可靠性设计的基本概念与方法

合集下载

可靠性基本概念PPT培训课件

可靠性基本概念PPT培训课件

医疗设备行业对可靠性的要求也非常高,因为医疗设 备的故障可能会导致患者的治疗失败或造成额外的伤 害,同时也会给医疗机构带来经济和声誉损失。因此 ,医疗设备行业在可靠性工程方面也投入了大量的人 力和物力,以确保设备的可靠性和稳定性。
06
提高产品可靠性的方法与 技巧
设计阶段提高可靠性的方法
冗余设计
降额设计
01
确保团队成员对可靠性目标有清晰的认识,并能够通过具体指
标进行衡量。
制定实现目标的计划和措施
02
根据可靠性目标,制定详细的实施计划,包括资源分配、时间
安排和责任分工等。
监控目标实现过程
03
定期评估目标的实现进度,及时发现和解决存在的问题,确保
目标的顺利达成。
可靠性数据收集与分析
建立数据收集机制
确定需要收集的可靠性数 据类型、来源和频率,建 立可靠的数据收集机制。
生产阶段提高可靠性的方法
严格的质量控制
通过严格的质量控制,确保每 个组件或系统都符合设计要求
和规格。
环境应力筛选
通过在生产阶段施加环境应力 ,如温度、湿度、振动等,以 检测和剔除潜在的不合格产品 。
过程控制
通过控制生产过程中的关键参 数,确保每个产品的性能和质 量都符合要求。
人员培训
对生产人员进行培训,提高他 们的技能和意识,以确保产品
航天器的可靠性和安全性。
医疗设备行业
医疗设备行业是可靠性工程的重要应用领域之一。随 着医疗技术的不断发展,医疗设备已经成为医疗保健 的重要组成部分。医疗设备的可靠性和稳定性直接关 系到患者的治疗效果和生命安全。在医疗设备行业中 ,可靠性工程涉及到设备的设计、生产、检测和维修 等多个环节,旨在确保设备的质量和性能稳定可靠, 提高医疗保健的质量和效率。

FMEA的基本概念

FMEA的基本概念

FMEA的基本概念FMEA的基本概念FMEA是一种可靠性设计的重要方法。

是FMA(故障模式分析)和FEA(故障影响分析)的组合。

它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。

及时性是成功实施FMEA的最重要因素之一,它是一个“事前的行为”,而不是“事后的行为”。

FMEA的基本概念FMEA实际是一组系列化的活动,找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理;寻找预防或改进措施FMEA基本概念FMEA的分类:设计FMEA过程FMEA使用FMEA服务FMEA其中设计FMEA和过程FMEA最为常用。

FMEA风险顺序数S:严重度,取值在1~10之间O:频率数,取值在1~10之间D:不易探测度,取值在1~10之间SEVERITY:严重度是潜在失效模式发生时,对下工序、子系统、系统或顾客影响后果的严重程度的评价指标。

严重度仅适用于后果。

要减少失效后果的严重度级别,只能通过修改设计来实现。

严重度的评估分为1到10 级。

OCCURRENCE:频度(频率数)是指某一特定失效起因或机理出现的可能性。

描述频度级别数着重在其含义而不是具体的数。

通过设计更改来消除或控制一个或更多的失效起因或机理是降低频度数的唯一途径。

频度数的评估分1~10级。

确定评估级别时要考虑的是历史记录。

DETECTION:不易探测度是探测失效模式/原因/机理的能力的指标。

评估值为1~10。

总的来讲,为了取得比较低的不易探测度值,需要不断改进设计控制(如预防/确认/验证等)。

DFMEA的概念DFMEA——设计FMEA应在一个设计概念形成之时或之前开始是个动态文件其评价与分析的对象:最终的产品每个与之相关的系统、子系统和零部件DFMEA在体现设计意图的同时还应保证制造或装配能够实现设计意图DFMEA的准备工作DFMEA小组DFMEA小组的成员可能包括装配/制造的代表材料/采购的代表质量问题的专家产品服务人员分供方代表客户/下一环节或下一总成的代表人数:4~6人为宜不需要全部懂FMEA,但至少有1人有相关经验一般主管该项目设计的工程师做组长DFMEA的准备工作DFMEA需要的输入主管设计的人员应明确设计要求,列出希望做什么和不希望做什么设计意图/指标/顾客要求/制造(装配)要求等期望特性的定义尽量明确DFMEA的准备工作明确DFMEA分析对象的结构框图1:铆合粘合通过电磁力作用DFMEA表格中主要内容项目/功能主要是各个部件及其配合例子:音圈,音盆,支片……相互之间配合DFMEA表格中主要内容潜在失效模式列出每一个可能出现的失效模式,尽量以专业术语描述一个项目/功能可能有多个失效模式例子:碰芯,F0高,……DFMEA表格中主要内容潜在失效后果失效模式造成的结果,以客户感受描述例子:不响了(无声),难听,有杂音,……DFMEA表格中主要内容严重度严重度分为10个等级10级最严重,1级一般指没有后果严重度只能通过设计更改来降低DFMEA表格中主要内容潜在失效起因/机理一个失效模式可能有若干种原因应全部列出例子:对应碰芯的起因/机理可能包括磁隙和音圈机械尺寸不配合支片过软,震动是音圈摇摆过大……DFMEA表格中主要内容级别是否是关键特性?DFMEA表格中主要内容频度出现的概率,分为1~10共10个级别只能通过设计更改来消除或控制DFMEA表格中主要内容现行设计控制目前的预防措施/设计确认/验证或其它活动例子:功率试验,计算机模拟分析,样件试验,评审……DFMEA表格中主要内容不宜探测度风险序数用现行控制方法发现潜在失效原因/机理的能力的评价指标从1~10可以通过改进现行控制方法降低DFMEA表格中主要内容建议措施/责任/采取的措施/纠正后的RPN在RPN超过规定的情况下,必须进行改善在RPN相对较高的情况下,应优先采取改进行动可以通过设计更改,降低严重度或频度数,也可以改善现行控制方法PFMEA的基本概念PFMEA一般包括下述内容:确定与产品相关的过程潜在故障模式;评价故障对用户的潜在影响;确定潜在制造或装配过程的故障起因,确定减少故障发生或找出故障条件的过程控制变量;PFMEA有助于:编制潜在故障模式分级表,建立纠正措施的优选体系;将制造或装配过程文件化。

机械工程中的可靠性优化设计

机械工程中的可靠性优化设计

机械工程中的可靠性优化设计引言:机械工程是一个广泛应用于各行各业的领域,而在机械工程中,可靠性优化设计是一个至关重要的方面。

可靠性优化设计旨在提高机械系统的可靠性,延长设备的使用寿命,减轻后续的维修成本,提高工业生产效率。

本文将探讨机械工程中的可靠性优化设计的原理和方法,并介绍一些实际应用案例。

一、可靠性的基本概念在机械工程中,可靠性是一个关键的指标,它表示一个系统在给定的时间内正常工作的能力。

可靠性可以通过计算系统的故障率、失效率、平均寿命等指标来评估。

在可靠性优化设计中,目标是降低系统的故障率,提高系统的可靠性。

二、可靠性优化设计的原则1. 考虑系统的可靠性要素可靠性优化设计要考虑系统设计的各个方面,包括材料的选择、结构的设计、工艺的控制等。

系统的可靠性是由多个因素共同作用决定的,因此必须综合考虑各个方面的因素。

2. 运用可靠性工具在可靠性优化设计中,有许多工具和方法可供选择,如故障模式与影响分析(FMEA)、故障树分析(FTA)、可靠性块图(RBD)等。

这些工具能够帮助工程师深入分析系统的故障模式和风险,从而指导设计的改进和优化。

3. 进行系统辨识和优化在可靠性优化设计中,系统辨识是一个重要的步骤。

通过系统辨识,可以找出系统中的关键部件和环节,以及它们之间的相互作用关系。

然后,可以针对这些关键部件和环节进行优化设计,提高系统的可靠性。

三、可靠性优化设计的方法1. 材料的选择材料是机械系统中一个重要的方面,对系统的可靠性起着至关重要的作用。

在选择材料时,需要考虑其物理性质、化学性质、热学性质等因素,并根据系统的工作环境和使用条件选择合适的材料。

2. 结构的设计在机械工程中,结构的设计对系统的可靠性有着重要的影响。

良好的结构设计应该考虑到力学强度、刚度、防振动、冲击和疲劳等因素。

通过优化结构设计,可以提高机械系统的可靠性。

3. 工艺的控制机械系统的制造过程对其可靠性也有重要的影响。

控制好工艺流程、提高工艺的精度和稳定性,可以降低系统的故障率。

电子产品设计1-2

电子产品设计1-2

计算的数据
元器件种类 使用数量 通用失效率 n λg (个) (10-6/h) 硅二极管 硅NPN三极 管 金属膜电阻 陶瓷电容 石英晶体 2 4 5 2 1 0.97 4.6 0.24 0.38 0.32 质量系数 类别总失效 率 πQ (10-6/h) 0.1 0.15 0.3 0.3 1 0.194 2.76 0.36 0.228 0.32
• 早期失效期:由设计、制造上的缺陷等原因而造成的失效 叫早期失效,发生早期失效的期间叫早期失效期。其特点 是失效率较高,但随着元器件工作时间的增加而失效率迅 速降低。通过对原材料和生产工艺加强检验和质量控制, 可以大大减少早期失效比例。在生产中对元器件进行筛选 老化,可使其早期失效大大降低,以保证筛选后的元器有 较低的失效率。 • 偶然失效期:产品因偶然因素引起的失效叫偶然失效。产 品在早期失效之后,失效主要表现为偶然失效的时期叫偶 然失效期,也称随机失效期。其特点是失效率低而基本稳 定,可以认为失效率是一个常数,与时间无关。失效是随 机性质的。偶然失效期时间较长,是元器件的使用寿命期, 研究这一段失效意义最大。 • 耗损失效期:产品在使用的后期,由于老化、疲劳、耗损 等原因引起的失效叫耗损失效。主要发生耗损失效的时期 叫耗损失效期,又叫老化失效期。其特点是失效率随时间 迅速增加。到了这个时期,大部分元器件都开始失效,产 品迅速报废。在电子设备中,所有的元器件和组件都不能 工作于耗损失效期。
R(t ) = e − λt
★可靠度R(t):是系统在规定的条件和时间内完 成规定功能的概率。 可用表达式: R=1-F F:表示系统在规定的条件和时间内丧失规定功能 的概率称为失效概率。 失效概率的计算:取N个同类产品,若在规定 的条件和时间下有n个失效,则失效概率为: F= n/ N 那么:R= (N –n)/ N=1-F ★失效率λ:对于电子元器件来说,寿命结束就叫失 效。电子元器件的失效率是一个很小的常数。其失 效数据可通过可靠性试验求得: λ=失效数/(运用总数*运行时间)

可靠性基础知识介绍

可靠性基础知识介绍

二、可靠性的基本定义
1、可靠性 可靠性定义:产品在规定条件下、规定时间内、 完成规定功能的能力,称产品的可靠性。 产品可靠性分:固有可靠性、使用可靠性;基 本可靠性和任务可靠性。 固有可靠性:是产品在设计、制造中形成的, 是产品自身的一种固有特性,也是可控的特性, 它源于产品的设计、制作者。
使用可靠性:是产品在实际使用中,表现出的 一种性能和保持能力的一种特性。它不仅和产 品设计的固有可靠性有关,还和产品制作、操 作使用、维修保障各因素紧密相关。 基本可靠性:产品在规定条件下无故障的持续 时间或概率,称基本可靠性。在评定产品基本 可靠性时,需统计所有故障。其中所有可维修 故障,决定着对维修人员的合理安排。 任务可靠性:是产品在规定任务剖面内,完成 规定功能的能力。只考虑任务期间影响任务完 成的故障。
0 6 34 71 94 103 108 109 110
110 104 76 39 16 7 2 1 0
1
0
0.945 0.055 0.691 0.309 0.355 0.645 0.145 0.855 0.064 0.936 0.018 0.982 0.009 0.991 0 1
2、累计故障(失效)分布函数F 是度量故障的指标。是产品在规定条件下、规定 时间内、不能完成规定功能的概率,为累计故障 (失效)分布函数,也称不可靠度。也是时间的 函数,一般用F(t)表示。 F(t)=P(T≤t ) 可靠性与故障分布函数是两个对立的事件,其关 系式为: R(t)+ F(t)=1 r (t ) F(t)=
相当于No个新品工作到首次故障,因此: 当产品寿命服从指数分布时,
平均无故障时间MTBF:是衡量一个产品(尤其 是电器产品)可靠性的主要指标。单位为“小 时”。它反映了产品的时间质量,是体现产品在 规定时间内保持规定功能的一种能力。具体来说, 是指相邻两次故障之间的平均工作时间,也称为 平均故障间隔时间。

第二章__可靠性的基本概念

第二章__可靠性的基本概念

2.3 可靠性尺度
表示产品总体可靠性水平高低的各种可靠性指
标称为可靠性尺度。
2.3.1 可靠性概率指标及其函数 1. 可靠度与失效概率
可靠度可定义:产品在规定的条件下和规定的时间内,完成规 定功能的概率,通常以“R”表示。考虑到它是时间的函数,又 可表示为R(t) ,称为可靠度函数。 如果用随机变量T表示产品从开始工作到发生失效或故障的 时间,则该产品在某一指定时刻t的可靠度为:
tr
r
失效率是产品可靠性常用的数量特征之一,失效率愈高,则 可靠性愈低。失效率的单位用单位时间的百分数表示。例如:
1 -1。比如,某型号滚动轴承的失 效率为 % 10 3 h 1 , km,次 λ(t)=5*10-5/h,表示105个轴承中每小时有5个失 效,它反映 了轴承失效的速度。
f (t ) F (t ) R(t ) f (t ) d ln Rt (t ) R(t ) R(t ) R(t ) 1 F (t ) dt
0 R(t ) e
( t ) dt
t
——可靠度函数R(t)的一般方程
说明:
(1)R(t),F(t),f (t),λ(t)可由1个推算出其余3个。 (2)R(t),F(t)是无量纲量,以小数或百分数表示。 f(t), λ(t)是 有量纲量。 当λ(t)为恒 定值时:
① 早期失效
一般为产品试车跑合
λ(t )
早期失效期
偶然失效期
阶段。由于材料缺陷、制造工艺缺 陷、检验差错等引起。出厂前应进 行 严格的测试,查找失效原因,并 采取 各种措施,发现隐患,纠正缺 ② 正常运行期
损耗失效期
机械产品
λ=常数
电子产品
tm t

第二章 可靠性基本概念

第二章 可靠性基本概念
n(t) (Nn(t))t
式中 (t) ——故障率; n(t)——t 时刻后,t 时间内故障的产品数;
Nn(t)—残存产品数,即到t时刻尚未故障的产品数。
失Hale Waihona Puke 率问题• 失效率是概率值么? • 失效率有量纲么? • 失效率和失效密度之间有什么关系?
失效率的单位
对于低故障率的元部件常以 109 /h 为故障率的单位,称之为菲 特(Fit)。
命。
• 解:由题意知:N=100,n(1000)=5,
t 2 h , 0 n ( 1 0 ) 0 1 , T 0 1 6 h 0 0
根据前面公式: R(100)0950.95 F(100)0 5 0.05
100
100
f(10) 001 515 0/h (10 )01 0 5.2 6 1 50 /h
– 为了保持产品的可靠性而采取的措施 – 实际的维修工作,包括检查、修理、调整和更
换零部件等
可靠性与经济性的关系
• 经济性
– 主要指研制产品的投资费用 – 可靠性越高,投资费用越高 – 可靠性越高,维修费用和停工损
失越少 – 考虑成本的极小值
可靠性指标
可靠性指标:衡量可靠性的定量化尺度,也是描绘产品可 靠性特性的参数
能的事件或状态,称之为故障。
故障的表现形式,叫做故障模式。 引起故障的物理化学变化等内在原因,叫做故障机理。
• 不可修产品(如电子元器件):失效
• 产品的故障按其故障的规律可以分为两大类:
–偶然故障 –渐变故障
可靠度及可靠度函数
• 可靠度R(t)及可靠度函数
产品在规定的条件下和规定的时间内,完成规 定功能的概率称为可靠度。依定义可知,可靠度 函数R(t)为:R(t)到t时试 刻验 仍的 在产 正品 品 常总 工 数 N数 作 Nn(的 t)

可靠性基本概念、参数体系及模型建立

可靠性基本概念、参数体系及模型建立

可靠性基本概念
寿命剖面与任务剖面
寿命剖面:产品从制造到寿命终结或退出使用这段时间内所经历 的全部事件和环境的时序描述
关键因素:事件、事件顺序、持续时间、环境和工作方式 包含一个或多个任务剖面,分为后勤和使用两个阶段 产品指标论证时就应提出
任务剖面:产品在规定任务这段时间内所经历的事件和环境的 时序描述
20
可靠性模型建立
基本可靠性模型和任务可靠性模型
正确区分系统原理图、功能框图、功能流程图和可靠性框图 正确建立系统基本可靠性模型和任务可靠性模型
基本可靠性模型:估计产品及其组成单元可能发生的故障引起的维修及保障 要求,全串联模型 任务可靠性模型:估计产品在执行任务过程中完成规定功能的概率,描述完 成任务过程中产品各单元的预定作用并度量工作有效性
可靠性建模方法
可靠性框图、网络可靠性模型 故障树模型、事件树模型 马尔科夫模型、Petri网模型、GO图模型 19
可靠性模型建立
可靠性框图模型
定义:为预计或估算产品的可靠性而建立的可靠性方框图和数学 模型 组成:代表产品或功能的方框、逻辑关系和连线、节点组成
节点:分为输入节点、输出节点和中间节点 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 连线:有向、无向,反映系统功能流程的方向,无向意即双向
n
RS = e
−λt
(1 +
RD λ t )
28
可靠性模型建立
典型可靠性模型
桥联系统:可靠性模型逻辑描述中出现了电路中桥式结构逻辑关 系,其数学模型较为复杂,不能建立通用的表达式 网络模型:从抽象的角度看,网络就是一个图,由一些节点及连 接节点的弧组成,应用图论理论进行分析
29
可靠性模型建立

工程设计中的可靠性分析与优化

工程设计中的可靠性分析与优化

工程设计中的可靠性分析与优化随着信息化和智能化的快速发展,现代化社会对于工程的需求也越来越高。

作为工程的核心部分,设计对于工程的可靠性有着至关重要的影响。

在工程设计中,可靠性分析和优化是必不可少的环节,其目的是提高工程的可靠性,减少其故障率和维修成本,提高其生产效率和经济效益。

一、可靠性分析的基本概念可靠性分析是指对工程设计中可能存在的各种故障和失效情况进行分析和评估,以确定工程的可靠性和失效率。

其主要包括故障模式分析、失效模式和影响分析、可靠性试验等几个方面。

故障模式分析(FMEA)是指对于可能导致故障的因素进行分析和评估,以确定故障的可能性和影响范围。

失效模式和影响分析(FMECA)是针对故障模式的进一步分析,确定故障的影响程度和应对措施。

可靠性试验(Reliability Test)是通过测试的方式来检测工程设备的可靠性,确定故障率和失效率等参数,为后续的优化提供依据。

二、可靠性优化的基本方法可靠性优化是指通过对工程设计的改进,减少故障率和维修成本,提高生产效率和经济效益。

其主要包括设计改进、故障预测和预防、优化维护等几个方面。

设计改进是指通过改进设计、材料、结构和工艺等方面来提高工程的可靠性。

首先要考虑设计模式的合理性和精准性,通过模拟和优化分析,消除隐患和缺陷,提高工程的性能和安全性。

其次,要考虑材料和工艺的优化,选取合适的材料和工艺,提高工程的长期稳定性和可维护性,以降低故障率和维修成本。

故障预测和预防是指通过对故障模式进行分析和预测,预防故障的发生和扩散。

其主要包括故障预测、测试和检测、故障处理和故障分析等几个方面。

针对可能出现的故障情况进行预判和处理,选取合适的预防措施,以及尽早发现和处理故障现象,减少其影响范围和次生损失。

优化维护是指通过对维护方式进行优化和改进,提高维护效率和经济效益,减少维护成本和故障率。

其主要包括维护计划和策略、维修流程和方法、提高技术水平等几个方面。

采用有效的维护策略和技术手段,提高维修的准确率和效率,降低停机时间和维修成本,以保障工程的长期稳定运行。

可靠性工程的基本概念与模型

可靠性工程的基本概念与模型

可靠性工程的基本概念与模型可靠性工程是一门应用工程学科,旨在提高产品、系统或服务的可靠性。

通过运用可靠性工程的原则和方法,可以降低故障率、延长使用寿命、提高性能稳定性,从而满足人们对产品可靠性的需求。

本文将介绍可靠性工程的基本概念和常用模型,帮助读者理解和应用可靠性工程。

一、可靠性工程的基本概念1.1 可靠性可靠性是产品或系统在特定环境下连续正常运行的能力。

它可以用概率来表示,通常以失效率来度量,即单位时间内发生失效的概率。

可靠性的增加可以提高产品的性能稳定性,减少故障对用户的影响。

1.2 故障故障是指产品或系统在特定条件下出现的不符合预期的功能、性能或质量的现象。

故障分为软故障和硬故障,软故障通常可以通过重启或软件升级来解决,而硬故障需要更换硬件部件或进行专业修复。

1.3 可靠性评估可靠性评估是可靠性工程的核心内容,旨在对产品或系统的可靠性进行量化分析。

通过搜集故障数据、运用统计学方法,可以计算出可靠性参数,如失效率、平均无故障时间等,从而为产品设计、改进和维护提供依据。

2.1 故障模式与失效分析(FMEA)故障模式与失效分析是一种常用的可靠性分析方法,通过识别产品或系统可能的故障模式和失效原因,评估其潜在风险和影响程度,从而采取相应的改进措施。

FMEA可以在设计阶段发现和解决潜在问题,提高产品的可靠性。

2.2 信赖度增长模型(RGA)信赖度增长模型是一种常用的可靠性增长预测方法,通过收集产品的实际寿命数据,对其进行分析和建模,预测未来产品的信赖度增长趋势。

RGA模型可以帮助制定产品维护策略、预防性维修计划,提高产品的可靠性和维修效率。

2.3 加速寿命试验(ALT)加速寿命试验是一种常用的可靠性验证方法,通过对产品在加速条件下的寿命试验,推断其在正常使用条件下的可靠性性能。

ALT模型可以帮助评估产品的可靠性指标,优化产品设计和制造工艺,提前发现潜在问题。

2.4 保障时间分析(MTA)保障时间分析是一种常用的系统可靠性分析方法,通过识别系统各个组成部件的失效模式和失效率,计算出系统的平均无故障时间(MTBF)、平均修复时间(MTTR)等指标。

机械可靠性设计第一章可靠性基本概念2012

机械可靠性设计第一章可靠性基本概念2012

规定的时间:产品的可靠性与时间(使用期限)密切相关,
其可靠度是一个有时间性的定义,是随时间而降低的。对时间 性的要求一定要明确。时间可以是区间(0,t),也可以是区 间(t1,t2),甚至可以用其他的指标,如汽车、摩托车的行驶 里程(距离),滚动轴承的转动圈数。
一、可靠性的定义
规定的功能:要明确产品规定功能的内容。所谓 “完成规定功能”是指产品在规定的使用条件和规 定的功能参数下正常运行而不失效。失效不一定是 产品不能工作。 概率:可靠度是可靠性的概率表示。把概念性的可 靠性用具体的数学形式—概率表示,是可靠性技术 发展的出发点。用概率来定义可靠度后,对产品的 可靠程度的测定、比较、评价、选择才有了共同的 基础。
0
f (t )

dF (t ) d [1 R(t )] dR(t ) dt dt dt
0


0
dR(t ) t dt dt
tdR(t ) tR(t ) 0 R(t )dt
0
R(t )dt
0

2.可靠寿命、特征寿命和中位寿命
早期失效期 (幼儿期) 规定的 失效率
偶然失效期 (青壮期)
使用寿命
损耗失效期 (老年期)
0
t
三、寿命指标:
在可靠性工程中,规定了一系列与寿命有关的指标: 平均寿命、可靠寿命、特征寿命和中位寿命等。都是衡 量产品可靠性的尺度。 1.平均寿命
在寿命特征中最重要的是平均寿命,它定义为寿命 的平均值。平均寿命的数学意义就是寿命的数学期望, 记作θ ,
失效概率密度、累积失效概率和可靠度的关系
由定义可得:
R(t) F(t) R(t) F(t)

机械可靠性设计的基本方法及其指标体系

机械可靠性设计的基本方法及其指标体系

机械可靠性设计太原理工大学机械工程学院主讲:刘混举机械可靠性设计第2讲机械可靠性设计的基本方法及其指标体系2.1可靠性基本概念⏹可靠性的概念及基本思想可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力。

⏹可靠性的基本思想任何参数均为多值的,且呈一定分布。

安全系数大的设备或产品不一定是百分之百的安全。

2.2可靠性定义可靠性的概念可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力。

产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。

规定条件:一般指的是使用条件,环境条件。

包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。

规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。

规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。

产品丧失规定功能称为失效,对可修复产品通常也称为故障。

可靠性的类型可靠性可分为固有可靠性和使用可靠性⏹固有可靠性是通过设计、制造赋予产品的可靠性;⏹使用可靠性既受设计、制造的影响,又受使用条件的影响。

一般使用可靠性总低于固有可靠性。

可靠性的类型及影响因素2.3可靠性特征量(可靠性指标)⏹可靠度可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。

它是时间的函数,故也记为R(t),称为可靠度函数。

⏹1)可靠度如果用随机变量T表示产品从开始工作到发生失效或故障的时间,其概率密度为f(t)如右图所示,若用t表示某一指定时刻,则该产品在该时刻的可靠度。

对于不可修复的产品,可靠度的观测值是指直到规定的时间区间终了为止,能完成规定功能的产品数与在该区间开始时投入工作产品数之比,即:2)可靠寿命可靠寿命是给定的可靠度所对应的时间,一般记为t(R)一般可靠度随着工作时间t的增大而下降,对给定的不同R,则有不同的t(R),即t(R)=R-1(R)式中R-1——R的反函数,即由R(t)=R反求t4)平均寿命⏹平均寿命:平均寿命是寿命的平均值,对不可修复产品常用失效前平均时间,一般记为MTTP ,对可修复产品则常用平均无故障工作时间,一般记为MTBF 。

电子电路的可靠性设计与质量控制

电子电路的可靠性设计与质量控制

电子电路的可靠性设计与质量控制引言:电子电路作为现代科技的基础,其可靠性设计与质量控制是至关重要的。

只有保证电子电路的稳定运行和高质量,才能满足人们对于电子产品的要求。

本文将详细介绍电子电路的可靠性设计与质量控制的步骤和方法。

一、了解可靠性设计的基本概念和要求1. 可靠性设计的基本概念:可靠性是指电子电路在特定条件下能够正常工作的概率。

2. 可靠性设计的要求:包括电路的寿命、可靠性指标、环境适应性等。

二、电子电路的可靠性设计步骤1. 确定设计目标:明确电路的用途、工作条件和性能指标,为后续的设计提供正确的方向。

2. 器件选择:选择符合设计要求的可靠性高的器件,注意避免过度选用新器件,适当考虑历史可靠性数据。

3. 电路拓扑设计:根据电路的功能要求,设计合理的电路拓扑结构,避免过于复杂的设计,减少故障发生的可能性。

4. 电路稳定性分析:通过稳定性分析,找出电路可能出现的故障情况,采取相应的措施来提高电路的稳定性。

5. 可靠性评估:对设计的电子电路进行可靠性评估、预测和计算,确定电路的可靠性指标,为后续的质量控制提供依据。

三、电子电路的质量控制步骤1. 零部件质量控制:选择合格的零部件供应商,确保采购的零部件符合质量要求,建立供应商的质量体系,实施稽查和审核。

2. 生产过程质量控制:建立完善的生产工艺流程,设立严格的生产工艺控制点,对每个环节进行质量监控,及时调整和改进。

3. 质量检验:对于生产出的电子电路进行全面的质量检验,包括外观检查、性能测试、环境适应性等多个方面。

4. 可追溯性管理:建立电器电路产品的可追溯性管理体系,追踪每个工作环节的质量记录和检验结果。

5. 产品质量改进:根据质量检验的结果,及时整理和分析问题,并采取相应的措施进行改进和修正,提高电子电路的质量。

四、电子电路的可靠性设计与质量控制的方法1. 故障模式与效应分析(FMEA):通过对电子电路进行系统性的分析,找出故障模式和对应的效应,并采取相应的措施来预防和修复故障。

可靠性设计

可靠性设计

可靠性设计(Reliability Design)设计是人类改造自然的一种基本活动,也是一种复杂的创造思维过程。

所谓的设计技术,也就是在设计过程中解决具体设计问题的各种方法和手段。

它的核心内容包括三个方面:1.计划,构思的形成;2.视觉传达方式;3.计划通过传达后的具体应用。

而因为影响计划和构思因数的不同,因此有传统设计和现代设计的区分。

两者最根本的区别在与现代设计与工业化大生产和现代文明密切联系,这是传统设计所不具有的。

因此现代设计是工业化大批量生产技术条件下的必然之物。

因此,可以说现代技术技术是在传统设计方法基础上继承和发展起来的,是一门多专业和多学科交叉,其综合性很强的基础技术科学。

一、可靠性设计概述可靠性设计的定义:定义1:对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。

定义2:为了满足产品的可靠性要求而进行的设计。

可靠性设计即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。

设计水平是保证产品可靠性的基础。

可靠性设计是产品的一个重要的性能特征,产品质量的主要指标之一,是随产品所使用时间的延续而在不断变化的。

可靠性设计的任务就是确定产品质量指标的变化规律,并在其基础上确定如何以最少的费用以保证产品应有的工作寿命和可靠度,建立最优的设计方案,实现所要求的产品可靠性水平。

可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。

可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。

可靠性设计的一个重要内容是可靠性预测,即利用所得的资料预报一个零件、部件或系统实际可能达到的可性,预报这些零部件或系统在规定的条件下和在规定时间内完成规定功能的概率。

在产品设计的初期阶段,及时完成可靠性预测工作,可以了解产品各零部件之间可靠性的相互关系,找出提高产品可靠性的有效途径。

可靠性分析

可靠性分析

可靠性分析引言可靠性是指系统在规定的时间内,按照要求正常运行的能力。

在现代工程中,可靠性分析是评估系统、产品、设备等的重要指标之一。

通过可靠性分析,可以帮助我们识别并解决可能影响系统可靠性的问题,提高系统设计和维护的质量。

本文将介绍可靠性分析的基本概念、常用方法和工具,以及在实际应用中的一些注意事项。

可靠性的定义可靠性是指系统在一定时间内能够按照要求正常运行的能力。

在工程中,可靠性通常以故障率或平均无故障时间来衡量。

故障率是指在单位时间内系统发生故障的概率,通常用小时为单位进行计量;而平均无故障时间是指系统在正常运行的状态下能够连续工作的平均时间。

可靠性分析的方法和工具故障模式与影响分析(FMEA)故障模式与影响分析(Failure Mode and Effects Analysis,简称FMEA)是一种常用的可靠性分析方法。

它通过对系统的各个组成部分进行评估,识别可能的故障模式和影响,并采取相应的预防措施。

FMEA通常包括以下步骤:1.识别系统的各个组成部分;2.分析每个组成部分可能的故障模式及其严重程度;3.评估每个故障模式的发生概率;4.评估每个故障模式的影响程度;5.根据评估结果,确定相应的预防措施。

可靠性块图(RBD)可靠性块图(Reliability Block Diagram,简称RBD)是一种可视化的分析工具,用于描述系统中各个组成部分的可靠性关系。

RBD通过将系统分解为若干可靠性块,以及它们之间的连接关系,来分析系统的可靠性。

RBD的基本构成包括:可靠性块(表示系统的组成部分),连接线(表示组成部分之间的联系),以及输入和输出(表示系统的输入和输出)。

通过对RBD的分析,可以评估系统的可靠性指标,并找出影响系统可靠性的关键组成部分。

故障树分析(FTA)故障树分析(Fault Tree Analysis,简称FTA)是一种基于逻辑关系的可靠性分析方法。

它通过构建故障树,分析系统发生故障的可能性和影响,从而帮助我们识别并解决系统设计和运行中可能存在的问题。

可靠性设计基本方法

可靠性设计基本方法

可靠性设计的基本方法1.简化设计系统在设计过程中将在满足性能指标的条件下,线路尽可能简单,系统设计充分借鉴2G直放站设计经验,采用可靠性高的、模块化的标准射频模块,提高系统的集成度,监控盘直接借用2G直放站监控盘,根据3G通信协议重新设计监控程序,电源采用公司成熟的模块化电源解决方案,以提高产品的可靠性。

2.模块和元器件选择和控制优先选用公司元器件大纲中的器件,优先选用经过认证的合格供应商提供的器件,尽可能减少元器件的品种、规格,严格控制选用非标准规格的元器件;需要外购的部分射频模块一方面严格对供货商进行准入认证,另一方面要对入库的外购模块进行严格的性能检验,以保证外购模块的质量。

外购的模块和元器件在装机前将100%进行环境应力筛选试验(ESS),以保证元器件在装机前已消除了早期的性能缺陷。

3.热设计考虑直放站结构设计时均对产品进行热分析和预计,对产品内部最高温升进行设计控制,采用大功率散热器,并预留足够的余量,同时对发热量较大的功率放大器模块安装时底部覆涂导热硅脂,保证功放表面温升不大于25℃。

总体结构方案设计完成后,针对电子设备热产生机理与传播方式,对电子设备的热场分布进行分析研究,采用合理的热设计方法保证电子设备在允许的温度范围内工作。

通过CAE辅助分析软件,进行模型建立、模型求解和结果解释三方面对直放站产品进行热效应分析,优化整机设备关键器件、部件的参数位置;并对电子系统强迫对流和自然对流冷结构设计方案进行优化。

在仿真方案达到设计要求后,通过环境温升试验对设备结构设计方案作最终考评,以保证直放站设备的热设计可靠性。

4.降额设计降低元器件在电路中所承受的应力(一般主要指温度应力及电应力)可以提高元器件的可靠性,元器件的工作温度范围要求大于整机的工作温度范围,电阻、电容等元器件的耐压值应大于额定工作电压的2倍,电源模块实际功耗不超过额定功率的70%。

5.FMEA分析FMEA是进行可靠性分析的重要手段,由于直放站整机采用成熟的模块化设计技术,根据2G直放站的设计经验,功放模块的故障或失效对整机的功能影响较大,当功放模块失效或发生参数飘移时,对整机造成的影响是整机无输出或者输出功率失控,严重时导致网络瘫痪,因此将功放模块确定为整机的关键件,在研发和生产过程中必须加以重点控制,功放模块在装机前必须进行严格检测和筛选,同时严格控制功放模块在使用过程中的表面温升不超过25℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可靠性设计的基本概念与方法
可靠性设计是指在产品或系统设计过程中,考虑到产品或系统应能在
一定的使用条件下,保持其预定功能和性能的能力。

它是一个涉及到多学科、多技术领域的综合性问题,需要从不同的角度对产品或系统进行分析、预测、评估和优化。

本文将介绍可靠性设计的基本概念与方法。

1.设计寿命:指产品或系统能够正常运行的时间或使用次数。

设计寿
命往往由产品或系统的技术特性、设计目标和用户需求确定。

2.可用性:指产品或系统能够按照用户要求或设计要求正常进行工作
的能力。

可用性是评估产品或系统可靠性的重要指标之一
3.故障:指产品或系统在正常使用中出现的不符合设计要求的状态或
行为。

故障可以分为临时性故障和永久性故障。

4.故障率:指产品或系统在单位时间内发生故障的次数。

故障率是评
估产品或系统可靠性的重要指标之一
5.容错性:指产品或系统对故障的检测、恢复和修复的能力。

容错性
是提高产品或系统可靠性的重要手段之一
1.可靠性分析:通过分析产品或系统的结构、功能、使用条件等因素,预测和评估产品或系统的故障率、故障模式和故障原因。

常用的可靠性分
析方法包括故障模式与影响分析(FMEA)、故障树分析(FTA)等。

2. 可靠性建模:通过建立产品或系统的数学模型,分析和优化产品
或系统的可靠性。

常用的可靠性建模方法包括可靠性块图、Markov模型、Petri网模型等。

3.设计优化:通过分析和评估不同设计方案的可靠性性能,选择和优
化最佳设计方案。

常用的设计优化方法包括设计结构优化、参数优化等。

4.可靠性测试:通过对产品或系统进行实验或实测,验证和评估产品
或系统的可靠性。

常用的可靠性测试方法包括加速寿命测试、信度试验等。

5.容错技术:通过引入备件、冗余设计和故障检测、恢复和修复等措施,提高产品或系统对故障的容错性。

常用的容错技术包括冗余设计、故
障检测与诊断、故障恢复与修复等。

6.可靠性维护:通过对产品或系统进行定期维护、检修和更换,延长
产品或系统的使用寿命和可靠性。

常用的可靠性维护方法包括预防性维护、修复性维护等。

综上所述,可靠性设计是一个涉及到多学科、多技术领域的综合性问题,需要从不同的角度对产品或系统进行分析、预测、评估和优化。

在可
靠性设计过程中,可靠性分析、可靠性建模、设计优化、可靠性测试、容
错技术和可靠性维护等方法是常用的手段,可以有效提高产品或系统的可
靠性。

相关文档
最新文档