光反应阶段和暗反应阶段的区别和联系资料
高中生物暗反应与光反应

光反应 条件 场所 物质代谢 光、色素、酶 基粒片层结构薄膜 H2O光解产生氧 气,e,H+ ,e,H ATP形成 NADPH形成 暗反应 许多酶 基质中 CO2的固定 C3的还原 C5的再生成 、产糖
能量代谢 联系
光能转变为活跃的化学 活跃的化学能转变为TP; 暗反应为光反应补充ADP、Pi和NADP 没有光反应,暗反应不能进行;没有暗反应, 有机物无法合成。
光合作用过程中C、H、O的转移途径
反应物CO2中 CO2中C元素在光合作用过程中的转 C元素、O元 移途径为: CO2→ C3 →(CH2O) 素转移途径 CO2中O元素在光合作用过程中的转 移途径为: CO2→ C3 →(CH2O) 反应物H2O中 H2O中氧原子在光合作用过程中以 H元素、氧原 O2形式释放到大气中去; H2O中 子转移途径 H元素在光合作用过程中的转移途径 为: H2O →【 H】 → (CH2O)
光反应和暗反应都是什么

编号:________________ 光反应和暗反应都是什么光反应和暗反应都是什么很多同学都想知道生物学中的光反应和暗反应到底是什么意思,二者又有什么联系和区别呢,本文就来为注意解答,希望能够帮助到大家。
什么是光反应光反应又称为光系统电子传递反应。
在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能,然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电化学质子梯度,用于ATP的合成。
反应条件必须要满足光照、光合色素、光反应酶;另外反应场所是在叶绿体的类囊体薄膜中;反应过程眼反应方程式表示出来是:①水的光解:2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)。
②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。
什么是暗反应暗反应是CO2固定反应也称碳固定反应。
碳固定反应开始于叶绿体基质, 结束于细胞质基质,C3途径CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA);C4途径CO2受体为PEP,最初产物为草酰乙酸(OAA);景天科酸代谢途径夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。
暗反应的实质是一系列的酶促反应。
反应条件是要有暗反应酶;反应场所在叶绿体基质中;影响因素包括温度、CO2浓度、酸碱度等,不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。
这是植物对环境的适应的结果。
暗反应可分为C3、C4和CAM三种类型。
三种类型是因二氧化碳的固定这一过程的不同而划分的。
对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。
叶绿体中含有C5,起到将CO2固定成为C3的作用,C3再与NADPH及ATP提供的能量反应,生成糖类(CH2O)并还原出C5,被还原出的C5继续参与暗反应。
二者之间有什么联系和区别综上所述,1.从反应条件上来说,光反应必须有光才能进行,而暗反应没有对光的要求。
光合作用光反应与暗反应的过程_理论说明

光合作用光反应与暗反应的过程理论说明1. 引言1.1 概述光合作用是一种生物体利用光能将无机物转化为有机物的重要代谢过程。
它在地球上的生命系统中具有至关重要的地位,不仅为大多数生物提供了能量和有机物质的来源,还维持着地球上氧气和二氧化碳的平衡。
光合作用主要分为两个阶段:光反应和暗反应。
光反应发生在叶绿体的脊状体内,依赖于阳光的能量来进行。
它通过捕获和转化太阳光能,产生能量富集的分子(如ATP)和还原剂(如NADPH)。
而暗反应则发生在叶绿体基质中,不依赖于阳光直接参与,而是依赖于前一阶段产生的ATP和NADPH来完成。
本文将详细讨论光合作用中这两个相互关联且协同完成的过程:光反应和暗反应。
我们将重点描述其中涉及的关键步骤、相关酶以及能量转换与调节机制等内容。
1.2 文章结构本文共分为五个部分:引言、光合作用光反应、光合作用暗反应、过程中的能量转换与调节机制以及结论。
每个部分都将详细介绍相关的内容,并进行理论和实践方面的说明。
在光合作用光反应部分,我们将探讨光能的捕获和转化机制,以及光合色素在其中起到的作用。
此外,我们还将介绍光化学反应的步骤和相关酶的功能。
在光合作用暗反应部分,我们将详细描述ATP和NADPH在过程中的生成与使用情况,并介绍整个暗反应过程中涉及到的关键酶。
同时,我们也将探讨光合作用暗反应对有机物质合成的重要性。
在过程中的能量转换与调节机制部分,我们将阐述ATP和NADPH在光合作用中如何进行能量转换,并讨论非光化学淬灭机制对能量损失进行调节和利用。
此外,我们还将研究影响光合作用速率的调控因子。
最后,在结论部分,我们将总结文章中所讨论的内容,并展望未来关于光合作用研究方面可能进行的发展和突破。
1.3 目的本文的目的在于全面系统地介绍光合作用过程中光反应和暗反应的原理和机制。
通过深入解析光合作用的各个环节,我们将更好地理解光能如何转化为有机物和能量,并揭示其中涉及到的关键酶、调控因子以及能量转换的路径等内容。
光合作用的光反应和暗反应过程

光合作用的光反应和暗反应过程光合作用通常是指绿色植物(包括藻类)吸收光能,把二氧化碳(CO2)和水(H2O)合成富能有机物,同时释放氧的过程。
1、光反应场所:基粒的类囊体薄膜上。
条件:光、色素、酶、水、adp、pi。
adp+pi+能量→atp。
能量转变:光能转化成atp中活跃的化学能。
2、暗反应场所:叶绿体基质中。
条件:酶,[h],atp,co2,c5。
能量转化:atp中活跃的化学能转变成有机物中稳定的化学能。
光反应与暗反应的联系:光反应为暗反应提供更多[h],和能量,暗反应为光反应提供更多制备atp的原料。
6co2+6h2o(光照、酶、叶绿体)→c6h12o6(ch2o)+6o2。
光合作用速率外部因素一、光照1、光强度对光合作用的影响光强度-光合速率曲线黑暗条件下,叶片不展开光合作用,只有呼吸作用释放出来。
随着光强度的减少,无机速率也可以适当提升;当到达某一特定光强度时,叶片的无机速率等同于呼吸速率,即为二氧化碳吸收量等同于二氧化碳释放出来量。
当少于一定的反射率,无机速率的减少就可以转慢。
当达至某一反射率时,无机速率不再减少,即光饱和点。
光照不足会成为光合作用的限制因素,光能过剩也会对光合作用产生不利影响。
当光合机构接受的光能否超过所能利用的量时,会引起光合速率降低的`现象。
2、光质对光合作用的影响太阳辐射中,只有可见光部分才能被光合作用利用,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。
二、二氧化碳1、二氧化碳-光合速率曲线二氧化碳就是光合作用的原料,对无机速率影响非常大。
二氧化碳-无机速率曲线与反射率曲线相近。
2、二氧化碳的供给二氧化碳主要就是通过气孔步入叶片,强化通风或设法施肥量二氧化碳能够明显提升作物的无机速率,对碳三植物尤为显著。
三、温度无机过程的暗反应就是由酶催化剂的生物化学反应,受到温度的猛烈影响。
四、水分水分亏缺减少无机的主要原因存有1、气孔导度下降。
2、光合产物输入减慢。
叶绿素的光反应和暗反应

光反应类等有机物
光合作用:将光能转化为化学能,为植物生长提供能量
叶绿素:光合作用的关键物质,吸收光能并转化能量
在生态系统中的作用和意义
光合作用:叶绿素是光合作用的关键物质,将光能转化为化学能,为植物生长提供能量。
氧气产生:叶绿素在光反应过程中产生氧气,为地球上的生物提供氧气。
光反应和暗反应的联系
4
光反应为暗反应提供能量和还原力
光反应是暗反应的前提,只有光反应正常进行,暗反应才能顺利进行。
光反应产生的ATP和NADPH为暗反应提供能量和还原力,是暗反应顺利进行的必要条件。
光反应和暗反应相互依存,共同完成植物的光合作用。
光反应和暗反应的平衡关系是植物光合作用的重要特征之一。
叶绿素的光反应和暗反应
XXX, a click to unlimited possibilities
汇报人:XXX
目录
单击此处添加目录项标题
光反应
暗反应
光反应和暗反应的联系
叶绿素光反应和暗反应的意义
添加章节标题
1
光反应
2
叶绿素吸收光能
叶绿素是光合作用的主要色素,能够吸收光能
初态:叶绿素分子吸收光能,转化为激发态
氢离子和能量被用来还原二氧化碳,生成糖和其他有机物,这是暗反应的过程。
光反应和暗反应是相互依存、相互促进的,共同完成了植物的光合作用。
暗反应
3
暗反应的化学过程
暗反应是光合作用的第二阶段,发生在叶绿体基质中。
暗反应需要消耗ATP和NADPH,产生糖类等有机物。
暗反应分为两个阶段:二氧化碳固定和糖类合成。
暗反应意义:为光合作用提供能量和原料,维持生态系统的稳定和发展
光反应与暗反应的联系

光反应和暗反应是植物生长和生存的两种基本生理过程。
光反应是指植物对光的感应和响应。
植物通过光合作用将光能转化为化学能,从而生长和生存。
光合作用分为两个过程:光反应过程和光合糖合成过程。
光反应过程是指植物通过光敏素感受光,然后将光能转化为化学能的过程。
光合糖合成过程是指植物利用光反应过程产生的化学能,将二氧化碳和水转化为糖的过程。
暗反应是指植物在黑暗或缺乏光的条件下的生理过程。
暗反应的主要特征是植物在黑暗或缺乏光的条件下仍然能够生长和生存,这是通过暗反应的主要代谢途径——糖类代谢来实现的。
糖类代谢指的是植物利用自身储存的糖分来满足其生理功能的过程。
暗反应的主要途径有两种:一种是糖类代谢途径,即植物利用自身储存的糖分来满足其生理功能;另一种是酶代谢途径,即植物利用酶催化反应来转化化学物质,从而满足其生理功能。
光反应和暗反应是植物生长和生存的两种基本生理过程,是相互联系的。
光反应和暗反应的关系可以概括为:光反应是植物生存的基础,而暗反应是植物生存的保障。
光反应是植物生存的基础,因为光合作用能够将光能转化为化学能,为植物提供生长所需的能量。
同时,光合作用还能产生氧气,使植物能够呼吸。
因此,光反应是植物生存的基础。
暗反应是植物生存的保障,因为在缺乏光的条件下,植物仍然能够通过糖类代谢来满足其生理功能。
暗反应使得植物能够在光照不足的环境中生存下来,因此被称为植物生存的保障。
总的来说,光反应和暗反应是相互联系的,它们共同为植物提供了生存所需的能量和物质。
植物在不同的生长环境中,会根据光照的变化来调节光反应和暗反应的平衡,从而保证其生存和生长。
光合作用中光反应和暗反应之间的相互作用

光合作用中光反应和暗反应之间的相互作用光合作用是指植物和一些藻类通过光能将二氧化碳和水转化为有机物质和氧气的过程。
这个过程主要包括光反应和暗反应两个不同的阶段。
光反应发生在叶绿体中的光合色素分子吸收太阳能的过程,而暗反应则是利用光反应产生的能量和产物进行二氧化碳的固定和有机物的合成的过程。
光反应和暗反应之间存在着紧密的相互作用,下面将从不同角度详细探讨这种相互作用。
首先,光反应和暗反应之间的能量转移和物质转移是相互依赖的。
光反应中,光合色素分子吸收太阳能,将其转化为化学能,并通过光合肽链传递能量到光合反应中心,激发电子从叶绿体的低能级到高能级。
这些激发的电子随后通过电子传递链向前传递,产生能量梯度,最终用于暗反应中的二氧化碳固定。
换句话说,光反应中产生的ATP和NADPH是暗反应所需的能量来源。
暗反应依赖于光反应的产物,而光反应则依赖于暗反应提供的二氧化碳和NADPH再生的能力。
因此,两个反应步骤之间的协作确保了光合作用的进行。
其次,光反应和暗反应之间的时间上的协调也是非常重要的。
光反应中的反应速率较快,主要发生在白天光照充足的时候,而暗反应的反应速率较慢,可以在光照不足或夜晚进行。
这种时间上的协调保证了光合作用在一天中不同时间段内的进行。
白天的光反应阶段将光能转化为ATP和NADPH,为暗反应提供充足的能量和还原剂,以进行二氧化碳的固定和有机物的合成。
而夜晚的暗反应阶段则依赖于白天光反应阶段所产生的产物进行有机物的合成。
因此,光合作用中光反应和暗反应的时间上的协调确保了系统的稳定性和高效性。
此外,光反应和暗反应之间还存在着物质的循环和产物的利用。
在光反应中,光合色素分子通过光合色素I和光合色素II两个系统相互协作。
当光合色素分子I接受激发后,光合色素分子II会通过电子传递链将其再次激发,以维持光反应的连续进行。
这种反应链的存在使得光合作用中的光能得以高效利用,避免光能的浪费。
同样,在暗反应中,鲜活的生物体可利用子叶细胞间的特殊细胞形态相互联系,形成形态独特的微型局团;具有丰富分化的细胞器,进行无损耗地吸光、将光能转化为化学能;能够非常高效地将二氧化碳、水转变为葡萄糖、氧气等有机物。
生物高中光合作用知识点

生物高中光合作用知识点生物高中光合作用学问点第一篇光合作用的过程:①光反应阶段水的光解:2H2O→4[H]+O2(为暗反应提供氢)的形成:ADP+Pi+光能—→ATP(从而为暗反应提供能量)②暗反应阶段:的固定:CO2+C5→2C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5光反应与暗反应的区分:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要很多有关的酶。
③物质改变:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量改变:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
光合作用的联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi从而为光反应所形成的ATP提供了原料。
生物高中光合作用学问点第二篇①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要很多有关的酶。
③物质改变:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量改变:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
生物高中光合作用学问点第三篇名词解释:1)光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
2)光合作用的意义:①提供了物质来源和能量来源。
②维持大气中氧和二氧化碳含量的相对稳定。
③对生物的进化具有重要作用。
总之,光合作用是生物界最基本的物质代谢和能量代谢。
名词解释:1)光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
高一生物必修一光合作用知识点

高一生物必修一光合作用知识点光合作用就是光能合成作用,是指含有叶绿体绿色植物和某些细菌,在可见光的照射下经过光反应和碳反应(旧称暗反应)。
以下是小编给你推荐的高一生物必修一光合作用知识点归纳,希望对你有帮助! 光合作用知识点1、光合作用的过程①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C52、光反应与暗反应的区别与联系①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。
③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
3、叶绿体的色素①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素。
4、叶绿体的酶分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
5、光合作用的意义①提供了物质来源和能量来源。
②维持大气中氧和二氧化碳含量的相对稳定。
③对生物的进化具有重要作用。
总之,光合作用是生物界最基本的物质代谢和能量代谢。
6、影响光合作用的因素有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。
这些因素中任何一种的改变都将影响光合作用过程。
7、光合作用过程可以分为两个阶段,即光反应和暗反应前者的进行必须在光下才能进行,并随着光照强度的增加而增强。
光反应和暗反应方程式光反应和暗反应的区别

光反应和暗反应方程式光反应和暗反应的区别光反应和暗反应方程式:光反应和暗反应方程式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2(CH2O:表示糖类)。
光反应是指只发生在光照下,由光引起的反应。
光反应发生在叶绿体的类囊体膜(光合膜)。
光反应和暗反应方程式光反应和暗反应方程式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2(CH2O:表示糖类)。
什么是光反应光反应是指只发生在光照下,由光引起的反应。
光反应发生在叶绿体的类囊体膜(光合膜)。
光反应从光合色素吸收光能激发开始,经过水的光解,电子传递,最后是光能转化成化学能,以ATP和NADPH的形式贮存。
物质变化:H2O→2H+1/2O2(水的光解);NADP++2e-+H+→NADPH;能量变化:ADP+Pi+光能→ATP。
暗反应的意思暗反应(新称碳反应),是生物学里面的术语,是光合作用里面的碳固定反应。
物质变化:CO2+C5化合物→2C3化合物(二氧化碳的固定);2C3化合物+4NADPH+ATP→(CH2O)+C5化合物+H2O(有机物的生成或称为C3的还原);能量变化:ATP→ADP+PI(耗能);能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)。
光反应和暗反应的区别一、发生场所不同光反应发生在叶绿体的类囊体膜(光合膜);暗反应开始于叶绿体基质,结束于细胞质基质。
二、反应过程不同光反应:是通过叶绿素等光合色素分子吸收光能,并将光能转化为化学能,形成ATP和NADPH的过程。
暗反应:是由光量子为生物色素吸收的时间极短的光反应过程和为光所激发的色素在暗处引起的一系列暗反应过程所组成的。
光反应和暗反应都是什么 有哪些联系和区别

光反应和暗反应都是什么有哪些联系和区别很多同学都想知道生物学中的光反应和暗反应到底是什幺意思,二者又有什幺联系和区别呢,本文就来为注意解答,希望能够帮助到大家。
1 什幺是光反应光反应又称为光系统电子传递反应。
在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能,然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电化学质子梯度,用于ATP 的合成。
反应条件必须要满足光照、光合色素、光反应酶;另外反应场所是在叶绿体的类囊体薄膜中;反应过程眼反应方程式表示出来是:①水的光解:2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)。
②ATP 的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。
1 什幺是暗反应暗反应是CO2 固定反应也称碳固定反应。
碳固定反应开始于叶绿体基质, 结束于细胞质基质,C3 途径CO2 受体为RuBP,最初产物为3-磷酸甘油酸(PGA);C4 途径CO2 受体为PEP,最初产物为草酰乙酸(OAA);景天科酸代谢途径夜间固定CO2 产生有机酸,白天有机酸脱羧释放CO2,进行CO2 固定。
暗反应的实质是一系列的酶促反应。
反应条件是要有暗反应酶;反应场所在叶绿体基质中;影响因素包括温度、CO2 浓度、酸碱度等,不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。
这是植物对环境的适应的结果。
暗反应可分为C3、C4 和CAM 三种类型。
三种类型是因二氧化碳的固定这一过程的不同而划分的。
对于最常见的C3 的反应类型,植物通过气孔将CO2 由外界吸入细胞内,通过自由扩散进入叶绿体。
叶绿体中含有C5,起到。
请简述光合反应的光反应和暗反应过程。

请简述光合反应的光反应和暗反应过程。
光合反应包括两个主要阶段:光反应和暗反应。
具体如下:
1. 光反应:
- 原初反应:在这个阶段,叶绿素和其他色素分子吸收太阳光的能量,这些能量传递导致色素分子达到激发态。
当这些激发态的色素分子返回到基态时,释放出的能量被用于驱动电子从水分子转移到光系统II(PSII),开始氧化还原反应的过程。
- 电子传递和光合磷酸化:电子通过一系列细胞色素复合体,包括PSI(光系统1)、PSII(光系统2)和细胞色素b6f复合体等传递体进行传递。
在这个过程中,能量被用来把ADP和无机磷酸盐合成为ATP,并最终将NADP+还原成NADPH。
同时,水分子被分解产生氧气。
2. 暗反应:
- 碳同化:这个阶段不直接依赖于光,但利用光反应产生的ATP和NADPH来固定二氧化碳,即把CO2转化为有机物(如葡萄糖)。
这个过程通常被称为卡尔文循环或C3光合作用。
在这个阶段,CO2被一种五碳糖(磷酸核糖双磷酸)捕获,然后经过一系列的酶催化反应,最终生成三碳化合物(3-磷酸甘油酸),再使用ATP和
NADPH将其还原为三碳糖类物质。
光反应在白天进行,需要光照以提供能量;而暗反应则不受光照直接影响,可以在白天或夜晚进行。
两者相互依赖,共同完成光合作用,将太阳能转化为化学能储存于有机物质中。
光反应,暗反应

光反应,暗反应一、光合作用的过程图解:二、光反应和暗反应:比较项目光反应暗反应场所基粒类囊体膜上叶绿体的基质条件色素、光、酶、水、ADP 多种酶、CO2、ATP、[H]反应产物[H]、O2、ATP 有机物、ADP、Pi、水物质变化2H2O4[H]+O2↑ADP+PiATP①CO2的固定:CO2+C52C3②C3的还原:(CH2O)+C5+H2O能量变化光能→电能→ATP中活跃的化学能ATP中活跃的化学能→糖类等有机物中稳定的化学能实质光能转变为化学能,水光解产生O2和[H]同化CO2形成(CH2O)联系①光反应为暗反应提供[H](以以NADPH形式存在)和ATP②暗反应产生的ADP和Pi为光反应合成ATP提供原料③没有光反应,暗反应无法进行,没有暗反应,有机物无法合成.【命题方向】题型一:光反应和暗反应的联系(或场所、条件、反应产物等的区别)典例1:(2010·海南)光反应为暗反应提供的物质是()A.[H]和H2O B.[H]和ATP C.ATP和CO2D.H2O和CO2分析:本题考查光合作用的过程.①光反应阶段:场所是类囊体薄膜a.水的光解;b.ATP的生成.②暗反应阶段:场所是叶绿体基质a.CO2的固定;b.CO2的还原.解答:A、水分子不是光反应产生的,A错误;B、光反应的产物是[H]、ATP和氧气,[H]、ATP参与暗反应中三碳化合物的还原,B正确;C、二氧化碳不是光反应的产物,C错误;D、水和二氧化碳都不是光反应的产物,D错误.故选:B.点评:本题考查叶绿体的结构和功能之间的关系,光反应和暗反应的之间的关系,要结合结构和功能相适应的观点去理解叶绿体的结构和功能.题型二:外界条件改变时C3和C5含量分析典例2:(2011·闸北区一模)如图为光合作用过程示意图.如在适宜条件下栽培的小麦,突然将c降低至极低水平(其他条件不变),则a、b在叶肉细胞中的含量变化将会是()A.a上升、b下降 B.a、b都上升 C.a、b都下降 D.a 下降、b上升分析:光合作用的过程受光照强度、温度、二氧化碳浓度等因素影响.光照强度影响光反应阶段、温度影响酶的活性、二氧化碳浓度影响暗反应.解答:根据光合作用那个的具体过程中的物质变化,可推知a、b 分别是[H]和ATP,c是二氧化碳.在适宜条件下栽培的小麦,突然将c降低至极低水平(其他条件不变),三碳化合物不能生成,原有的三碳化合物继续还原生成五碳化合物,直至全部消耗,导致五碳化合物积累,含量增加;三碳化合物减少.最终使得三碳化合物还原过程消耗的[H]和ATP量减少.但光反应继续进行,则a、b在叶肉细胞中的含量增多.故选B.点评:本题考查了光合作用的影响因素和物质变化相关内容.意在考查考生能理解所学知识的要点,把握知识间的内在联系.典例3:(2010·普陀区模拟)将置于阳光下的盆栽植物移至黑暗处,则细胞内C3与C6H12O6生成量的变化是()A.C3突然上升,C6H12O6减少 B.C3与C6H12O6都减少C.C3与C6H12O6都增加 D.C3突然减少,C6H12O6增加分析:本题考查的实质是光合作用的过程.置于阳光下的盆栽植物移至黑暗处,直接影响的因素是光照,光照减弱以后,导致光反应减弱,进而影响暗反应中C3与C6H12O6生成量的变化.解答:光照强度的改变,直接影响光反应.光照由强变弱,在光反应中[H]和ATP的生成量减少.光反应和暗反应的联系是:光反应为暗反应供[H]、ATP去还原C3,导致C3化合物的还原减弱,则C3化合物消耗减少,C3化合物剩余的相对增多;生成物C5和(CH2O)生成量减少.所以[H]的含量减少、ATP的含量减少、C3的含量增多、C5的含量减少、(CH2O)的含量减少.故选:A.点评:本题考查的本质是对光合作用过程的理解,解题的关键是要结合光合作用的模式图进行相关生理过程的分析.题型三:光合作用中原子转移途径分析典例4:科学家用含有14C的二氧化碳来追踪光合作用中的碳原子,这种碳原子的转移途径是()A.二氧化碳→叶绿素→ADP B.二氧化碳→叶绿体→ATP C.二氧化碳→乙醇→糖类 D.二氧化碳→三碳化合物→糖类分析:光合作用的暗反应吸收CO2,二氧化碳的固定:CO2+C5→2C3(在酶的催化下),二氧化碳的还原:C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下).解答:14C的二氧化碳来追踪光合作用中的碳原子,碳原子的转移途径是:二氧化碳→三碳化合物→糖类.故选:D.点评:本题主要考察光合作用中碳原子的转移路径,解题的关键是把握住暗反应阶段才有二氧化碳的参与.。
5.4.3光合作用----光反应和暗反应

CO2 吸 收 量
③C:光饱和点:光合速率最大时的光照强度。 C:光饱和点 主要受暗反应酶活性和CO2浓度限制
C
总光合作用
净光合作用
0 CO2 释 A 放 量
B
B:光补偿点:
光照强度
主要受光反应产物的限制
①A点:光照强度为零,只有呼吸作用
② B:光补偿点:光合作用和呼吸作用达到平衡时的光照强度,或者光合作用 吸收的CO2量等于呼吸作用释放CO2的量
2H2O
光能
吸收 色素分子
O2
NADPH
酶 还原 能
2C3 多种酶
固定
CO2
ATP 酶 ADP+Pi
C5
(1)植物由强光环境转移到弱光环 (2)降低CO2浓度时: 境时: C3含量变化:______ 上升 下降 C3含量变化:______ C5含量变化: ______ 上升 C5含量变化: 下降 ______ 光反应 直接影响的过程: ______ 直接影响的过程:______ 暗反应
化能合成作用
能够利用体外环境中的某些无机物氧化时所 释放的能量来制造有机物的合成作用 例如:硝化细菌、硫细菌、铁细菌等少数种类的细菌
2NH3+3O2 2HNO2+O2
硝化细菌 硝化细菌
2HNO2+2H2O+能量 2HNO3+能量 2C6H12O6+ 6O2
6CO2+6H2O
能量 酶
硝化细菌之所以被归为自养生物,根据是( ) A.它能将氨合成为亚硝酸和硝酸 B.它能利用化学能合成有机物 C.它能以亚硝酸和硝酸作为自身的组成物质 D.它能用氧化物所释放的化学能合成ATP,直接 用于生命活动
酶 ATP [H] → →C和ATP 暗反应产生的ADP和Pi为光反应合成ATP提供原料
光合作用

考点整合一:光合作用过程光合作用的过程包括光反应和暗反应两个阶段,二者的比较如下:阶段项目光反应阶段暗反应阶段所需条件必须有光、酶有光无光均可、酶进行场所类囊体的薄膜上叶绿体内的基质中物质变化能量转换光能转变为ATP中活跃的化学能ATP中活跃的化学能转化为糖类中稳定的化学能联系物质联系:光反应阶段产生的[H],在暗反应阶段用于还原C3;能量联系:光反应阶段生成的ATP,在暗反应阶段将其储存的化学能释放出来,帮助C3形成糖类,ATP中的化学能则转化为储存在糖类中的化学能【例1】下列关于光合作用的描述中,正确的是A.黑暗情况下叶肉细胞内无ATP产生B.叶绿体的类囊体薄膜上含有自身光合作用所需的各种色素。
C.光照下叶绿体中的ATP主要是由光合作用合成的糖经有氧呼吸产生的D.光合作用强烈时,暗反应过程直接将3个CO2分子合成一个三碳化合物[知识总结] ①叶绿体在离体条件下,只需保持其正常生存状态的条件,即可正常发挥其生理作用。
②在植物体中,并非是每个细胞都存在叶绿体,如高等植物的根细胞就没有。
③进行光合作用的生物不一定都有叶绿体,但必须都有相关的色素和酶,如蓝藻和光合细菌,因其为原核细胞,没有叶绿体等典型的细胞器,靠细胞质中的色素和酶进行光合作用。
④改变条件后,C3、C5、[H]和ATP、葡萄糖合成量等的变化规律:条件停止光照,CO2供应不变突然光照,CO2供应不变光照不变,停止CO2供应光照不变,CO2供应过量C3 增加减少减少增加C5 下降增加增加减少[H]和ATP 减少或没有增加增加减少葡萄糖合成量减少或没有增加减少或没有增加1.有氧呼吸的过程类型第一阶段第二阶段第三阶段场所细胞质基质线粒体基质线粒体内膜过程1分子葡萄糖分解成2分子的丙酮酸,产生少量的[H],并且释放少量的能量。
这一阶段不需要O2的参与丙酮酸和H2O彻底分解成CO2和[H],同时释放出少量的能量。
这一阶段不需要O2的参与前两个阶段产生的[H]和O2结合生成水,同时释放大量的能量。
光反应的反应方程式

光反应的反应方程式
光反应反应的化学方程式:NADP⁺+2e-+H⁺→NADPH
光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,还原为NADPH。
电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
光反应:是通过叶绿素等光合色素分子吸收光能,并将光能转化为化学能,形成ATP和NADPH 的过程。
光反应和暗反应的区别
一、发生场所不同
光反应发生在叶绿体的类囊体膜(光合膜);
暗反应开始于叶绿体基质,结束于细胞质基质。
二、反应过程不同
光反应:是通过叶绿素等光合色素分子吸收光能,并将光能转化为化学能,形成ATP和NADPH 的过程。
暗反应:是由光量子为生物色素吸收的时间极短的光反应过程和为光所激发的色素在暗处引起的一系列暗反应过程所组成的。
光反应:
物质变化:H2O→2H+1/2O2(水的光解)
NADP++2e-+H+→NADPH
能量变化:ADP+Pi+光能→ATP
暗反应:
物质变化:CO2+C5化合物→2C3化合物(二氧化碳的固定)
2C3化合物+4NADPH+ATP→(CH2O)+C5化合物+H2O(有机物的生成或称为C3的还原)
能量变化:ATP→ADP+PI(耗能)
光反应阶段:场所是类囊体薄膜
暗反应阶段:场所是叶绿体基质。