人教版八年级上数学教案5篇

合集下载

人教八上数学教案5篇

人教八上数学教案5篇

人教八上数学教案5篇准备教案是教师依据课标,只有结合实际的教学内容所写的教案才是有价值的,以下是无忧文档我精心为您推荐的人教八上数学教案最新5篇,供大家参考。

人教八上数学教案篇1教学目标1、能在具体的生活实践或游戏情境中,体验上下、前后的位置和顺序。

2、培养学生上下、前后的空间观念。

3、使学生能对上下、前后的位置加以准确的判断。

4、让学生了解位置的相对性。

教学重难点教学重点:正确辨别上下、前后的位置和顺序。

教学难点:对学生上下、前后空间观念的培养。

教学工具课件教学过程一、创设情境,引入新课师:山羊老师想教同学们画一张笑脸,看,上面缺少什么?(课件出示)师:我们应该把眼睛画在鼻子的什么地方?我们应该把嘴巴画在鼻子的什么地方?师:今天我们就来学习“上下前后”板书课题:上下前后二、教学新知:(一)、教学上下1、出示课件:主题图(1)师:看图上有什么?(生口答:有,汽车、火车和轮船)师:仔细思考一下:用谁在谁的上面?谁在谁的下面来描述他们的位置关系吗?板书:(2)师:我先看汽车和火车的位置关系。

(3)课件出示:火车和轮船师:谁在上面?谁在下面?师:谁来说一说,谁在谁的上面?谁在谁的下面吗?师指图讲解:有生说:“火车在轮船的下面”师及时追问:“下面吗?” 师小结:火车对于汽车来说,火车在汽车的下面,火车对于轮船来说,火车在轮船的上面,火车一会在上面,一会在下面,为什么呢? 师指图讲解后小结:我们以后在说上下的位置关系时也要说它在谁的.上面,它在谁的下面。

2、师:我们看一看教室里,你能说一说谁在谁的上面?谁在谁的下面吗?2、把数学课本放在先放在课桌上面,练习本放在课本的上面,铅笔盒放在练习本的上面,同位互相说一说,谁在谁的上面,谁在谁的下面。

师巡视指导指名汇报交流。

3、前、后(1)、过渡:师:我们刚才认识了上下两个位置关系,在我们生活中,不光存在着上下两个位置关系,还有其他的位置关系。

(2)找“前后”的活动。

八年级数学上册教案人教版(汇集5篇)

八年级数学上册教案人教版(汇集5篇)

八年级数学上册教案人教版(汇集5篇)八年级数学上册教案人教版(1)一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

2023最新-八年级数学上册教案【优秀5篇】

2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。

人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。

三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。

菱形定义:有一组邻边相等的平行四边形叫做菱形。

【强调】菱形(1)是平行四边形;(2)一组邻边相等。

让学生举一些日常生活中所见到过的菱形的例子。

四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。

∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。

2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。

3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

人教版初二数学上册教案(通用10篇)

人教版初二数学上册教案(通用10篇)

初二数学上册教案人教版初二数学上册教案(通用10篇)作为一名优秀的教育工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

那要怎么写好教案呢?以下是小编整理的人教版初二数学上册教案,欢迎阅读,希望大家能够喜欢。

初二数学上册教案篇1教学目标:1. 掌握三角形内角和定理及其推论;2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:三角形内角和定理及其推论。

教学难点:三角形内角和定理的证明教学用具:直尺、微机教学方法:互动式,谈话法教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2 你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。

教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。

这里教师设计了电脑动画显示具体情景。

然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

人教版八年级数学上册教案

人教版八年级数学上册教案

人教版八年级数学上册教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、规章制度、合同协议、条据文书、励志名言、好词好句、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, speeches, rules and regulations, contract agreements, policy documents, inspirational quotes, good words and sentences, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!人教版八年级数学上册教案有关人教版八年级数学上册教案6篇通过本节课的学习,我们将培养学生的批判思维、解决问题的能力和团队合作精神。

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

八年级上册数学教案人教版五篇

八年级上册数学教案人教版五篇
第1页 共12页
得∠ACB 为 30°,这时,地质专家测得 AC 的长度就可知河流宽度. 学生们很想知道,这样估测河流宽度的依据是什么?带着这个
问题,引导学生学习“等腰三角形的判定”. II 引入新课 1.由性质定理的题设和结论的改变,引出探讨的内容——在
△ABC 中,苦∠B=∠C,则 AB= AC 吗? 作一个两个角相等的三角形,然后视察两等角所对的边有什
第3页 共12页
八年级上册数学教案人教版 2 教学目的 1. 使学生娴熟地运用等腰三角形的性质求等腰三角形内角 的角度。 2. 熟悉等边三角形的性质及判定. 2.通过例题教学,帮助学生总结代数法求几何角度,线段长 度的方法。 教学重点: 等腰三角形的性质及其应用。 教学难点: 简洁的逻辑推理。 教学过程 一、复习巩固 1.叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。 把等腰三角形对折,折叠两部分是相互重合的,即 AB 与 AC 重合, 点 B 与点 C 重合,线段 BD 与 CD 也重合,所以∠B=∠C。 等腰三角形的顶角平分线,底边上的中线和底边上的高线相 互重合,简称“三线合一”。由于 AD 为等腰三角形的对称轴,所 以 BD= CD,AD 为底边上的中线;∠BAD=∠CAD,AD 为顶角平分线, ∠ADB=∠ADC=90°,AD 又为底边上的高,因此“三线合一”。 2.若等腰三角形的两边长为 3 和 4,则其周长为多少? 二、新课
第6页 共12页
决问题的实力. 教学重点:等边三角形的性质和判定方法. 教学难点:等边三角形性质的应用 教学过程 I 创设情境,提出问题 回顾上节课讲过的等边三角形的有关学问 1.等边三角形是轴对称图形,它有三条对称轴. 2.等边三角形每一个角相等,都等于 60° 3.三个角都相等的三角形是等边三角形. 4.有一个角是 60°的等腰三角形是等边三角形. 其中 1、2 是等边三角形的性质;3、4 的等边三角形的推断方

人教版八年级上册数学教案

人教版八年级上册数学教案

人教版八年级上册数学教案人教版八年级上册数学教案【5篇】数论是数学的一个分支,研究整数的性质和关系,包括素数、因子分解和数的性质。

这里给大家分享一些关于人教版八年级上册数学教案,供大家参考学习。

人教版八年级上册数学教案篇1教学目标:1. 通过生活中的事例,使学生初步体会什么是轴对称图形。

2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。

教学重点:1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

2. 能正确判断轴对称图形。

教学难点:画出轴对称图形。

教学准备:课件剪刀彩色卡纸平行四边形纸一、情境导入1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。

课件出示不对称“脸图”问:“这张脸可爱吗?”生:不可爱!课件演示脸图由不对称变为对称,问:现在呢?生:可爱!师:看来,人人都喜欢美丽的东西。

今天老师给大家带来了一些美丽的图片,请欣赏。

2.图片欣赏(课件出示对称图形图片)看完图片后师问:这些图片中的图形有什么特点?(指名回答)学生可能会说,它们两边完全一样。

教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)二、探究新知1.认识轴对称图形师:在我们的生活中,还有很多事物都是对称的。

看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)生:想!师:老师和你们来一场比赛,看谁剪的又快又好,开始!师生同时动手剪,完成后教师把自己剪的贴在黑板上。

请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。

(指导学生演示方法)问演示学生:你怎么让大家知道你剪的小松树是对称的呢?生:我把它对折(生边说边演示)(师板书:对折)师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?生:左右两边完全重合(师板书:完全重合)师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。

人教版八上数学教案优秀8篇

人教版八上数学教案优秀8篇

人教版八上数学教案优秀8篇出色的教案使教师可以提升教学效率和课堂效果,提前编写教案能够帮助教师更好地规划课堂活动,提升学生的积极性,以下是本店铺精心为您推荐的人教版八上数学教案优秀8篇,供大家参考。

人教版八上数学教案篇1教学要求:1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。

2.培养学生对看到的、听到的事物进行了深入理解和准确把握。

3.观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。

教学重点:培养学生的对看到的、听到的事物进行了深入理解和准确把握。

教学难点:开拓学生是思维能力。

教学过程:一、导入新课:要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。

所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。

愿这一节课能使你的头脑更灵活。

二、知识新授与应用1.课件出示:一组有趣的图片图1、柱子是圆的还是方的?仔细看一看。

让学生先同桌互相说一说,看到了什么?图2、看着黑点身体前后移动。

让学生跟着要求做,然后说一说看到的。

图3、有多少个黑点?图4、是静的还是动的?图5:弗雷泽螺旋是最有影响的幻觉图形。

你所看到的好像是个螺旋,但其实它是一系列完好的同心圆!这幅图形如此巧妙,以至于会促使你的手指沿着错误的方向追寻它的轨迹教师介绍学生认识。

2、练习。

三、回顾小结:学生谈收获。

人教版八上数学教案篇2圆的初步认识教学内容:小学数学新教材四年级第一学期(试用本)p74~76、教学目标:⒈从生活中感知圆,并抽象出圆。

⒉通过不同办法画圆,建立圆的初步概念并认识圆心、半径。

⒊认识圆规并会用圆规按要求画圆。

⒋通过认识圆、画圆和欣赏圆,感受圆的美。

教学重点:通过各种学习活动,认识圆并建立圆的初步概念,认识圆心、半径。

教学难点:用圆规画圆。

教学过程:一、情景导入1、(出示ppt)提问:在这些物体中,你都发现了哪个图形?2、揭题:生活中我们到处都可以见到圆形。

人教版八年级上数学教案5篇

人教版八年级上数学教案5篇

人教版八年级上数学教案5篇通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

这里给大家分享一些关于人教版八年级上数学教案,方便大家学习。

人教版八年级上数学教案篇1教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈、如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)⒉、继续尝试:下面的'三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋、习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.人教版八年级上数学教案篇2教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

人教版初二数学上册教案

人教版初二数学上册教案

人教版初二数学上册教案人教版初二数学上册教案【5篇】计算数学是数学的一个分支,研究数值计算方法和算法的理论和应用,用于解决复杂计算问题。

这里给大家分享一些关于人教版初二数学上册教案,供大家参考学习。

人教版初二数学上册教案篇1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点:认识对称现象和轴对称图形的特点。

教学难点:掌握识别轴对称图形的方法。

教具准备:多媒体课件、实物图片等。

教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出对称二、合作探究,学习新知1、观察图形,认识对称(1)观察几幅对称图形,引导学生感悟对称。

(2)说一说生活中的对称现象2、动手操作,认识轴对称图形(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

(2)动手操作,剪出轴对称图形师示范剪一件上衣的过程:折一折、画一画、剪一剪。

生动手剪出自己喜欢的轴对称图形。

交流展示学生的作品(3)认识对称轴看一看,摸一摸,说一说画一画:师示范画出对称轴,然后学生自己画,再交流。

3、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的轴对称图形的例子。

三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

四、课堂总结通过这节课的学习,你有什么收获?五、欣赏轴对称图形的美丽人教版初二数学上册教案篇2教学目标:1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

八上数学人教版教案7篇

八上数学人教版教案7篇

八上数学人教版教案7篇八上数学人教版教案篇1教学内容:课本22页例3和做一做及练习四1、2题。

教学目标:1、通过活动使学生学会以不同的地方为观测点推断方向。

2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。

3、通过学习,进一步提高学生的空间观念。

重点难点:使学生进一步认得到位置关系的相对性。

教学用具:挂图教学过程:一、创设情境生成问题1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。

2、分别指两名学生,让大家依据方向说一说他们的位置关系。

(设计意图:组织学生先弄清东西南北四个方向,再依据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。

)3、师:今日我们就来连续研究两个物体位置的相对关系。

(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。

)二、探究沟通解决问题1、出示教材第22页例3主题图。

(1)让生察看地图师:北京和上海两地相距约莫1000千米,说一说,上海在北京的什么方向上?①组织学生用直尺,量角器测量出上海在北京的什么方向上。

师依据学生汇报板书:②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?组织学生察看上图,在小组中讨论,然后沟通说一说。

出示提示1.确定以谁为观测点,并建立方向标。

2.用语言描述北京和上海的.实在位置。

讨论后每组选出一名同学在班内汇报。

生汇报。

可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。

师对照图示指一指,确定两种说法都是正确的。

师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。

以上海为观测点,北京在上海的北偏西30度的方向上。

观测点不同,物体的相对位置就会发生更改。

这就是今日这节课学习的内容。

八上数学人教版教案篇2教学目标:1、通过活动使学生学会以不同的地方为观测点推断方向。

2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。

数学人教版八年级上教案通用4篇

数学人教版八年级上教案通用4篇

数学人教版八年级上教案通用4篇数学人教版八年级上教案【篇1】教学目标:1、知识与技能:进一步认识图形的对称轴,并能在方格纸上画出一个图形的轴对称图形。

2、过程与方法:通过观察,确定对称点的位置,探索图形成轴对称的特征和性质,3、情感、态度、价值观:让学生感受生活中轴对称的美感,知道大自然中,处处有数学。

教学重点:认识图形的对称轴,并能画出轴对称图形。

教学难点:确定对称点的位置教学准备:多媒体课件教学方法:观察法、讲解法,合作交流法、探究法。

教学过程:一、创设情境出示轴对称图片师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。

(板书:轴对称图形)二、复习旧知1、你还见过哪些轴对称图形?2、什么样的图形是轴对称图形?3、看书中图片,画出对称轴。

三、探究新知1、出示例1 看一看,数一数,你发现了什么?(引导学生观察)(1)合作探究①这幅图对称吗?②中间这一条直线表示什么?③点A和点A在这幅图中是两个对应点,它们到对称轴的距离都是()个小格。

④点B和点()是对应点,它们到对称轴的距离都是()个小格。

⑤点C和点()是对应点,它们到对称轴的距离都是()个小格。

⑥我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离()。

(2)汇报交流①在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

②我们可以用这个性质来判断一个图形是否是对称图形。

或者画对称图形。

2、出示例2(1)引导学生思考A、怎样画?先画什么?再画什么?B、每条线段都应该画多长?(2)在思考的基础上,用铅笔试画。

(3)小结①找出所给图形的关键点。

②数出或量出图形关键点到对称轴的距离。

③在对称轴的另一侧找出关键点的对称点。

④按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

四、课堂练习P84做一做第2题五、课堂小结这节课你有什么收获?1、在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。

思维自疑问和惊奇开始。

一个数学家越超脱越好。

数学是锻炼思想的体操。

这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。

新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇2023版人教版八年级上册数学教案篇1教学目标:教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab 是梯子的长度,所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。

所以至少需13米长的梯子。

2、讲授新课:①、蚂蚁怎么走最近。

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。

在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a 点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。

(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b 点的最短路线是什么?你画对了吗?(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形。

好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。

我们不难发现,刚才几位同学的走法:(1)a→a′→b;(2)a→b′→b;(3)a→d→b;(4)a—→b。

人教新版八年级数学上册教案优秀6篇

人教新版八年级数学上册教案优秀6篇

在教学工作者开展教学活动前,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面是小编辛苦为大家带来的人教新版八年级数学上册教案优秀6篇,希望大家可以喜欢并分享出去。

八年级上册数学教案篇一【教学目标】知识目标:解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:充分调动学生学习的积极性、主动性【教学重点】单项式与多项式的乘法运算【教学难点】推测整式乘法的运算法则。

【教学过程】一、复习引入通过对已学知识的复习引入课题(学生作答)1、请说出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂例如:( 2a2b3c) (-3ab)解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c= -6a3b4c2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?这便是我们今天要研究的问题。

二、新知探究已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)结论单项式与多项式相乘的运算法则:用单项式分别去乘多项式的每一项,再把所得的积相加。

人教八年级上册数学教案

人教八年级上册数学教案

人教八年级上册数学教案高年级数学八年级上册的教案老师们准备好了吗?下面是整理的人教八年级上册数学教案5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所能够帮助。

人教八年级上册数学教案1教学目标1.理解并掌握小数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

2.培养出来学生的分析能力和学生类推能力。

3.体验所学地理知识与现实生活的联系,能应用所学知识解决集成生活中简单的问题,从中获得收藏价值体验。

教学重难点教学重点:理解并掌握除数是整数的小数除法的计算方法。

教学难点:理解商的小数点定位问题。

教学工具ppt课件教学过程一、复习引入1.填空:(PPT课件)2.(PPT课件出示)(1)引导学生列式:224÷4(2)为什么这样列式?(路程÷时间=速度)(3)说一说:224÷4这道题是怎样计算的?(教师板演)【设计意图】通过复习整数除法,唤醒学生对整数除法计算方法和计算步骤的除法回忆,为新知的教学打好基础。

二、探究新知(一)教学例11.出示例1,引导理解题意。

(PPT课件演示。

)(1)题目中会告诉了我们什么?(坚持晨练可以增强体质,王鹏坚持晨练,他计划4周跑步22.4 km。

)(2)题目中要我们求什么?(按计划他平均每周应跑多少千米?)2.尝试列式,分析数量关系。

(1)要求“他平均每周应跑多少千米”,应该怎样列式?(学生口头列式,教师板书或PPT课件演示:22.4÷4。

)(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)3.揭示新课,感受学习价值。

(1)请张老师观察算式这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。

)(2)揭示课题:看来,在实际生活中常常遇到需要用小数线性方程组经常计算的问题,这节课我们就来研究新的课堂课题──除数是整数的十进制除法。

(3)板书课题:除数是整数的小数除法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上数学教案5篇人教版八年级上数学教案篇1教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用;2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么已知△ABC的两边AB=5,AC=12,则BC=13对吗创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗提出课题:能得到直角三角形吗讲授新课:⒈、如何来判断(用直角三角板检验)这个三角形的三边分别是多少(一份视为1)它们之间存在着怎样的关系就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形(当满足较小两边的平方和等于较大边的平方时)⒉、继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13;6,8,10;8,15,17.(1)这三组数都满足a2+b2=c2吗(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗随堂练习:⒈、下列几组数能否作为直角三角形的三边长说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉、已知ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋、习题1.3课堂小结:⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.人教版八年级上数学教案篇2教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C之间的面积之间有什么关系学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C之间有什么关系2、图1—4中,A,B,C之间有什么关系3、从图1—1,1—2,1—3,1|—4中你发现什么学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗2、你能发现直角三角形三边长度之间的关系吗在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是的“勾股定理” 也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗(回答是肯定的:成立)四、想一想这里的29英寸(74厘米)的电视机,指的是屏幕的长吗只的是屏幕的款吗那他指什么呢五、巩固练习1、错例辨析:△ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11六、作业课本P7§1.12、3、4人教版八年级上数学教案篇3教学目标1、知识与技能目标(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.(2)能判断给出的数是否为无理数,并能说出理由.2、过程与方法目标(1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.3、情感与态度目标(1)激励学生积极参与教学活动,提高大家学习数学的热情.(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.教学重点1、让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2、会判断一个数是否为有理数,是否不是有理数.3、用计算器进行无理数的估算.教学难点1、把两个边长为1的正方形拼成一个大正方形的动手操作过程.2、无理数概念的建立及估算.3、判断一个数是否为有理数.教学准备:多媒体,两个边长为1的正方形,剪刀,短绳.教学过程:第一环节:章节引入(2分钟,学生阅读感受)内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数3.252525……与3.252252225……一样吗它们有什么不同(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少剩下的正方形木板的边长又是多少厘米呢你能帮小红解决这个问题吗b.你能求出面积为2的正方形的边长吗你知道圆周率的精确值吗它们能用整数或分数(即有理数)来表示吗第二环节:复习引入(3分钟,学生口答)内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称.请用上述材料中所涉及的知识证明下面的问题:a.直角边长分别为3和1的直角三角形的斜边长是不是有理数b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢第三环节:活动探究(15分钟,学生动手操作,小组合作探究)(一)发现新数内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:(1)设大正方形的边长为,应满足什么条件(2)满足:2=2的数是一个什么样的数可能是整数吗说明你的理由(3)可能是分数吗说说你的理由引出课题《数怎么又不够用了》(二)感受新数的广泛性内容:面积为5的正方形,它的边长b可能是有理数吗说说你的理由。

(三)巩固验证,应用拓展内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗可能是分数吗说明理由.b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段第四环节:介绍历史,开阔视野(3分钟,学生阅读)内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.第五环节:课时小结(2分钟,全班交流)内容谈谈本节课你有什么收获与体会有哪些困难需要别人帮你解决b感受数不够用了,会确定一个数是有理数或不是有理数.c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.第六环节:布置作业人教版八年级上数学教案篇4一、教学目的:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.三、课堂引入1.(复习)什么叫做平行四边形什么叫矩形平行四边形和矩形之间的关系是什么2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E. 求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴ CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.六、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.人教版八年级上数学教案篇5教学目的:1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

相关文档
最新文档