电力电子技术实验报告
电力电子技术实验报告全
电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。
通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。
常见的电力电子器件包括二极管、晶闸管、IGBT等。
三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。
2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。
3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。
4. 分析实验数据,验证电路设计的正确性和性能指标。
5. 根据实验结果,调整电路参数,优化电路性能。
六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。
实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。
七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。
实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。
这些技能对于我们未来的学习和工作都具有重要意义。
八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。
通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。
电力电子技术实验报告总结
电力电子技术实验报告总结电力电子技术作为一门重要的电气工程学科分支,在现代工业和生活中有着广泛的应用。
通过一系列的电力电子技术实验,我不仅加深了对理论知识的理解,还提高了自己的实践操作能力和解决问题的能力。
以下是我对这些实验的总结。
一、实验目的和要求电力电子技术实验的主要目的是让我们熟悉各种电力电子器件的特性和工作原理,掌握基本电力电子电路的分析、设计和调试方法。
同时,培养我们的实验技能、数据处理能力和创新思维。
在实验过程中,我们被要求严格遵守实验室的安全规则,正确使用实验仪器设备,认真观察实验现象,准确记录实验数据,并对实验结果进行分析和总结。
二、实验设备和仪器实验所用到的设备和仪器包括示波器、信号发生器、万用表、电力电子实验箱等。
其中,示波器用于观测电路中的电压和电流波形,信号发生器用于产生各种控制信号,万用表用于测量电路中的电压、电流和电阻等参数,电力电子实验箱则集成了各种电力电子器件和电路模块,方便我们进行实验操作。
三、实验内容(一)单相半波可控整流电路实验在这个实验中,我们研究了单相半波可控整流电路在不同控制角下的输出电压和电流特性。
通过改变触发角,观察输出电压的平均值和有效值的变化,并与理论计算值进行对比。
同时,还分析了负载性质(电阻性负载、电感性负载)对电路工作性能的影响。
(二)单相桥式全控整流电路实验单相桥式全控整流电路是一种常见的整流电路结构。
在实验中,我们深入了解了其工作原理和特性。
通过调节触发角,观察输出电压和电流的波形,并计算输出电压的平均值和有效值。
此外,还研究了电路的有源逆变工作状态,以及逆变失败的原因和预防措施。
(三)三相桥式全控整流电路实验三相桥式全控整流电路是大功率整流装置中常用的电路拓扑。
通过这个实验,我们掌握了三相电路的工作原理和调试方法。
观察了不同控制角下的输出电压和电流波形,分析了三相电源的相序对电路工作的影响,并研究了电路在电阻性负载和电感性负载下的性能差异。
电力电子技术课程实训报告
一、前言电力电子技术是一门研究电力电子器件及其在电力系统中的应用的学科,是电气工程及其自动化专业的一门核心课程。
为了更好地理解和掌握电力电子技术的理论知识,提高动手实践能力,我参加了电力电子技术课程实训。
以下是实训过程中的总结和体会。
二、实训目的1. 理解电力电子器件的工作原理和特性;2. 掌握电力电子电路的设计和调试方法;3. 培养动手实践能力,提高解决实际问题的能力;4. 提高团队合作意识,增强沟通能力。
三、实训内容1. 电力电子器件实验:实验内容包括晶闸管、二极管、可控硅等电力电子器件的伏安特性测试、开关特性测试等。
2. 电力电子电路实验:实验内容包括可控整流电路、逆变电路、斩波电路等电力电子电路的设计、搭建和调试。
3. 电力电子装置实验:实验内容包括电力电子装置的组成、工作原理、性能测试等。
四、实训过程1. 实验准备:根据实验要求,准备好实验所需的器件、仪器和设备。
2. 实验操作:按照实验步骤,进行电力电子器件的测试、电路的搭建和调试。
3. 结果分析:对实验数据进行整理和分析,找出实验过程中存在的问题,并提出改进措施。
4. 实验报告撰写:根据实验过程和结果,撰写实验报告。
五、实训成果1. 理解了电力电子器件的工作原理和特性,掌握了器件的伏安特性测试和开关特性测试方法。
2. 掌握了电力电子电路的设计和调试方法,能够根据电路原理图搭建和调试电路。
3. 提高了动手实践能力,能够独立完成电力电子电路的设计和调试。
4. 增强了团队合作意识,与团队成员共同完成实验任务。
六、实训体会1. 实践是检验真理的唯一标准。
通过实训,我深刻认识到理论知识与实际操作之间的紧密联系。
2. 电力电子技术是一门综合性较强的学科,需要掌握多个方面的知识。
在实训过程中,我意识到只有不断学习,才能提高自己的综合素质。
3. 实训过程中,我学会了如何与他人沟通和协作,提高了自己的团队协作能力。
4. 在实训过程中,我遇到了一些问题,通过查阅资料、请教老师和同学,最终解决了这些问题。
电力电子技术学生实习报告
电力电子技术学生实习报告一、实习目的和意义随着现代社会电力电子技术的广泛应用,对于电气工程及其自动化专业的学生来说,电力电子技术是一门非常重要的专业课程。
本次电力电子技术实习的目的是使我们对电力电子器件、电路及装置有一定的理论和实践基础,了解电力电子技术的基本原理和应用,培养和锻炼我们的实际动手能力,提高我们的实践技能水平。
二、实习内容和过程1. 电力电子器件的认识和测试:我们首先学习了电力电子器件的基本结构、工作原理和特性,包括晶闸管、GTO、IGBT等。
在实验室中,我们进行了器件的测试,掌握了测试仪器和测试方法。
2. 电力电子电路的分析和设计:我们学习了电力电子电路的基本原理,包括整流电路、逆变电路、斩波电路等。
在实验室中,我们根据电路原理图,分析了电路的工作原理,设计了电路的参数,并进行了电路的搭建和调试。
3. 电力电子装置的应用和实践:我们学习了电力电子装置的基本结构和应用,包括变频器、整流器、逆变器等。
在实验室中,我们进行了装置的组装和调试,了解了装置的工作原理和应用场景。
三、实习成果和收获通过本次实习,我们对电力电子技术有了更深入的了解和认识。
我们学会了如何分析和设计电力电子电路,如何组装和调试电力电子装置。
我们通过实践活动,提高了实际动手能力和实践技能水平。
同时,我们也培养了团队合作、共同探讨、共同前进的精神。
四、实习反思和展望虽然我们在实习过程中取得了一定的成果,但同时也发现了自己在理论知识和实践技能方面的不足。
我们需要在今后的学习中更加努力,加强对电力电子技术理论知识的学习,提高自己的实践技能水平。
同时,我们也希望能够在今后的学习和工作中,将所学知识运用到实际工程中,为社会做出自己的贡献。
总之,本次电力电子技术实习是一次非常有意义的实践教学活动。
通过实习,我们不仅提高了自己的专业技能水平,也培养了团队合作和创新精神。
我相信,这次实习的经历将对我们今后的学习和工作产生积极的影响。
电力电子实验报告
电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。
本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。
一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。
二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。
实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。
三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。
调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。
3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。
而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。
在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。
实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。
通过调整电路参数,可以实现不同电压、频率和波形的输出。
这为电力系统的稳定运行和能源的高效利用提供了技术支持。
五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。
电力电子技术实训课报告
一、实习背景与目的随着科技的飞速发展,电力电子技术在工业、交通、医疗、家电等领域得到了广泛应用。
为了提高学生对电力电子技术的理解和应用能力,我校特开设电力电子技术实训课程。
本次实训旨在通过实际操作,让学生熟悉电力电子器件的基本原理,掌握电力电子技术的基本操作方法,提高学生的动手实践能力,为今后从事相关工作奠定基础。
二、实习时间与地点实习时间:2021年X月X日至2021年X月X日实习地点:XXX学院电力电子实验室三、实习内容与过程1. 实习内容本次实训主要包括以下内容:(1)电力电子器件的认识与操作:学习电力电子器件的基本原理,了解各类电力电子器件的结构、工作原理和应用领域。
(2)电力电子电路的搭建与调试:学习电力电子电路的基本搭建方法,掌握电路调试技巧,培养实际操作能力。
(3)电力电子设备的制作与维护:学习电力电子设备的制作工艺,了解设备的维护方法,提高学生对电力电子设备的实际应用能力。
2. 实习过程(1)第一天:指导老师简要介绍了电力电子技术的基本概念、发展历程和应用领域。
随后,学生分组进行电力电子器件的认识与操作。
(2)第二天:学生根据指导老师提供的电路图,学习搭建电力电子电路,并进行调试。
在此过程中,学生遇到问题,互相讨论、共同解决。
(3)第三天:学生分组制作电力电子设备,如逆变器、变频器等。
在制作过程中,学生严格遵守操作规程,确保安全。
(4)第四天:学生进行电力电子设备的性能测试,了解设备的运行状态。
根据测试结果,对设备进行必要的调整。
(5)第五天:指导老师组织学生进行总结与交流,分享实习心得。
学生针对实习过程中遇到的问题,提出改进措施。
四、实习成果与体会1. 实习成果通过本次实训,学生掌握了以下成果:(1)熟悉了电力电子器件的基本原理和应用领域。
(2)掌握了电力电子电路的搭建与调试方法。
(3)学会了电力电子设备的制作与维护。
(4)提高了实际操作能力和团队合作精神。
2. 实习体会(1)理论知识与实践相结合的重要性:本次实训使我对电力电子技术有了更深刻的理解,认识到理论知识与实践操作密不可分。
电力电子技术实验实验报告
电力电子技术实验实验报告一、实验目的电力电子技术实验是电气工程及其自动化专业的重要实践环节,通过实验,我们旨在深入理解电力电子器件的工作原理、特性以及电力电子电路的构成和工作过程。
具体目的包括:1、熟悉各类电力电子器件的特性和参数测试方法。
2、掌握基本电力电子电路的工作原理、分析方法和调试技巧。
3、培养实际动手能力和解决问题的能力,提高对电力电子技术在实际应用中的认识。
二、实验设备本次实验所使用的主要设备包括:1、电力电子实验台:提供电源、控制电路和测量仪表等。
2、示波器:用于观测电路中的电压、电流波形。
3、万用表:测量电路中的电压、电流、电阻等参数。
4、电力电子器件模块:如晶闸管、IGBT 等。
三、实验内容1、晶闸管特性测试(1)导通特性测试将晶闸管接入实验电路,逐渐增加阳极电压,观察并记录晶闸管导通时的电压和电流值。
(2)关断特性测试在晶闸管导通后,减小阳极电流至维持电流以下,观察并记录晶闸管关断时的电压和电流变化。
2、单相半波可控整流电路实验(1)搭建电路按照电路图连接好单相半波可控整流电路,包括电源、晶闸管、负载电阻等。
(2)调节触发角通过改变触发电路的参数,调节晶闸管的触发角,观察输出电压的变化。
(3)测量输出电压和电流使用示波器和万用表测量不同触发角下的输出电压和电流值,并记录数据。
3、三相桥式全控整流电路实验(1)电路连接仔细连接三相桥式全控整流电路,确保连接正确无误。
(2)触发脉冲调试调整触发脉冲的相位和宽度,保证晶闸管的正确导通和关断。
(3)性能测试测量不同负载条件下的输出电压、电流和功率因数等参数。
四、实验步骤1、实验前准备(1)熟悉实验设备的使用方法和注意事项。
(2)预习实验内容,理解实验原理和电路图。
2、进行实验(1)按照实验内容的要求,依次进行各项实验。
(2)在实验过程中,认真观察实验现象,准确记录实验数据。
3、实验结束(1)关闭实验设备的电源。
(2)整理实验仪器和设备,保持实验台的整洁。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。
通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。
本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。
一、整流电路实验整流电路是电力电子技术中最基本的电路之一。
通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。
在实验中,我们使用了半波和全波整流电路进行测试。
半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。
实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。
实验结果显示,输出电压为正半周的峰值。
全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。
实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。
实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。
二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。
通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。
在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。
单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。
实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。
实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。
三相逆变电路是现代电力系统中常用的逆变电路。
它通过三个开关管和三个滤波电感将直流电转换为三相交流电。
实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。
实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。
三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。
通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。
实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。
通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。
在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。
通过实验,我们进一步理解了直流电源的工作原理和设计方法。
实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。
通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。
实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。
这些结果对于电力系统的稳定运行和节能优化具有重要意义。
实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。
通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。
实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。
这对于提高电力系统的能效和稳定性具有重要意义。
实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。
通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。
实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。
这对于推广和应用太阳能发电技术具有重要意义。
结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。
实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。
我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。
电力电子技术实验报告
电力电子技术实验报告一、实验背景电力电子技术作为一个新兴的学科领域,已经逐渐成为电力系统的重要组成部分和关键技术之一。
随着电力电子技术的不断发展和进步,电力电子设备的种类和应用范围也在不断扩大,特别是在实现电力系统的高效、可靠、智能化方面具有至关重要的作用。
因此,掌握电力电子技术的基本原理和实验操作技能,对于打造应用型电力电子专业人才具有十分重要的意义。
本次实验主要涉及了电力电子技术的基础实验内容,包括单相桥式整流电路、单相半控桥整流电路、交流调压电路、直流稳压电源实验等。
通过实验,学生不仅能够加深对电力电子技术的理论知识的深入理解,也能够掌握实际操作技能和实验数据分析方法,培养学生的综合实际应用能力和创新能力。
二、实验原理(1)单相桥式整流电路单相桥式整流电路是电力电子技术最常见的电路之一。
其工作原理是通过控制四个二极管的导通和截止,将单相交流电转化为直流电,然后提供给直流负载使用。
这种电路结构简单、可靠性高、输出电压稳定等特点,被广泛应用于各种电力电子设备中。
(2)单相半控桥整流电路单相半控桥整流电路和单相桥式整流电路类似,不同之处在于只有一个晶闸管是可控的,其余三个二极管均为正向导通二极管。
这种电路可以实现对直流输出电压的连续调节,具有输出电压稳定、反向截止和可靠性高等特点,被广泛应用于变频调速、直流电动机控制等领域。
(3)交流调压电路交流调压电路是将变压器输出的交流电进行调制,通过控制可控硅的导通和截止,实现输出电压可调的电路。
这种电路在电力电子设备中广泛应用于电炉、电化学等领域,具有输出电压稳定、可靠性高、精度高等特点。
(4)直流稳压电源实验直流稳压电源实验是通过对不同的调节电路与稳压电路进行结合,实现直流电源输出电压、电流稳定的实验。
在电子学、通信、电力电子等领域中应用广泛,能够满足各种直流负载的需要。
三、实验步骤(1)单相桥式整流电路1. 将单相电源接入电路,调节电压调节器,使输出电压稳定。
电力电子技术实验报告
实验一单相桥式半控整流电路整流二极管两端电压U VD1的波形。
顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察并记录在不同α角时U d、U VT、U VD1的波形,测量相应电源电压U2和负载电压U d的数值,记录于下表中。
计算公式:Ud = 0.9U2(1+cosα)/2(3) 单相桥式半控整流电路带电阻、电感性负载①将单结晶体管触发电路的移相控制电位器RP1逆时针调到阻值最小位置、按下电源控制屏DJK01上的停止按扭断开主电路电源后,将负载换成电阻、电感性负载,即将平波电抗器L d(70OmH)与电阻R(双臂滑线变阻器和灯泡串联构成)串联。
②断开开关S1,先不入接续流二极管VD3。
接通主电路电源,顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,用示波器观察控制角α在不同角度时的Ud、UVT、UVD1、Id波形,并测定相应的U2、Ud数值,记录于下表中:③在α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD1、UVD2、Id的波形。
④将相控制电位器RP1逆时针调至最小,闭合开关S1,接入续流二极管VD3,然后顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察不同控制角α时Ud、UVD3、Id 的波形,并测定相应的U2、Ud数值,记录于下表中:⑤在接有续流二极管VD3及α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD2、UVD1和Id的波形。
八、实验报告(1) 画出电阻性负载、电阻电感性负载时U d/U2=f(α)的曲线。
(2)画出电阻性负载、电阻电感性负载,α角分别为30°、60°、90°时的U d、U VT的波形。
(3) 说明续流二极管对消除失控现象的作用。
在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压ud失控。
电力电子技术实验报告
实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。
(2)掌握各器件对触发信号的要求。
二、实验所需挂件及附件序型号备注号1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
3DJK07 新器件特性实验DJK09 单相调压与可调负4载5万用表自备将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:四、实验内容(1)晶闸管(SCR)特性实验。
(3)功率场效应管(MOSFET)特性实验。
(5)绝缘双极性晶体管(IGBT)特性实验。
五、实验方法(1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U调节过程中回路电流I以及器件的管压降U。
电力电子技术实验报告
实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。
三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。
(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。
六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应d2U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud、α=90°时的Ud 及Id波形图。
七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。
α =30o 时Ud的波形α =30o 时Uvt的波形α =60o 时Ud的波形α =60o 时Uvt的波形α =90o 时Ud的波形α =90o 时Uvt的波形α =120o 时Ud的波形α =120o 时Uvt的波形α =150o 时Ud的波形α =150o 时Uvt的波形α =90o 时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。
电力电子技术实践报告
电力电子技术实践报告一、引言电力电子技术在现代电力系统中起着至关重要的作用。
通过对电力电子器件和系统的实践应用,我们能够更好地理解电力电子技术的工作原理和应用领域。
本报告将详细介绍我们在电力电子技术实践中所进行的实验和取得的成果。
二、实验目的本次实践旨在通过对电力电子器件的实验应用,掌握电力电子技术在能量转换和电力控制中的应用原理和方法。
具体目标如下:1. 理解电力电子器件的基本原理和特性。
2. 学习电力电子器件的实验测量方法和参数计算。
3. 掌握电力电子器件的性能评估和使用技巧。
4. 通过实验应用,培养综合运用电力电子技术的能力。
三、实验内容在本次实验中,我们主要进行了以下几项内容的实践应用:1. 单相电压源逆变技术实验通过搭建电压源逆变电路,实现对直流电源的逆变,将直流电压转换为交流电压输出。
在实验过程中,我们观察了逆变电路的波形和电压的变化,计算了逆变电路的效率。
2. 三相桥式整流实验通过搭建三相桥式整流电路,将交流电源转换成直流输出。
我们对整流电路的输出电压和电流进行了测量,并计算了电路的整流效率。
同时,利用示波器观察了电路波形的变化,并对整流电路的性能进行了评估。
3. 交流调压换流器实验通过搭建交流调压换流器电路,实现对输入电压的调整和输出电压的换流。
我们准确测量了电路的输入和输出参数,并对电路的控制方法和性能进行了研究和分析。
四、实验结果与讨论我们通过以上三个实验的实践应用,详细记录并分析了实验结果。
在单相电压源逆变技术实验中,我们观察到逆变电路的波形和电压变化较为稳定,且逆变电路的效率较高。
在三相桥式整流实验中,我们得到了较为稳定的直流输出,并计算出整流电路的效率较高。
在交流调压换流器实验中,我们成功实现了输入电压的调整和输出电压的换流,并对电路的控制方法和性能进行了分析。
五、结论通过本次电力电子技术实践,我们深入了解了电力电子器件和系统的工作原理和应用方法。
实验结果表明,我们成功地掌握了电力电子技术的实验测量方法和参数计算,增强了我们的实践能力和综合运用能力。
电力电子实验报告
一、实验目的1. 熟悉电力电子器件的基本特性和工作原理。
2. 掌握电力电子电路的组成和功能。
3. 了解电力电子电路在实际应用中的工作情况。
4. 培养动手实践能力和分析问题、解决问题的能力。
二、实验器材1. 电力电子实验箱2. 万用表3. 示波器4. 信号发生器5. 晶闸管6. 二极管7. 电阻8. 电容9. 电感10. 连接线三、实验内容及步骤1. 电力电子器件特性实验(1)晶闸管导通特性实验:观察晶闸管在不同触发角下的导通情况,分析其导通特性。
(2)二极管反向恢复特性实验:测量二极管在反向电压作用下的恢复时间,分析其反向恢复特性。
2. 电力电子电路实验(1)单相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(2)三相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(3)单相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
(4)三相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。
3. 电力电子电路应用实验(1)交流调压电路实验:观察电路在不同输入电压下的输出电压,分析其调压效果。
(2)直流稳压电路实验:观察电路在不同输入电压下的输出电压,分析其稳压效果。
四、实验结果与分析1. 晶闸管导通特性实验通过实验,观察到晶闸管在触发角为0°时导通,随着触发角的增大,导通时间逐渐缩短。
这说明晶闸管的导通特性受触发角的影响。
2. 二极管反向恢复特性实验通过实验,测量出二极管在反向电压作用下的恢复时间为5μs。
这说明二极管的反向恢复特性对电路的开关速度有一定影响。
3. 电力电子电路实验(1)单相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。
这说明触发角对整流效果有较大影响。
(2)三相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。
电力电子技术实践报告
电力电子技术实践报告引言随着现代科技的不断发展,电力电子技术在各个领域中的应用越来越广泛。
本文将结合个人的实践经验,对电力电子技术的实践应用进行探讨和分析。
一、电力电子技术的基本原理电力电子技术是将电子技术应用于电力系统中的一门学科。
它通过使用电子器件和控制技术,可以将电力从一种形式转换为另一种形式。
电力电子技术的核心在于斩波控制技术,即通过控制电压和电流的开关状态,实现对电力的调整和控制。
二、电力电子技术在电力系统中的应用1. 可以利用交流-直流变换器将交流电转换为直流电,实现对输电线路的监控和控制。
这样做可以减少能量损耗,提高电力的传输效率。
2. 由于电力系统中常常需要将直流电转换为交流电进行利用,所以可以使用直流-交流逆变器实现这一过程。
逆变器可以将稳定的直流电转换为可用于家庭和工业设备的交流电。
3. 在可再生能源系统中,电力电子技术也起到了至关重要的作用。
例如,太阳能电池板和风力发电机产生的直流电,需要通过电力电子技术进行转换,才能满足电力系统的需求。
4. 电力电子技术还在电动车领域得到了广泛应用。
电动车的电机需要通过变频器进行控制,而变频器正是利用了电力电子技术实现的。
这样可以实现电动车的动力输出调节,提高能源利用率。
三、个人实践经验作为一名电力电子技术的研究者,我在实践过程中遇到了许多问题和挑战。
例如,在设计斩波控制器时,需要考虑到开关器件的特性,以确保控制的准确性和稳定性。
另外,在使用逆变器将直流电转换为交流电时,需要注意输出电流和电压的波形质量,以避免对各类电气设备产生不良影响。
此外,在太阳能发电系统的设计中,我还遇到了输电线路的电阻问题。
为了提高系统的发电效率,我采用了电力电子技术中的斩波调制技术,将输电线路的电阻降低到最低。
四、电力电子技术的发展前景随着可再生能源和电动车市场的迅速发展,电力电子技术的应用前景非常广阔。
同时,随着半导体技术的不断进步,电力电子器件的性能也在不断提高,这为电力电子技术的应用提供了更大的空间。
电力电子技术实践报告
电力电子技术实践报告引言近年来,随着电力电子技术的不断发展,其在能源转换和工业控制等领域的应用越来越广泛。
本报告旨在总结电力电子技术实践的过程和结果,以及分析其在可再生能源转换和电动车辆控制方面的应用。
本实践报告涉及的实践项目包括逆变器设计和电动车辆电力系统控制,通过这些项目的实践,我对电力电子技术的原理和应用有了更深入的理解。
1. 逆变器设计实践1.1 实践目的逆变器是电力电子设备中常见的一种,其作用是将直流电转换为交流电。
在本次实践中,我们的目标是设计一个高效稳定的逆变器,并对其性能进行测试。
1.2 实践过程和结果首先,我们调研了不同拓扑结构的逆变器,并选择了全桥逆变器作为我们的设计方案。
接着,我们根据设计要求确定了逆变器的元件参数,并进行了电路图设计和PCB布局。
在完成硬件设计后,我们进行了逆变器的组装和焊接。
之后,我们进行了逆变器的功能测试和性能评估。
通过给逆变器输入直流电源,并连接负载,我们测试了逆变器的输出电压、频率和波形质量。
结果显示,我们设计的逆变器能够稳定输出纯正弦波交流电,并且具备较高的转换效率。
1.3 实践收获和反思通过逆变器的设计实践,我深刻了解了逆变器的原理和设计要点。
同时,我也发现了一些问题,比如在PCB布局时需要更加考虑元件的散热和互相干扰的问题。
这些问题对未来的电力电子设计工作具有指导意义。
2. 电动车辆电力系统控制实践2.1 实践目的随着电动车辆的普及,电动车辆的电力系统控制变得至关重要。
本次实践旨在设计和实现一个电动车辆电力系统的控制器,实现对电池和电机的控制。
2.2 实践过程和结果我们选取了一辆电动车作为实验对象,其中包括电池组、电机和电控系统。
我们首先对电池组进行测试,评估其容量和电流特性,并根据测试结果制定了电池管理策略。
接着,我们设计了电动车的电控系统,包括电机控制模块和电池管理模块,并进行了硬件设计和软件编程。
在实验中,我们对电动车进行了性能测试。
通过控制器对电机速度、扭矩和制动进行调节,我们实现了对电动车的精确控制。
电力电子技术实验报告
实验一:单相桥式全控整流电路(电阻性负载)一、实验内容如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
idR图1-1二、实验原理1、在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。
2、在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
3、在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
4、在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b 流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况三、实验过程启动MATLAB,进入SIMULINK后新建一个仿真模型的新文件。
在这里可以任意添加电路元器件模块。
然后对照电路系统模型,依次往文档中添加相应的模块。
在此实验中,我们按下表添加模块:表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况添加好模块后,要对各元器件进行布局。
一个良好的布局面板,更有利于阅读系统模型及方便调试。
图1-3设置模块参数。
依次双击各模块,在出现的对话框内设置相应的参数。
1、交流电源参数设置:电压设置为220V,频率设为50Hz,其它默认。
图1-42、脉冲触发器设置:振幅(amplitude)设为5。
周期(Period)设为0.02秒。
电力电子技术实验报告
电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。
实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。
实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。
常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。
实验步骤:1. 实验一,单相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
2. 实验二,单相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
3. 实验三,三相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
4. 实验四,三相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。
实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。
结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。
同时,也为今后的学习和科研工作打下了坚实的基础。
总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
三、实验线路及原理锯齿波同步移相触发电路的原理图如图1-11所示。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。
四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、预习要求(1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。
(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。
六、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
(2)调节触发脉冲的移相范围将控制电压U ct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压U b(即调RP3电位器),使α=170°,其波形如图3-2所(3)调节U ct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
八、实验报告(1)整理、描绘实验中记录的各点波形.1点波形2点波形3点波形4点波形5点波形6点波形GK波形(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在U ct=0的条件下,使α=90°,如何调整?(3)讨论、分析实验中出现的各种现象。
九、注意事项参照实验一和实验二的注意事项。
实验二单相桥式全控整流电路实验一、实验目的(1)加深理解单相桥式全控整流。
(2)研究单相桥式变流电路整流的全过程。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。
2 DJK02 晶闸管主电路该挂件包含“晶闸管”以及“电感”等几个模块。
3 DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。
4 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”等模块。
5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、实验线路及原理图3-3为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗L d用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。
触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路”。
四、实验内容(1)单相桥式全控整流电路带电阻电感负载。
五、预习要求阅读电力电子技术教材中有关单相桥式全控整流电路的有关内容。
六、思考题实现有源逆变的条件是什么?在本实验中是如何保证能满足这些条件?七、实验方法(1)触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。
将控制电压U ct调至零(将电位器RP2逆时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压U b(即调RP3电位器),使α=180°。
将锯齿波触发电路的输出脉冲端分别接至全控桥中相应晶闸管的门极和阴极,注意不要把相序接反了,否则无法进行整流和逆变。
将DJKO2上的正桥和反桥触发脉冲开关都打到“断”的位置,并使U lf和U lr悬空,确保晶闸管不被误触发。
图3-8 单相桥式整流实验原理图(2)单相桥式全控整流按图3-8接线,将电阻器放在最大阻值处,按下“启动”按钮,保持U b偏移电压不变(即RP3固定),逐渐增加U ct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压U d和晶闸管两端电压U vt的波形,并记录电源电压U2和负载电压U d的数值于下表中。
α 30° 60° 90° 120°U2216.4 216.6 218.6 222.5U d(记录值)182.2 146.3 103 45U d(计算值)18407 146.2 98.37 47计算公式:U d=O.9U2(1+cosα)/2八、实验报告(1)画出α= 30°、60°、90°、120°时U d和U VT的波形。
(参考教材P47)(2)画出电路的移相特性U d=f(α)曲线。
九、注意事项(1)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf及U lr悬空,避免误触发。
(2)为了保证从逆变到整流不发生过流,其回路的电阻R应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。
(1)画出α=30°、60°、90°、120°时U d和U VT的波形。
α=30°U d的波形α=60°U d的波形α=90°U d的波形α=120°U d的波形α=30°Uvt的波形α=60°Uvt的波形α=90°Uvt的波形α=120°Uvt的波形实验三和实验四三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK02 晶闸管主电路3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。
4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
5 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。
6 D42 三相可调电阻7 双踪示波器自备8 万用表自备实验线路如图3-13及图3-14所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考1-3节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图3-13 三相桥式全控整流电路实验原理图在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。
图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。
图3-14 三相桥式有源逆变电路实验原理图四、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
五、预习要求(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。
(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。
(3)学习本教材1-3节中有关集成触发电路的内容,掌握该触发电路的工作原理。
六、思考题(1)如何解决主电路和触发电路的同步问题?在本实验中主电路三相电源的相序可任意设定吗?(2)在本实验的整流及逆变时,对α角有什么要求?为什么?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。
③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。
④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。
⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=150°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。
⑥适当增加给定U g 的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。
⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。