化工原理课程设计---精馏塔

合集下载

化工原理课程设计(化工机械设计部分)精馏塔

化工原理课程设计(化工机械设计部分)精馏塔

化工机械设计部分设计条件:设计压力0.1Mpa ,工作温度130℃,设计温度150℃,介质名称为苯—氯苯,介质密度为973㎏/3m ,基本风压300N/㎡[1],地震烈度为8,场地类别Ⅱ,塔板数量22,塔高26m ,保温层材料厚度为100mm ,保温层密度为300㎏/3m一 塔体及封头厚度设计1壳体材料选取 该塔工作温度为130℃,设计压力为0.12Mpa ,塔体内径3400mm ,塔高21米。

介质苯-氯苯有轻微的腐蚀性,选用强度较好的16MnR ,16MnR 在设计温度下的许用应力[]t σ=170Mpa ,Rel=345Mpa ,腐蚀裕量2C =2mm ,采用双面对接焊缝,局部无损探伤,焊接系数为Φ=1.02塔体厚度计算计算压力:0.12c p M Pa = 2C mm = []170tM Pa σ= D=1.0φ= 圆筒的计算厚度:]0.124600 1.35217010.12c itcp D m mp δσφ⨯===⨯⨯--设计厚度:2 1.352 3.35d C mm δδ=+=+=考虑到其受到风载荷、地震载荷、偏心载荷和介质压力作用,取名义厚度:8n mm δ= 有效厚度:.8 2.8 5.2e n C mm δδ=-=-=3封头厚度计算 (封头采用标准椭圆形封头,材料与筒体相同)计算压力:0.12c p M Pa = 2C mm = []170tM Pa σ= 4600i D mm = 1φ=封头厚度:]0.14600 1.35217010.50.120.5c itcp D m mp δσφ⨯===⨯⨯-⨯-设计厚度:2 1.352 3.35d C mm δδ=+=+= 取名义厚度:8n mm δ=有效厚度:.8 2.8 5.2e n C mm δδ=-=-=二 塔设备质量载荷计算1 筒体、圆筒、封头、裙座的质量【8】()2222000.785(4.6164.6)227.851000236254im D D H kgπρ=⨯-=⨯-⨯⨯⨯=2附件的质量010.252375a m m kg ==3塔内构件的质量筛板塔塔盘单位质量265/N q kg m = 塔内构件的质量:22020.785 4.62265237534i m D Nq kg πN ==⨯⨯⨯=4 保温层的质量22220302()()0.785(4.816 4.616)(277)300237534i m D D H H kgπρ=⨯-⨯-⨯=⨯-⨯-⨯=5平台、扶梯的质量查得平台单位质量2150/P q kg m = 笼式扶梯单位质量40/F q kg m = 其中平台数3n =,笼式扶梯高度为26000mm 平台、扶梯的质量㎏()()222204002340210.785 4.6162 4.616150389754f p m q H D D q kgπ⎡⎤⎡⎤=⨯++-⨯⨯=⨯+⨯+-⨯⨯=⎣⎦⎣⎦6操作时物料的质量220510.785 4.60.04422973156454i m D h kg πρ==⨯⨯⨯⨯=7水压试验质量220.785 4.6(267)1000315604w i w m D H kg πρ==⨯⨯-⨯=8 操作质量:0010203040586345 am m m m m m m kg =+++++=9 全塔最大质量m max=m01+ m02+ m03+ m04+ m a+ m w=377326 10 全塔最小质量m min =m01+0.2 m02+ m03+ m04=43256kg计算前先对塔进行分段,以地面为0-0截面,裙座人孔为1-1截面,塔低封头焊缝为2-2截面,筒体分为两段,总共四段。

化工原理课程设计——精馏塔设计

化工原理课程设计——精馏塔设计

南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。

精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。

本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。

首先,我们来介绍一下精馏塔的原理。

精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。

在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。

其次,我们将介绍精馏塔的结构。

精馏塔通常由塔底、塔体和塔顶三部分组成。

塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。

此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。

最后,我们将讨论精馏塔的设计。

精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。

在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。

此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。

总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。

通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

精馏塔设计化工原理课程设计

精馏塔设计化工原理课程设计

目录一.设计任务及要求 ............................................................................................3 二.概述 ...............................................................................................................3 三.设计依据 .......................................................................................................4 五.操作条件的计算 .. (4)1.塔型选择 ....................................................................................................................................... 42.1 操作压力 ................................................................................................................................... 5 2.2 进料状态 ................................................................................................................................... 5 2.3 加热方式 ................................................................................................................................... 5 2.4 热能利用 ................................................................................................................................... 53.最小回流比及操作回流比的确定 ............................................................................................... 6 3.1逐板计算: ................................................................................................................................ 6 3.2全塔效率的估算 ........................................................................................................................ 7 3.3实际塔板数P N (8)4.全凝器冷凝介质的消耗量 ........................................................................................................... 8 5.热能利用 (8)六.精馏塔主体尺寸的计算 (9)1.精馏段与提馏段的体积流量 ....................................................................................................... 9 2.塔径的计算 ................................................................................................................................... 9 3.塔高的计算 ................................................................................................................................. 12 4.液流型式的选择 ......................................................................................................................... 12 5.溢流堰(出口堰)的设计 (13)(1).堰长W l : (13)l W =(0.6~0.8)D=0.7×1600=1120mm (13)(2).堰上液层高度h OW : (13)6.塔板设计 ..................................................................................................................................... 14 6.1塔板尺寸 .................................................................................................................................. 15 6.2降液管底隙高度h0 ................................................................................................................. 15 6.3板结构的选择 .......................................................................................................................... 16 6.4板材料的选择 .......................................................................................................................... 16 6.5板基本结构的选择 .................................................................................................................. 16 6.6筛孔数n . (16)7.塔板的流体力学验算 (17)7.1气体通过塔板的压强降:ph ,m 液柱 (17)7.2降液管内液体高度(液泛or 淹塔) (19)7.3雾沫夹带 (20)7.4漏液点气速uOW (20)八.筛板塔的辅助设备 (21)1.配管 (21)2.储罐 (22)3.换热器 (22)八.设计评价 (22)九.参考文献 (23)一.设计任务及要求原料:乙醇~水溶液,年产量48000吨乙醇含量:33%(质量分数),原料液温度:42℃ 设计要求:塔顶的乙醇含量不小于90%(质量分数) 塔底的乙醇含量不大于0.5%(质量分数) 乙醇-水相图:0.00.20.40.60.81.00.00.20.40.60.81.0YX二.概述乙醇是很常见的一种化工产品,它有着广泛的用途,主要有:消毒剂,药物使用,饮料,基本有机化工原料(乙醇可用来制取乙醛、乙醚、乙酸乙酯、乙胺等化工原料,也是制取、染料、涂料、洗涤剂等产品的原料),汽车燃料(乙醇可以调入汽油,作为车用燃料),稀释剂,有机溶剂,涂料溶剂等。

化工原理课程设计精馏塔设计9724

化工原理课程设计精馏塔设计9724

塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
R m in —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L LD
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型
加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器进 行选型设计。
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量, m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2024/7/16
5、降液管的设计
(1)、降液管的宽度Wd 与截面积 Af
可根据堰长与塔径比值 lW ,查图求取。 D
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~25
900
7 以下
7~50
1000 1200
7 以下 9 以下
45 以下 9~70
1400
9 以下
70 以下

化工原理课程设计--丙酮水连续精馏塔的设计

化工原理课程设计--丙酮水连续精馏塔的设计

07 安全环保措施与节能优化 建议
安全防护措施考虑
防火防爆措施
采用防爆电器、设置可燃气体检 测报警装置、确保塔内压力稳定 等,以防止火灾和爆炸事故的发 生。
操作安全
制定严格的操作规程,对操作人 员进行专业培训,确保他们熟悉 设备的操作和维护,减少人为操 作失误。
设备安全
选用高质量的材料和可靠的制造 工艺,确保设备的稳定性和安全 性;对关键设备进行定期检查和 维护,及时发现并处理潜在的安 全隐患。
根据冷却水温度、冷却水量、蒸汽量等条件,计算冷凝器传热面积 、冷却水流速等参数。
再沸器
根据加热蒸汽量、加热温度等条件,计算再沸器传热面积、加热蒸 汽流速等参数。
辅助系统(如冷凝器、再沸器等)设计
冷凝器设计
选择合适的冷凝器类型(如列管式、板式等),确定冷却 水进出口温度、冷却水量等参数,进行传热计算和结构设 计。
产品收集
塔顶蒸出的丙酮经过冷凝器冷凝 后收集,塔底排出的水经过处理
后排放或回收利用。
操作条件选择
操作压力
根据丙酮和水的性质及工艺要求 ,选择合适的操作压力。一般来
说,常压精馏可以满足要求。
操作温度
根据丙酮和水的沸点及传质传热要 求,选择合适的操作温度。通常, 操作温度略高于丙酮的沸点。
回流比
回流比对精馏塔的分离效果和能耗 有重要影响。在保证分离效果的前 提下,应尽量降低回流比以减少能 耗。
THANKS FOR WATCHING
感谢您的观看
对设计结果进行仿真验证,分析 设计方案的可行性和经济性。
02 精馏塔工艺设计
工艺流程确定
原料预处理
将丙酮和水按一定比例混合,经 过预热器加热至适宜温度,进入

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计任务书1.设计题目:分离乙醇—正丙醇二元物系旳浮阀式精馏塔2.原始数据及条件:进料:乙醇含量45%(质量分数,下同),其他为正丙醇分离规定:塔顶乙醇含量 93%;塔底乙醇含量 0.01%生产能力:年处理乙醇-正丙醇混合液 25000 吨,年动工 7200 小时操作条件:间接蒸汽加热;塔顶压强 1.03atm(绝压);泡点进料; R=53.设计任务:⑴完毕该精馏塔旳各工艺设计,包括设备设计及辅助设备选型。

⑵画出带控制点旳工艺流程图、塔板版面布置图、精馏塔设计条件图。

⑶写出该精馏塔旳设计阐明书,包括设计成果汇总和设计评价。

概述本次设计针对二元物系旳精馏问题进行分析、计算、核算、绘图,是较完整旳精馏设计过程。

精馏设计包括设计方案旳选用,重要设备旳工艺设计计算、辅助设备旳选型、工艺流程图旳制作、重要设备旳工艺条件图等内容。

通过对精馏塔旳核算,以保证精馏过程旳顺利进行并使效率尽量旳提高。

本次设计成果为:理论板数为 20 块,塔效率为 42.2%,精馏段实际板数为 40块,提馏段实际板数为 5 块,实际板数 45 块。

进料位置为第 17 块板,在板式塔重要工艺尺寸旳设计计算中得出塔径为 0.8 米,设置了四个人孔,塔高 22.19 米,通过浮阀板旳流体力学验算,证明各指标数据均符合原则。

关键词:二元精馏、浮阀精馏塔、物料衡算、流体力学验算。

目录第一章绪论 (5)第二章塔板旳工艺设计 (7)一、精馏塔全塔物料衡算 (7)二、乙醇和水旳物性参数计算 (7)1.温度 (7)2.密度 (8)三、理论塔板旳计算 (11)四、塔径旳初步计算 (12)五、溢流装置 (14)六、塔板分布、浮阀数目与排列 (15)第三章塔板旳流体力学计算 (16)一、气相通过浮阀塔板旳压降 (16)二、淹塔 (17)三、物沫夹带 (18)四、塔板负荷性能图 (19)1.物沫夹带线 (19)2.液泛线 (19)3.液相负荷上限 (20)4.漏液线 (20)5.液相负荷下限 (20)第四章塔附件旳设计 (21)一、接管 (21)二、筒体与封头 (23)三、除沫器 (23)四、裙座 (24)五、人孔 (24)第五章塔总体高度旳设计 (24)一、塔旳顶部空间高度 (24)二、塔总体高度 (24)第六章附属设备旳计算 (24)8.1热量衡算 (24)8.1.10℃旳塔顶气体上升旳焓Qv (24)258.1.2回流液旳焓QR..................................................................8.1.3塔顶馏出液旳焓Q D (25)8.1.4冷凝器消耗旳焓Q C (25)8.1.5进料口旳焓Q F (25)8.1.6塔釜残液旳焓Q W (26)8.1.7再沸器Q B (26)8.2冷凝器旳设计 (26)8.3冷凝器旳核算 (27)8.4泵旳选择 (27)浮阀塔工艺设计计算成果列表 (28)重要符号阐明 (29)参照文献 (31)第一章绪论精馏旳基本原理是根据各液体在混合液中旳挥发度不一样,采用多次部分汽化和多次部分冷凝旳原理来实现持续旳高纯度分离。

化工原理课程设计--精馏塔及其主要附属设备设计

化工原理课程设计--精馏塔及其主要附属设备设计

目录摘要 (2)前言 (3)第一章精馏塔及其主要附属设备设计 (4)第二章精馏塔的设计计算 (5)2.1 精馏流程的确定 (5)2.2 塔的物料衡算 (5)2.3 塔板数的确定 (6)2.4 塔工艺条件及物性数据计算 (8)2.4.1 理论板N T的求法 (8)2.4.2 全塔效率T E (9)2.4.3 实际板数N (10)第三章精馏塔气液负荷计 (11)第四章塔和塔板的主要工艺尺寸的计算 (12)4.1塔径D (13)4.2溢流装置 (13)4.3塔板布置 (15)4.4液相负荷上限线 (15)4.5塔有效高度 (16)第五章精馏塔的工艺设计计算结果总表 (20)第六章精馏塔的的附属设备及接管尺寸 (21)参考文献 (24)附录1 中文翻译 (25)附录2 英文原文 (25)摘要塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。

板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。

此外,还要求不易堵塞、耐腐蚀等。

板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。

工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等关键字精馏塔;浮阀塔;板式精馏塔;化工生产前言化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。

化工原理课程设计精馏塔cad

化工原理课程设计精馏塔cad

化工原理课程设计精馏塔cad一、课程目标知识目标:1. 理解精馏塔的基本化工原理,掌握其结构与功能的关系;2. 学习并掌握使用CAD软件进行精馏塔的设计与绘制;3. 了解精馏塔在化工生产中的应用及其对分离效果的影响。

技能目标:1. 能够运用化工原理知识,进行精馏塔的初步设计与参数计算;2. 掌握CAD软件的基本操作,独立完成精馏塔的三维模型构建和工程图绘制;3. 培养解决实际工程问题、团队协作和动手操作的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学习热情;2. 增强学生的环保意识,认识到化工技术在环保领域的重要作用;3. 培养学生的创新意识和工程思维,提高对工程问题的解决能力。

课程性质:本课程为实践性较强的课程,结合化工原理与CAD软件应用,以实际工程案例为背景,培养学生的实际操作能力。

学生特点:学生具备一定的化工原理基础知识,但对实际工程设计和CAD软件操作相对陌生。

教学要求:教师需结合学生特点,采用案例教学、任务驱动、分组合作等教学方法,引导学生掌握课程内容,实现课程目标。

通过课程学习,使学生在知识、技能和情感态度价值观方面得到全面提升。

后续教学设计和评估将以具体学习成果为导向,确保课程目标的实现。

二、教学内容1. 精馏塔基本原理:- 精馏塔的工作原理与结构特点(对应教材第3章第2节);- 精馏过程中的相平衡与物料平衡(对应教材第3章第3节)。

2. 精馏塔设计与参数计算:- 精馏塔的设计方法与步骤(对应教材第4章第1节);- 精馏塔关键参数的计算,包括理论板数、回流比等(对应教材第4章第2节)。

3. CAD软件操作与应用:- CAD软件的基本操作与功能介绍(对应教材附录A);- 精馏塔三维模型构建与工程图绘制(结合教材实例与实际案例)。

4. 实践操作与案例分析:- 案例分析:精馏塔设计在化工生产中的应用(结合教材第5章实例);- 实践操作:分组进行精馏塔设计与绘制,培养实际操作能力。

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计-乙醇-水精馏塔设计.doc化工原理课程设计:乙醇-水精馏塔设计一、设计任务本设计任务是设计一个乙醇-水精馏塔,用于分离乙醇和水混合物。

给定混合物中,乙醇的含量为30%,水含量为70%。

设计要求塔顶分离出95%以上的乙醇,塔底剩余物中水含量不超过5%。

二、设计方案1.确定理论塔板数根据给定的乙醇含量和设计要求,利用简捷计算法计算理论塔板数。

首先确定乙醇的回收率和塔顶产品的浓度,然后根据简捷计算公式计算理论塔板数。

2.塔的总体积和尺寸根据理论塔板数和每块理论板的液相体积流量,计算塔的总体积。

根据总体积和塔内件设计要求,确定塔的外形尺寸。

3.塔内件设计塔内件包括溢流管、进料口、冷凝器、再沸器和出口管等。

溢流管的尺寸和形状应根据塔径和物料性质进行设计。

进料口的位置和尺寸应根据进料流量和进料组成进行设计。

冷凝器和再沸器应根据物料的热力学性质和工艺要求进行设计。

出口管应根据塔径和出口流量进行设计。

4.塔板设计每块塔板的设计包括板上液相和气相的流动通道、堰和降液管等。

根据物料的物理性质和操作条件,确定液相和气相的流动通道尺寸和形状。

堰的高度和形状应根据液相流量和操作条件进行设计。

降液管的设计应保证液相流动顺畅且无滞留区。

5.塔的支撑结构和保温根据塔的外形尺寸和操作条件,设计支撑结构的形状和尺寸。

考虑保温层的设置,以减小热量损失。

三、设计计算1.确定理论塔板数根据简捷计算法,乙醇的回收率为95%,塔顶产品的乙醇浓度为95%。

通过简捷计算公式,得到理论塔板数为13块。

2.塔的总体积和尺寸每块理论板的液相体积流量为0.01m3/min,因此总体积为0.013m3/min。

考虑一定裕度,确定塔的外径为0.6m,高度为10m。

3.塔内件设计溢流管的尺寸为Φ10mm,形状为直管上升式。

进料口的位置位于第3块理论板处,尺寸为Φ20mm。

冷凝器采用列管式换热器,再沸器采用釜式再沸器。

出口管采用标准出口管,直径为Φ20mm。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
精馏塔是化工原理课程设计中的重要内容,它是一种用于分离液体混合物的设备,广泛应用于石油化工、化工制药等领域。

精馏塔的设计和操作对于提高产品纯度、降低能耗、优化生产工艺具有重要意义。

首先,精馏塔的结构通常包括进料口、塔板、塔顶、冷凝器和回流器等部分。

进料液体在塔顶进入塔板,经过塔板上的填料或者气液分布器,与上升的蒸汽进行接触和传质,从而实现组分的分离。

冷凝器用于将顶部的蒸汽冷凝成液体,回流器则用于控制塔内液体的回流比例,保证塔内的稳定操作。

其次,精馏塔的操作原理是利用不同组分在塔内的汽液平衡特性,通过多级塔
板的作用,将混合物中的各组分逐级分离。

在精馏过程中,液体在塔板上停留时间较长,与上升的蒸汽进行充分接触,从而实现组分的分离。

较轻的组分在顶部得到富集,而较重的组分则在底部得到富集,通过塔顶和塔底的出口分别收集这两部分液体,从而实现分离。

在进行精馏塔的设计时,需要考虑原料的性质、产品的要求、能耗的控制等因素。

通过合理地选择填料类型、确定塔板数目、优化冷凝器和回流器的设计,可以实现精馏塔的高效运行。

此外,还需考虑操作条件的控制,如进料流量、回流比例、塔顶温度等参数的调节,以保证塔内的稳定操作。

总的来说,精馏塔在化工原理课程设计中具有重要的地位,它不仅是理论知识
的应用,更是对学生综合运用化工原理、热力学、传质动力学等知识进行工程设计和操作的重要实践。

通过对精馏塔的学习和设计,不仅可以加深对化工原理的理解,更可以培养学生的工程实践能力和创新思维,为将来的工程实践打下坚实的基础。

化工原理课程设计——精馏塔

化工原理课程设计——精馏塔

(二)
塔板的类型与选择
塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业应用以错 流式塔板为主,常用的错流式塔板主要有下列几种。
1. 泡罩塔板
泡罩塔板是工业上应用最早的塔板,其主要元件为升气管及泡罩。泡罩安装 在升气管的顶部,分圆形和条形两种,国内应用较多的是圆形泡罩。泡罩尺寸分 为ϕ80 mm、ϕ100 mm、ϕ150mm三种,可根据塔径的大小选择。通常塔径小于 1 OOO mm,选用ϕ80 mm的泡罩;塔径大于 2 000 mm,选用ϕ150 mm的泡罩。 泡罩塔板的主要优点是操作弹性较大,液气比范围大,不易堵塞,适于处理各 种物料,操作稳定可靠。其缺点是结构复杂,造价高; 板上液层厚, 塔板压降大, 生产能力及板效率较低。近年来,泡罩塔板已逐渐被筛板、浮阀塔板所取代。在 设计中除特殊需要(如分离粘度大、易结焦等物系)外一般不宜选用。
σ,m
N m
双组分混合液体的表面张力 σm 可按下式计算
m
式中
x x
A B A A B
B


m
-混合液体的平均表面张力 ,
A

B
-纯组分 A,B 的表面张力
xA,xB-A,B 组分的摩尔分率 4、氯苯的汽化潜热 常压沸点下的汽化潜热为 35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式计算:
纯组分在任何温度下得密度可由下式计算: 苯 ρA=912-1.187t 氯苯 ρB=1127-1.111t 3、组分的表面张力 σ 温度,℃ 80 苯 氯苯 21.2 26.1 85 20.6 25.7 110 17.3 22.7 115 16.8 22.2 120 16.3 21.6 131 15.3 20.4 式中 t 为温度,℃

化工原理-课程设计-精馏塔

化工原理-课程设计-精馏塔

化工原理课程设计任务书设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1——2.0)Rmin设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。

指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)R。

min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。

1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔一、设计内容1.设计方案的确定〔设计方案简介:对给定或选定的工艺流程、要紧设备的形式进行简要的论述。

〕(1)操作压力 (2)进料状态 (3)加热方式 (4)热能利用2.要紧设备的工艺设计运算(1)物料衡算; (2)热量衡;(3)回流比的确定;(4)工艺参数的选定;(5)理论塔板数的确定3.塔板及塔的要紧尺寸的设计(设备的结构设计和工艺尺寸的设计运算。

)(1)塔板间距的确定(2) 塔径的确定(3) 塔板布置及板上流体流程的确定4. 流体力学的运算及有关水力性质的校核5. 板式精馏塔辅助设备的选型:典型辅助设备要紧工艺尺寸的运算,设备的规格、型号的选定。

6.绘制流程图及精馏塔的装配图: 工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,要紧测量点。

要紧设备的工艺条件图:主体设备工艺条件图是将设备的结构设计和工艺尺寸的运算结果用一张总图表示出来。

图面上应包括如下内容:①设备图形:指要紧尺寸(外形尺寸、结构尺寸、连接尺寸)、接管、人孔等;②.技术特性:指装置的用途、生产能力、最大承诺压强、最高介质温度、介质的毒性和爆炸危险性;③.设备组成一览表:注明组成设备的各部件的名称等。

应予以指出,以上设计全过程统称为设备的工艺设计。

完整的设备设计,应在上述工艺设计基础上再进行机械强度设计,最后提供可供加工制造的施工图7.编写设计说明书:设计说明书的内容:①名目;②设计题目及原始数据(任务书);③简述酒精精馏过程的生产方法及特点(设计方案简介),④论述精馏总体结构(塔型、要紧结构)的选择和材料选择;⑤精馏过程有关运算(物料衡算、热量衡算、理论塔板数、回流比、塔高、塔径塔板设计、进出管径等) (工艺运算及要紧设备设计);⑥设计结果概要(设计结果汇总):要紧设备尺寸、衡算结果等;⑦主体设备设计运算及说明;⑧要紧零件的强度运算〔选做〕;⑨附属设备的选择(辅助设备的运算和选型,选做〕;⑩参考文献;(11)设计评述(后记)及其它.整个设计由论述,运算和图表三个部分组成,论述应该条理清晰,观点明确;运算要求方法正确,误差小于设计要求,运算公式和所有数据必需注明出处;图表应能简要表达运算的结果。

化工原理课程设计-精馏塔

化工原理课程设计-精馏塔

化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。

为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。

设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。

(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力 0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。

填料类型和规格自选。

(四)工作日每年工作日为300天,每天24小时连续运行。

(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。

摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。

无色、透明、高度挥发、易燃液体。

略有酒精气味。

近年来,世界甲醇的生产能力发展速度较快。

甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。

由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。

近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。

甲醇化工已成为化学工业中一个重要的领域。

目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。

随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。

国内又有一批甲醇项目在筹建。

这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏原理蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。

蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

本节以两组分的混合物系为研究对象,在分析简单蒸馏的基础上,通过比较和引申,讲解精馏的操作原理及其实现的方法,从而理解和掌握精馏与简单蒸馏的区别(包括:原理、操作、结果等方面)。

目录第1章设计方案的论证 (1)1.1 装置流程的确定 (1)1.2操作压力的选择 (2)1.3进料状况和加热方式的选择 (2)1.4回流比的选择 (2)1.5塔板的类型和选择 (3)第2章精馏塔设计任务书 (4)2.1.设计题目 (4)2.2.工艺条件 (4)2.3.设计内容 (4)2.4.设计结果总汇 (4)第3章设计计算 (7)3.2塔的物料衡算 (7)3.2.1进料液及塔顶塔底产品的摩尔分数 (7)3.2.2 物料衡算 (7)3.3塔板数的确定 (8)3.3.1 理论板NT的求法 (8)3.4塔工艺条件及物性数据计算 (10)3.4.1操作温度的计算 (10)3.4.2平均摩尔质量计算 (10)3.4.3平均密度计算 (10)3.4.4液体平均表面张力 (10)3.4.5 液体平均粘度 (13)3.4.6 精馏塔气液负荷计算 (14)3.4.7 精馏塔的塔体工艺尺寸的计算 (14)3.4.8 塔板主要工艺尺寸的计算 (15)3.4.9筛板的流体力学验算 (17)3.4.10精馏塔的工艺设计计算结果总表 (22)参考文献 (24)心得体会 (25)第1章设计方案的论证1.1 装置流程的确定蒸馏装置包括精馏塔,原料预热器,蒸馏釜(再沸器),冷凝器,釜液冷却器和产品冷却器等设备。

蒸馏过程按操作方式的不同,分为连续蒸馏和间歇蒸馏两种流程。

连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续蒸馏为主。

间歇蒸馏具有操作灵活、适应性强等优点,适合于小规模、多品种或多种组分物系的初步分离。

为保持塔的操作稳定性,流程中除用泵直接送入塔原料外也可以采用高位槽送料,以免受泵操作波动的影响。

塔顶冷凝器装置可采用全凝器、分凝器--全凝器两种不同的设置。

工业上以采用全凝器为主,以便于准确的控制回流比。

苯—甲苯混合液原料经预热器加热到指定温度后送入精馏塔进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。

在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程。

操作时,连续的从再沸器取出部分液体作为塔底产品,部分液体气化,产生上升蒸汽,一次通过各层塔板。

塔顶蒸汽进入冷凝器中被冷凝,并将部分冷凝液用泵送回塔顶作为回流液,其余部分经冷凝器冷凝后送出作为塔顶产品,经冷凝器冷却后送入贮槽。

塔釜采用间接蒸汽和再沸器共热。

塔底产品经冷却后送入贮槽。

装置的确定:图1 流程图如附图1.2 操作压力的选择蒸馏过程按操作压力不同,分为常压蒸馏、减压蒸馏和加压蒸馏。

一般,除热敏性物系外,凡通过常压蒸馏能够实现分离要求,并能用循环水将馏出物冷凝下来的物系,都应采用常压横流,本设计中采用常压。

1.3 进料状况和加热方式的选择蒸馏操作有五种进料热状况,进料热状况不同,影响塔内各层塔板的气、液相负荷。

蒸馏大多采用间接蒸汽加热,设置再沸器工业上多采用接近泡点的液体进料,所以本设计中采用泡点进料。

1.4 回流比的选择回流比是精馏操作的重要工艺条件,其选择的原则是使设备费和操作费用之和最低。

设计时,应根据实际需要选择回流比。

本设计中取实际回流比是最小回流比的1.78倍,经计算实际回流比为4。

1.5 塔板的类型和选择工业应用以错流式塔板为主,本设计使用筛板塔,它是优点是结构简单、造价低廉,因而对大规模生产具有重大意义。

经过长期系统研究和大量的工业生产实践,目前已形成较完善的设计方法,只要设计合理,筛板可具有足够的操作弹性。

此外,筛板塔压降小,液面落差也较小,生产能力及塔板效率都较泡罩塔高,已广泛应用于工业生产装置中。

第2章精馏塔设计任务书2.1. 设计题目苯与甲苯精馏塔设计2.2.工艺条件原料组成:苯41% 甲苯59%(质量分数,下同),产品组成:馏出液 99%的苯,釜液2%的苯处理量:4600Kg/h操作压力:塔顶压强为4KPa进料热状态:q=1/3加热方式:直接蒸汽加热回流比:自选2.3. 设计内容1 确定精馏装置流程;2 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3 主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。

4 流体力学计算流体力学验算,操作负荷性能图及操作弹性。

2.4. 设计结果总汇将精馏塔的工艺设计计算的结果列在精馏塔的工艺设计计算结果总表中。

2.5. 参考文献列出在本次设计过程中所用到的文献名称、作者、出版社、出版日期。

流程的设计及说明工艺流程:原料液由高位槽经过预热器预热后进入精馏塔内。

操作时连续的从再沸器中取出部分液体作为塔底产品(釜残液)再沸器中原料液部分汽化,产生上升蒸汽,依次通过各层塔板。

塔顶蒸汽进入冷凝器中全部冷凝或部分冷凝,然后进入贮槽再经过冷却器冷却。

并将冷凝液借助重力作用送回塔顶作为回流液体,其余部分经过冷凝器后被送出作为塔顶产品。

为了使精馏塔连续的稳定的进行,流程中还要考虑设置原料槽。

产品槽和相应的泵,有时还要设置高位槽。

为了便于了解操作中的情况及时发现问题和采取相应的措施,常在流程中的适当位置设置必要的仪表。

比如流量计、温度计和压力表等,以测量物流的各项参数。

设备简图:图2 设备简图图3 工艺流程方块图第3章 设计计算3.1.精馏流程的确定:苯和甲苯的混合液体经过预热到一定的温度时送入到精馏塔,塔顶上升蒸气采用全凝器冷若冰霜凝后,一部分作为回流,其余的为塔顶产品经冷却后送到贮中,塔釜采用间接蒸气再沸器供热,塔底产品经冷却后送入贮槽。

3.2 塔的物料衡算3.2.1 进料液及塔顶塔底产品的摩尔分数进料组成: 45.09259.07841.07841.0=+=F x 塔顶组成: 9915.09201.07899.07899.0=+=D x 塔底组成: 0235.09298.07802.07802.0=+=w x 3.2.2 平均摩尔质量kmolkg M kmol kg M kmolkg M W D F /671.9192)0235.01(780235.0/119.7892)9915.01(789915.0/7.85)45.01(9245.078=⨯-+⨯==⨯-+⨯==-⨯+⨯=3.2.3 物料衡算每小时处理的摩尔量:kmol/h 6756.537.854600==F总物料衡算: D W F +=易挥发组分物料衡算:W X D X F X W D F +=联立以上三式可得:hkmol F h kmol W hkmol D /6756.53/0256.30/65.23===式中:F —— 原料夜流量,53.6756/kmol hD —— 塔顶产品(馏出液)流量,23.65/kmol h W —— 塔釜产品(釜液)流量,30.0256/kmol hx F —— 原料液组成(摩尔分数)0.45W x —— 塔底产品组成(摩尔分数)0.0235 D x —— 塔顶产品组成(摩尔分数)0.99153.3塔板数的确定3.3.1 理论板N T 的求法用图解法求理论板(1) 根据苯和甲苯的气液平衡数据作出y-x 图(2) 进料热状况参数q=1/3(3) q 线方程:是垂直于横轴且过),(F F x x 点的直线与平衡曲线交于),(q q y x 由图①可知52.0,31.0==q q y x(4) 最小回流比min R 及操作回流比R 依公式: 245.231.052.052.09915.0min =--=--=qq q D x y y x R取操作回流比:4245.278.178.1min =⨯==R R 精馏段操作线方程09.05411+=+++=x R x x R R y D 按常规M,T ,在图上继续作图解得:T N =(14-1)层(不包括塔釜),其中精馏段为7层,提馏段为6层.(5) 求提馏段操作线方程364.0364.1'''/466.82)1(/492.1126756.53316.94/25.11865.235)1(/6.9465.234''+=+===-+==⨯+=+==⨯=+==⨯==x x V Wx V L y h kmol V F q V V hkmol qF L L hkmol D R V hkmol RD L w 提溜段方程:3.3.3 实际板数p N精馏段: 140.527E N T T ===精N 提馏段:120.526E N T T ===提N 实际塔板数:261214=+=+=提精实际N N N3.4塔工艺条件及物性数据计算3.4.1操作温度的计算①操作压力:塔顶操作压力:kpa 3.10543.101=+=+=表当地P P P D每层塔板的压降:kpa P 7.0=∆进料板压降:kpa P F 4.110127.03.101=⨯+= 精馏塔压降:kpa P m 9.1052)4.1103.101(=+=②操作温度:近似取塔顶温度为℃7.64=D t , 进料温度为℃3.85=F t , 塔釜温度为℃3.98=w t精馏段平均温度℃7523.857.642=+=+=F D m t t t 提馏段平均温度℃8.9123.983.852t m =+=+=W F t t3.4.2平均摩尔质量计算塔顶摩尔质量的计算:由1D x y ==0.991查平衡曲线,得1x =0.964;l31.5kg/kmo 180.964)-(1320.964M ol 31.87kg/km 180.991)-(1320.991M LDM VDM =⨯+⨯==⨯+⨯=进料摩尔质量的计算:由图①平衡曲线查的: y F =0.47 x F =0.14;ol19.96kg/km 180.14)-(1320.14M ol 24.58kg/km 180.47)-(1320.47M LFM VFM =⨯+⨯==⨯+⨯=塔釜摩尔质量的计算:由平衡曲线查的:'w x =0.0011 '1x =0.0009;mol 18.011kg/k 180.0009)-(1320.0009M mol 18.015kg/k 180.0011)-(1320.0011M LWM VWM =⨯+⨯==⨯+⨯=精馏段平均摩尔质量:Vm()(78.11982.48)280.30/M kg kmol =+=精; Lm((78.04285.7)281.871/M kg kmol =+=精);提馏段平均摩尔质量:'Vm()(82.4891.671287.0755/M kg kmol =+=提); 'Lm()(85.791.2)288.45/M kg kmol =+=提; 3.4.3 平均密度计算:ρm 1、液相密度Lm ρ:液相平均密度计算公式:i i mw ρρ/1∑=①塔顶部分:由℃7.64=D t ,查手册得33/980,/736m kg m kg B A ==ρρ即:3kg/m 92.736980/005.0736/995.01=+=LDM ρ;②进料板液相平均密度:33F /5.968,/71785.3t m kg m kg B A ===ρρ℃查手册得:由3kg/m 9005.968/783.0717/217.01=+=LDM ρ③塔釜处液相组成:由℃3.98=W t 得:33/8.999,/858.709m kg m kg B A ==ρρ3kg/m 35.9998.999/9989.0858.709/0011.01=+=LDM ρ故精馏段平均液相密度:3/46.8182/)92.736900(m kg LM =+=ρ;提馏段的平均液相密度:3/68.9492/)35.999900(m kg LM =+=ρ;2、气相密度Vm ρ: ① 精馏段的平均气相密度3m m m )(kg/m 993.015.27375314.837.28325.101RT V P =+⨯⨯==)(精VM ρ② 提馏段的平均气相密度3/716.0)15.2738.91(314.844.21325.101m kg RT M P m V m VMT =+⨯⨯==ρ3.4.4 液体平均表面张力 m σ液相平均表面张力计算公式:i i LM x σσ∑= ① 塔顶液相平均表面张力:由7.64=D t ,查附录得mN m N B A /1053.6,/107.122--⨯=⨯=ρσm N LDM /1074.11056.6009.0107.1991.0222---⨯=⨯⨯+⨯⨯=σ ② 进料板液相平均表面张力,有℃3.85=F t 查附录得: m N m N B A /1016.6,/106.122--⨯=⨯=ρσm N LFM /1054.51016.6865.0106.1135.0222---⨯=⨯⨯+⨯⨯=σ ③ 塔釜液相平均表面张力,由℃3.98=W tmN m N B A /1090.5,/1048.122--⨯=⨯=ρσm N LWM /1090.51090.59989.0108.140011.0222---⨯=⨯⨯+⨯⨯=σ 精馏段液相平均表面张力为:m N Lm /1064.32/)1054.51074.1(222---⨯=⨯+⨯=σ提馏段液相平均表面张力为:m N Lm /1072.52/)1054.5109.5(222---⨯=⨯+⨯=σ 3.4.5 液体平均粘度Lm μ液相平均粘度计算公式:i i Lm x μμlg lg ∑= ① 塔顶液相平均粘度,由D t =64.7℃查手册得: s mpa A ⋅=35.0μ, s mpa B ⋅=43.0μ; 计算得 s mpa A ⋅=351.0μ;进料板液相平均粘度的计算:由F t =85.3℃手册得: s mpa A ⋅=39.0μ, s mpa B ⋅=34.0μ; 计算得 s mpa LFm ⋅=346.0μ;塔釜液相平均粘度的计算: 由W t =98.3℃查手册得:s mpa A ⋅=28.0μ , s mpa B ⋅=285.0μ; 计算得 s mpa LWm ⋅=285.0μ;综上 :精馏段液相平均粘度为 s mpa LM ⋅=+=349.02/)346.0351.0(μ提馏段液相平均粘度为 s m p aLM ⋅=+=315.02/)346.0285.0(μ3.4.6 精馏塔气液负荷计算精馏段:h kmol D R V /588.456196.152)12()1(=⨯+=+=; h kmol RD L /392.304196.1522=⨯==; 提馏段:'(1)107.332/V V q F V kmol h =--==;()''322.422.4107.332273109.30.935m /36003600273o s o V TP Vs T P ⨯+==⨯=提''()'3Lm()150.38488.450.00475m /36003600778.315Lm s LM L s ρ⨯===⨯提提;'3L 36000.0047517.1m /h h =⨯=;3.4.7 精馏塔的塔体工艺尺寸的计算1. 塔径 D 参考教材上表格 初选板间距H T =0.45m,取板上液层高度h L =0.05m 故:①精馏段:H T -h L =0.45-0.05=0.40m查图表得:083.020=C094.0)204.36(083.0)20(2.02.020=⨯==LmC C σ s m /7.2993.0993.043.818094.0-Cu V V L max =-==ρρρ取安全系数为0.60,则: s m u u /62.17.26.06.0max =⨯==塔径: m 54.162.114.302.34u4,=⨯⨯=⨯=πV V q D按标准,塔径圆整为1.6m ,塔的实际横截面积222m 01.26.14D 4=⨯==ππT A实际空塔气速为:s m A q u TV V /502.101.202.3,===②提馏段:查书后附录得:083.020=C102.0)202.57(083.0)20(2.02.020=⨯==LmC C σs m /15.3993.0993.068.949102.0-Cu V V L max =-⨯==ρρρ取安全系数为0.60,s m u u /89.115.36.06.0max =⨯== ; 提馏塔塔径的计算:m 24.189.114.329.24u4,=⨯⨯=⨯=πV V q D按标准,塔径应圆整:D '取1.6m 塔的横截面积: 222m 1.02.614D 4=⨯==ππT A s m A q u TVV /502.101.202.3,===实际空塔气速:板间距取0.45m 合适3.4.8 塔板主要工艺尺寸的计算 1. 溢流装置的计算各计算如下:① 溢流堰长 取w l =0.7D ,即:m l W 12.16.17.0=⨯=; ② 出口堰高w h 计算公式:L ow w h h h =-选用平直堰,堰上液层高度:m E l q E h W L v W0105.0)12.1360000222.0(100084.2)(100084.23/23/2',0=⨯==E 近似取1,则依下式得堰上液层高度:22332.84 2.847.0561.0250.0109100010000.98h ow w L h E m l ⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭3、 取板上液层高度:m h l 05.0=m h h h W l W 0395.00105.005.00=-=-=4、 弓形降液管高度W d 及截面积A f 由7.0=D l W查图得0722.0=Tf A A 233.0=d W 所以验算液体在降液管上停留的时间:mD W m A A d T f 198.06.1124.0124.0145.001.20722.00722.02=⨯===⨯==[]s s q H A Lv Tf 542.29360000222.045.0145.036003600,≥=⨯⨯⨯==θ故降液管设计合理。

相关文档
最新文档