A,B两种食品搭配出售, 每次各取一个. 为避免食品变质, 遵循先到食品先出售的原则, 有两个食品公司分别不断地供应A,B两种食品(每次一个). 为保证正常销售, 当某种食品的数量比另一种的数量超过k(k<m)个时, 暂停对数量大的食品进货, 补充数量少的食品.(1) 问共需设置几个进程?(2) 试用P,V操作解决上述问题中的同步和互斥关系.9. 两个进程PA 、PB通过两个FIFO(先进先出)缓冲区队列连接(如图).PA 从Q2取消息,处理后往Q1发消息,PB从Q1取消息,处理后往Q2发消息,每个缓冲区长度等于传送消息长度. Q1队列长度为n,Q2队列长度为m. 假设开始时Q1中装满了消息,试用P、V操作解决上述进程间通讯问题.1.(及时响应)2.(中断)3. 进程控制块PCB)4.(中断处理)5.(作业控制块JCB)6.(管程)7.(限长寄存器或长度寄存器)8.(按内容并行查找)9.(地址越界)10.(首块地址和文件长度)11.(死锁预防)12.(作业调度算法)13.(可靠性)14.(顺序)15.(动态的)16.(特殊文件)17. (最短寻道时间优先)18.(就绪)19.(通道)20.(文件保密)21.(并发)22.(节省内存)23.(最坏适配算法)24.(共享变量)25. 实时系统应具有两个基本特征:_____和可靠性.(及时性)26. 磁盘上的文件可以采用_____存取方式.(随机)27.(目录文件)28.(系统调用)29.(虚设备)30.(系统)31. (文件保密)32.(文件备份,文件转储)33.(碎片)34.(高效性)36.(作业)37.(内存)38.(加快地址映射速度)三. 判断题1. 操作系统的所有程序都必须常驻内存.╳2. 进程获得处理机而运行是通过申请而得到的. ╳3. 通过任何手段都无法实现计算机系统资源之间的互换. ╳4. 进程控制块中的所有信息必须常驻内存. ╳5. 一旦出现死锁, 所有进程都不能运行. ╳6. 所有进程都挂起时, 系统陷入死锁. ╳7. 优先数是进程调度的重要依据, 一旦确定不能改变. ╳8. 同一文件系统中不允许文件同名, 否则会引起混乱. ╳9. 用户程序有时也可以在核心态下运行. ╳10. 虚拟存储系统可以在每一台计算机上实现. ╳11. 进程在运行中, 可以自行修改自己的进程控制块. ╳12. 进程申请CPU得不到满足时, 其状态变为等待态. ╳13. 在虚存系统中, 只要磁盘空间无限大, 作业就能拥有任意大的编址空间. ╳14. 在内存为M的分时系统中, 当注册的用户有N个时,每个用户拥有M/N的内存空间.15. 特殊文件是指其用途由用户特殊规定的文件. ╳16. 由于P、V操作描述同步、互斥等问题的能力不足, 所以有必要引入其它的通讯原语或机制, 如send, receive或Monitor等. ╳17. 大多数虚拟系统采用OPT(优化)淘汰算法是因为它确实可以得到最小的缺页率. ╳18. 实时系统中的作业周转时间有严格的限制. ╳19. 文件的索引表全部存放在文件控制块中. ╳20. 打印机是一类典型的块设备. ╳21. 当一个进程从等待态变成就绪态, 则一定有一个进程从就绪态变成运行态. ╳22. 执行系统调用时可以被中断. √23. 在作业调度时, 采用最高响应比优先的作业调度算法可以得到最短的作业平均周转时间. ╳24. 在请求页式存储管理中, 页面淘汰所花费的时间不属于系统开销. ╳25. 进程优先数是进程调度的重要依据, 必须根据进程运行情况动态改变. ╳26. 流式文件是指无结构的文件. √27. 参与死锁的所有进程都占有资源. ╳28. 页式存储管理中, 用户应将自己的程序划分成若干相等的页. ╳29. 引入当前目录是为了减少启动磁盘的次数. √30. 文件目录必须常驻内存. ╳31. 固定头磁盘存储器的存取时间包括搜查定位时间和旋转延迟时间. ╳32. 在文件系统中, 打开文件是指创建一个文件控制块. ╳33. 存储保护的目的是限制内存的分配. ╳34. 原语和系统调用的主要区别在于两者的实现方法不同. ╳35. 清内存指令只能在管态下执行. √36. 在大型多道程序设计系统中, 为充分利用外部设备, 应使运行的若干程序都是I/O 型的. √37. 在页式虚拟存储系统中, 页面长度是根据程序长度动态地分配的. ╳38. 如果信号量S的当前值为-5, 则表示系统中共有5个等待进程. ╳39. 磁盘上物理结构为链接结构的文件只能顺序存取. √40. 系统处于不安全状态不一定是死锁状态. √41. 有m个进程的操作系统出现死锁时, 死锁进程的个数为1<k≤m. √42. 进程状态的转换是由操作系统完成的, 对用户是透明的. √43. 优先数是进程调度的重要依据, 优先数大的进程首先被调度运行. ╳44. 文件系统的主要目的是存储系统文档. ╳45. 对文件进行读写前,要先打开文件. √46. 所谓最近最少使用(LRU)页面调度算法是指将驻留在内存中使用次数最少的页面淘汰掉. ╳47. 由于现代操作系统提供了程序共享的功能,所以要求被共享的程序必须是可再入程序. √48. 参与死锁的进程至少有两个已经占有资源. √49. 在页式虚拟存储系统中,页面长度固定并且是硬件的设计特性. √50. 不可抢占式动态优先数法一定会引起进程长时间得不到运行. ╳51. 设置中断屏蔽指令可以在目态下执行. ╳52. 选择通道主要用于连接低速设备. ╳53. 存储保护的功能是限制内存存取. √54. 如果输入输出所用的时间比处理时间短得多,则缓冲区最有效. ╳55. 进程间的互斥是一种特殊的同步关系. √56. 所有进程都进入等待状态时,系统陷入死锁. ╳57. 引入缓冲的主要目的是提高I/O设备的利用率. ╳58. 进程从运行状态变为等待状态是由于时间片中断发生. ╳59. 文件目录一般存放在外存. √答案:(1)86,147,91,177,94,150,102,175,130(2)当前磁头在143道上:147,150,130,102,94,91,86,175,177(3)当前磁头在143道上,并且刚刚完成125道的请求147,150,175,177,130,102,94,91,86计算移动总量略六.5答案:(1)最大需求量已分配资源量剩余资源量尚需要量A B C A B C A B C A B CP1 8 6 4 1 2 1 2 1 1 7 4 3 P2 4 3 3 3 1 1 1 2 2 P3 10 1 3 4 1 3 6 0 0 P4 3 3 3 3 2 2 0 1 1 P5 5 4 6 1 1 3 4 3 3 系统是处于安全状态,安全序列为:P4,P2,P1,P3,P5(2)P5申请(1,1,1)最大需求量已分配资源量剩余资源量尚需要量A B C A B C A B C A B CP1 8 6 4 1 2 1 1 0 0 7 4 3 P2 4 3 3 3 1 1 1 2 2 P3 10 1 3 4 1 3 6 0 0 P4 3 3 3 3 2 2 0 1 1 P5 5 4 6 2 2 4 3 2 2 不能实施分配,因为分配后找不到安全序列,系统将处于不安全状态. 六.6 (1)各个作业的运行时间序列为:JOB1 8:00-8:10,8:40-10:00JOB2 8:10-8:40JOB3 10:05-10:25JOB4 10:25-10:50JOB5 10:50-11:00JOB6 10:00-10:05(2)根据公式计算(略).。
操作系统磁盘调度算法例题讲解
操作系统磁盘调度算法例题讲解磁盘调度算法是操作系统中一个重要的组成部分,其主要任务是根据不同的策略来优化磁盘访问的效率,提高系统的性能。
在现代计算机系统中,磁盘调度算法扮演着至关重要的角色,不仅直接影响到系统的响应速度和吞吐量,同时也对系统的稳定性和可靠性产生着重要影响。
因此,研究和了解磁盘调度算法的原理和实现是非常有必要的。
磁盘调度算法通常可以分为多种类型,每种类型都有自己的特点和适用场景。
在实际应用中,合理选择和使用适合当前系统需求的磁盘调度算法可以有效提升系统的性能和稳定性。
本文将针对几种常见的磁盘调度算法进行详细讲解,包括先进先出(FCFS)、最短寻道时间优先(SSTF)、扫描(SCAN)、循环扫描(C-SCAN)、最短服务时间优先(SSTF)等,并结合实例对其进行深入分析。
先进先出(FCFS)是最简单的磁盘调度算法之一,它按照磁盘请求的顺序进行调度,即先到达的请求先服务。
这种算法的优点是实现简单,适用于小负载情况下。
然而,FCFS算法存在一个明显的缺点,即平均响应时间较长,因为它无法考虑磁头移动的距离而导致延迟较大。
在某些情况下,FCFS算法可能导致磁头频繁在磁道之间移动,降低了系统的效率。
最短寻道时间优先(SSTF)是一种更为优化的磁盘调度算法,它总是选择离当前磁头位置最近的请求进行处理。
SSTF算法可以有效减少磁头的移动距离,从而降低了平均寻道时间和响应时间,提高了系统的性能。
然而,SSTF算法可能导致一些请求长时间等待,造成部分磁道请求的饥饿现象。
因此,在实际应用中,需要权衡考虑不同算法之间的优劣,选择最适合当前系统需求的算法。
扫描(SCAN)算法是一种经典的磁盘调度算法,它模拟磁头在盘面上的扫描运动,按一个方向移动磁头直到碰到磁盘的边界,然后反向继续扫描。
SCAN算法可以有效减少寻道时间,提高磁盘的利用率。
然而,SCAN算法存在一个缺点,即可能导致中间磁道请求长时间等待的问题。
最短寻道时间优先算法例题
最短寻道时间优先算法例题最短寻道时间优先算法(Shortest Seek Time First,SSTF)是磁盘调度算法中的一种,用于提高磁盘磁头寻道的效率。
该算法的目标是使磁头移动的距离最小化,从而减少寻道时间。
SSTF算法的工作原理如下:当需要进行磁盘寻道操作时,算法会选择距离当前磁道位置最近的磁道进行读写操作。
具体来说,算法会将请求队列中的磁道按照与当前磁道的距离进行排序,然后按照排序后的顺序进行读写操作。
当一个磁道被访问完成后,算法会更新当前磁道位置,并继续选择最近的磁道进行读写。
下面是一个SSTF算法的例题:假设磁盘上有以下请求队列:98, 183, 37, 122, 14, 124, 65, 67当前磁头位置为53。
按照SSTF算法的原则,我们需要计算出这些请求磁道与当前磁道之间的距离,并按照距离进行排序。
53 - 98 = -4553 - 183 = -13053 - 37 = 1653 - 122 = -6953 - 14 = 3953 - 124 = -7153 - 65 = -1253 - 67 = -14根据距离的绝对值进行排序后的结果为:37, 65, 67, 14, 98, 53, 122, 124, 183按照排序后的顺序,我们依次进行读写操作。
首先访问磁道37,然后是65,67,14,98,53,122,124,183。
通过SSTF算法,我们可以看到,磁头的移动距离是最小的,从而可以减少寻道时间,提高磁盘的读写效率。
需要注意的是,SSTF算法存在一定的问题。
当请求队列中的磁道分布不均匀时,可能会出现某些磁道长时间得不到访问的情况,即产生了'饥饿'现象。
为了解决这个问题,可以采用其他的磁盘调度算法,如扫描算法(SCAN)、循环扫描算法(C-SCAN)等。
最短寻道时间算法
最短寻道时间算法
最短寻道时间算法是一种用于解决寻道时间问题的算法。
寻道时间问题是指在一个给定的图中,找到一条从起始点到终点的最短路径上的时间。
这个问题可以通过广度优先搜索(BFS)来解决,但是由于图的规模通常非常大,因此BFS的时间复杂度可能会导致问题的无解性。
为了解决这个问题,研究人员提出了最短寻道时间算法。
该算法使用了一种高效的数据结构来存储图的信息,从而可以在较短的时间内找到答案。
该算法的基本思想是,首先,将起始点加入到系统中,并将其标记为“已访问”。
然后,从系统中的所有节点中选择一个距离起始点最短的节点,并将其加入到系统中,同时将该节点的距离增加到起始点的距离中。
接下来,从系统中的所有节点中选择一个距离起始点最短的节点,并将其加入到系统中,同时将该节点的距离增加到起始点的距离中。
重复这个过程,直到起始点被访问过为止。
该算法的时间复杂度为$O(Q\sqrt{Q})$其中$Q$是图的节点数。
这个时间复杂度可以通过使用分治法来缩短。
具体来说,将$Q$个节点分成若干个连通块,对每个连通块使用最短寻道时间算法来计算最短路径。
由于每个连通块都包含图的一部分,因此使用这种方法可以保证在$O(Q)$时间内得到答案。
该算法可以保证答案的正确性,并且具有最优的时间复杂度。
它的优点在于,可以在较大的图中快速地找到答案,而且不需要使用分治法来缩短时间复杂度。
因此,最短寻道时间算法可以作为一个有效的解决方案,适用于大规模的图问题。
sstf调度算法
sstf调度算法
sstf调度算法是一种磁盘调度算法,是磁盘调度算法中的一种
最短寻道时间优先算法。
该算法的核心思想是优先选取离当前磁头位置最近的请求进行服务,从而减少磁头的移动距离,提高磁盘访问效率。
具体来说,当有多个磁盘读写请求时,sstf调度算法会根据当
前磁头位置选择距离最短的请求进行服务。
在选择下一个服务请求时,sstf算法会比较当前磁头位置与所有未完成请求的距离,选择距离
最短的那个请求进行服务,直到完成所有请求。
与其他磁盘调度算法相比,sstf调度算法具有以下优点:
1. 磁头移动距离较短,可以有效缩短磁盘访问时间。
2. 算法简单,易于实现。
然而,sstf调度算法也存在一些缺点:
1. 对于密集请求的情况,容易出现'饥饿'现象,即某些请求会
一直被忽略,导致等待时间过长。
2. 该算法只考虑了距离因素,而未考虑优先级等其他因素,可
能会导致某些请求长时间等待。
综上所述,sstf调度算法是一种简单而有效的磁盘调度算法,
适用于某些特定场景下的磁盘访问优化。
但在实际应用中,需要根据具体情况选择合适的磁盘调度算法。
- 1 -。
sstf磁盘调度算法lru算法
sstf磁盘调度算法lru算法
SSTF(最短寻道时间优先)和LRU(最近最久未使用)是两种常用的磁盘调度算法。
SSTF算法根据进程请求访问磁盘的先后顺序进行调度,优先满足当前磁头所在磁道距离最近的请求。
然而,这种算法可能导致优先级低的进程发生“饥饿”现象,因为新进程请求到达,且其所要访问的磁道与磁头当前所在的磁道距离较近,必先优先满足。
LRU算法则是在置换时淘汰最近一段时间最久没有使用的页面,即选择上次使用距当前最远的页面淘汰。
这种算法相对更符合用户的行为习惯,因为用户通常会继续使用最近使用的页面。
以上内容仅供参考,如需更多信息,建议查阅计算机科学相关书籍或咨询专业人士。
最短寻道时间优先调度算法
最短寻道时间优先调度算法好啦,今天咱们来聊聊“最短寻道时间优先调度算法”,听上去有点高大上对吧?其实这东西就像咱们日常生活中排队一样,谁的事儿快,谁就先来。
想象一下,假如你在咖啡店排队,前面有个人点了十种饮料,后面有个小伙伴只要一杯美式,显然后者的等候时间会短得多。
这个算法的原理就是让那些“点单”速度快的任务先上,这样就能减少大家的等待时间。
你知道,生活中总有些事情像是那个让人无比抓狂的长队,前面人慢得像蜗牛。
哎呀,这样一来,咱们就得耐心等着,心里可能会默默吐槽:“这到底是什么节奏?”所以,最短寻道时间优先调度算法就像个调皮的小精灵,把那些简单的事儿推到前面,让复杂的慢慢来。
就像你在餐厅里,服务员把那些好下手的菜先端上来,那样吃得心里也舒服。
说到这里,咱们还得提提这个算法的优缺点。
优点嘛,显而易见,效率高呀,等候时间短,大家都开心,简直是“皆大欢喜”的局面。
你想想,在学校里,老师给咱们批改作业,如果先批那些简单的,哇,心里乐得跟喝了蜜似的!但是,缺点也不能忽视哦,复杂的任务可能会一直拖着,最后就成了“火上浇油”,让人心里有点不安,难免就有人说:“怎么又不动了?”咱们还得考虑公平性的问题。
想想看,假如总是把简单的任务排在前面,时间长了,难免就有人说:“哎,这样不太公平吧?”这就像是你和小伙伴玩游戏,老是让一个人先出牌,慢慢地大家都会觉得有点失衡,这可就不好了。
想要让大家都满意,就得在效率和公平之间找到个平衡点。
毕竟,谁都不想被遗忘在角落里。
还有哦,咱们得想象一下,假如这个算法用在交通管理上。
想象一下,红绿灯控制,如果能让那些急着去上班的人优先通行,哇,简直就是“路畅通,心情爽”的节奏!可是,咱们又得考虑那些慢慢悠悠的步行者,不能让他们一直在路口晃悠,得有个合理的调度。
生活中很多事儿都需要这样灵活处理,不然就容易“翻车”。
要说这个算法的应用,那简直是无处不在。
比如说,咱们的电脑在处理任务时,也是用的类似的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短作业优先调度算法
最短作业优先(Shortest Job First, SJF)调度算法同样也是顾名思义,它会优先选择运行时间最短的进程来运行,这有助于提高系统的吞吐量。
这显然对长作业不利,很容易造成一种极端现象。
比如,一个长作业在就绪队列等待运行,而这个就绪队列有非常多的短作业,那么就会使得长作业不断的往后推,周转时间变长,致使长作业长期不会被运行。
高响应比优先调度算法
前面的「先来先服务调度算法」和「最短作业优先调度算法」都没有很好的权衡短作业和长作业。
那么,高响应比优先(Highest Response Ratio Next, HRRN)调度算法主要是权衡了短作业和长作业。
每次进行进程调度时,先计算「响应比优先级」,然后把「响应比优先级」最高的进程投入运行,「响应比优先级」的计算公式:
从上面的公式,可以发现:
1.如果两个进程的「等待时间」相同时,「要求的服务时间」越短,「响应比」就越高,这样短作业的进程容易被选中运行;
2.如果两个进程「要求的服务时间」相同时,「等待时间」越长,「响应比」就越高,这就兼顾到了长作业进程,因为进程的响应比可以随时间等待的增加而提高,当其等待时间足够长时,其响应比便可以升到很高,从而获得运行的机会;。