常用到的stata命令
STATA常用命令大全
![STATA常用命令大全](https://img.taocdn.com/s3/m/eb80fe866529647d27285292.png)
STATA 常用命令大全调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。
对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。
STATA命令应用及详细解释
![STATA命令应用及详细解释](https://img.taocdn.com/s3/m/3ac10a6de3bd960590c69ec3d5bbfd0a7956d53c.png)
STATA命令应用及详细解释1. summarize:该命令用于计算数值变量的描述性统计信息,包括均值、标准差、最小值、最大值等。
2. tabulate:该命令用于生成一个分类变量的频数和百分比表。
它可以计算单个变量的分布情况,也可以计算多个变量之间的交叉分布情况。
3. tabstat:该命令用于生成一个或多个数值变量的汇总统计信息,包括均值、标准差、中位数等。
与summarize命令相比,tabstat命令可以同时计算多个变量的统计量。
4. regress:该命令用于进行线性回归分析。
可以使用regress命令估计一个自变量和一个或多个因变量之间的线性关系,并生成回归系数、拟合优度等回归结果。
5. logistic:该命令用于进行逻辑回归分析。
逻辑回归分析常用于二分类问题,可以估计自变量对因变量的影响,并生成回归系数、odds比等结果。
6. ttest:该命令用于进行两样本独立样本的t检验。
可以比较两个独立样本的均值差异,并计算t值、p值等检验结果。
7. oneway:该命令用于进行单因素方差分析。
可以比较不同组别之间的均值差异,并进行方差齐性检验和多重比较。
8. twoway:该命令用于进行双因素方差分析。
可以同时比较两个因素及其交互作用对均值差异的影响,并进行方差齐性检验和多重比较。
9. nonparametric:该命令用于进行非参数统计分析。
包括Wilcoxon秩和检验、Kruskal-Wallis H检验、Mann-Whitney U检验等非参数假设检验方法。
10. generate:该命令用于创建一个新的变量,并根据已有变量和运算符生成新的值。
生成的变量可以用于后续的计算和分析。
11. replace:该命令用于替换数据集中指定变量的值。
可以根据条件语句来替换指定变量中的值。
12. bysort:该命令用于按照一个或多个变量的值对数据集进行排序,并按照排序后的次序执行其他STATA命令。
stata常用命令
![stata常用命令](https://img.taocdn.com/s3/m/4aea890b844769eae009ed44.png)
第一讲:
use 打开数据文件,一般加 clear 选型清空内存中现有数据。 sysuse 打开系统数据文件。 describe 描述数据 edit 利用数据编辑器进行数据编辑 list 类似于 edit,但只能显示不能修改数据。 display 显示计算结果。经常写为: di summarize 求某个变量的观察值个数、平均值、标准差、最小值和最大值。经常写 为:sum scatter 生成两个变量的散点图。 set obs 定义样本个数(使用前一定要用 drop 或者 clear 命令清空当前样本) generate 建立新变量并赋值。经常写为 gen (**********************)stata 命令格式 (**********************) [by varlist:] command [ varlist] [=exp] [if exp] [in range] [ weight] [, options] 1。Command 命令动词,经常用缩写。 2。varlist 表示一个变量或者多个变量,多个变量之间用空格隔开。如 sum price weight 3。 4。 5。 6。 by varlist 分类信息 按照某一变量的不同特性分类 =exp 赋值及运算 if exp 挑选满足条件的数据 in range 对数据进行范围筛选 给数据赋一个权重
例二: use wage2, clear reg lnwage educ tenure exper expersq 1。教育(educ)和工作时间(tenure)对工资的影响相同。 test educ=tenure (两个变量的系数是否相等) 2。工龄(exper)对工资没有影响 test exper (检验 exper 的系数是否为 0) 3。检验 educ 和 tenure 的联合显著性 或者 test e(去年王永画的范围内明确指明 FGLS 不考! ! ! ) FGLS 的步骤 (1) 对原方程用 OLS 进行估计,得到残差项的估计 ûi , (2) 计算 ln(ûi2 ) (3) 用 ln(û2 )对所有独立的解释变量进行回归,然后得到拟合值 ĝ i (4) 计算 ĥi = exp(ĝ i) (5) 用 1/ ĥi 作为权重, 做 WLS 回归。 Reg y x1 x2 x3„„ predict u,res
STATA命令应用及详细解释
![STATA命令应用及详细解释](https://img.taocdn.com/s3/m/0fd8612ef08583d049649b6648d7c1c709a10b7f.png)
STATA命令应用及详细解释STATA是一种统计软件,被广泛应用于数据分析和统计建模。
在STATA中,有许多命令可以用来汇总数据并提取关键统计信息,以便更好地理解和解释数据。
下面将介绍一些常用的STATA命令,并详细解释其用途和功能。
1. summarize:summarize命令用于对数值变量进行简单的统计汇总。
它会输出变量的观测数、均值、标准差、最小值、最大值等统计量。
2. tabulate:tabulate命令用于对分类变量进行频数统计。
它会输出每个分类变量的取值及其频数,并可以计算相对频数和累计频数。
3. descriptives:descriptives命令可以同时对数值变量和分类变量进行统计汇总。
它会输出每个变量的观测数、缺失值数、均值、标准差、最小值、最大值、频数等统计量。
4. summarizeby:summarizeby命令可以按照一个或多个分类变量对数值变量进行分组统计。
它会输出每个分类组别的观测数、均值、标准差、最小值、最大值等统计量。
5. collapse:collapse命令用于对数据进行折叠操作,将数据按照指定的分类变量进行分组,并计算每组的汇总统计量。
它可以用于生成汇总数据集,以便后续分析。
6. bysort:bysort命令可以按照一个或多个变量对数据进行排序,然后对排序后的数据进行分组统计。
它可以与其他命令结合使用,如collapse、egen等。
7. egen:egen命令可以生成新的衍生变量,该变量可以基于原始数据进行计算。
它支持许多统计函数,如均值、标准差、总和、中位数等,并可以按照一个或多个分类变量进行分组计算。
8. tabstat:tabstat命令可以对数值变量进行多个统计量的计算,并将结果输出为一个表格。
它支持均值、标准差、最小值、最大值、中位数等统计量,并可以按照一个或多个分类变量进行分组计算。
9. corr:corr命令用于计算变量之间的相关系数。
stata入门常用命令
![stata入门常用命令](https://img.taocdn.com/s3/m/6c95cabbdc88d0d233d4b14e852458fb770b38ff.png)
stata入门常用命令Stata是一种统计分析软件,在社会科学、医学等研究领域很常用。
以下是Stata入门常用命令:1.数据加载use "文件路径":加载Stata数据,文件路径为数据文件所在的路径。
describe:显示数据集的变量名、数据类型、缺失值和数据分布等。
2.变量处理generate 变量名=表达式:生成新变量(如指数变量),并可以使用算数、统计和逻辑运算。
replace 变量名=新值:替换某变量中的指定值(如缺失值)为新值。
drop 变量名:删除数据集中的变量。
rename 旧变量名 = 新变量名...:将变量改名。
recode 变量名(包含的值) = 新值:根据变量取值对其离散化。
3.数据子集sort 变量名...:按指定变量排序数据。
by 变量名:...:在一个或多个变量上划分数据集,然后对每个子集应用命令。
if (条件):指定一个条件,只选取满足条件的数据记录。
merge 命令:将两个或多个数据集根据指定变量进行合并。
4.数据汇总summarize:按变量计算数值统计(如平均值、标准差、中位数和四分位数)。
tabulate 变量名:对变量进行交叉分析,并产生表格输出。
5.数据可视化histogram 变量名:绘制直方图。
scatter 变量名1 变量名2:绘制散点图。
graph 命令:绘制多种类型的图表,例如线图和条形图。
6.线性回归regress 因变量自变量1 自变量2...:通过最小二乘法拟合多元线性回归模型。
test 命令:进行t检验、F检验、方差分析等统计检验。
predict 新变量名:计算回归模型的预测值或残差值,并存储在新的变量中。
7.度量方法计算correlate 命令:计算并存储所有变量的相关系数矩阵。
haase 命令:计算哈斯变换矩阵。
Inflate 命令:计算一个变量的方差膨胀因子和条件数。
8.模态分析(模拟)simulate 命令:用随机抽样模拟数据,计算一个或多个变量的特定函数或方程,并存储结果。
stata常用命令
![stata常用命令](https://img.taocdn.com/s3/m/b178622dfd4ffe4733687e21af45b307e871f917.png)
stata常用命令1. 生成变量1.1 gen生成新变量,可以是常数或基于其他变量的一般表达式。
1.2 replace替换已有变量的值。
生成专门函数如总和、均值、标准差等。
2. 数据子集保留指定的变量。
2.2 drop2.3 in子集数据只保留某些被满足条件的观察值。
更加灵活地较大判断条件。
3. 重塑数据3.1 wide将数据在垂直方向与一个变量进行“展开”(unstack)。
4. 数据合并将两个数据集根据一些共同变量进行合并。
5. 数据排序5.1 sort按顺序排列观测值。
5.2 by指定一组变量作为分类变量,然后对该变量使用stata命令。
6. 描述性统计和图形6.1 summarize描述数据集的基本信息。
6.2 tabulate生成列联表。
绘制直方图。
生成散点图。
6.5 twoway可用于绘制多元图形,包括线图、条形图、密度图等。
7. 频数用于表格中简单查看可以因为比较大的变量。
8. 回归分析8.1 regress线性回归分析。
8.2 logistic8.3 probit生成probit模型。
9. 时间序列9.1 tsset使用stata处理时间序列数据的第一步是指定数据集变量中的时间序列。
生成时间序列图。
10. 面板数据使Stata处理面板数据。
10.2 xtreg生成固定效应模型或随机效应模型。
11. 模型诊断使用模型生成新的预测值。
测试线性组合的系数的显著性。
12. 元分析进行元分析。
13. 子样本13.1 markin创建一个新文件并标记子样本。
标记子样本中的索引值。
以上就是stata常用命令,当然并不是所有的命令都一一列举,在实践用stata的经验中可以去发掘能否有更好的命令来使用。
STATA 常用命令
![STATA 常用命令](https://img.taocdn.com/s3/m/0f6a1d3033d4b14e842468c0.png)
目录STATA 常用命令 (2)一、基本运算 (2)二、数据处理 (3)三、数据导入导出 (3)四、描述性统计 (4)五、相关系数 (4)六、t检验 (4)七、非参数检验Wilcoxon (4)八、多元线性回归 (4)九、面板数据多元回归 (4)十、Logit回归 (5)十一、主成分分析与因子分析 (5)十二、PSM(倾向性匹配) (5)十三、内生性检验 (6)十四、DID (双重差分模型) (6)十五、作图 (7)十六、错误修正 (7)十七、应用技巧 (7)STATA 常用命令一、基本运算2.新变量产生1至n(行数)的变量:gen z=_n新变量赋值:gen y=log(x) if x>0gen y=seq(x)gen y=rmean(x)gen y=x+zDummy 变量:gen d=1 if x>1replace d=0 if x<=1自动生成年度(year)的Dummy变量:tabulate year, gen(Dyear)替换变量中的数值:replace x=0 if x<0更换变量名称:rename var1 x字符型变量转换为数值型:destring x, replace force(手动操作:选定变量=>右键=>数据)提取年度:gen ymd=date(date,”YMD”)format %td ymdgen year=year(ymd)提取字符:gen code=substr(x,1,1)3.变量处理一阶滞后变量:gen lag_x=L.x将所有变量的缺失值改为0:mvencode _all, mv(0) override去掉重复数值:duplicates drop x, force变量的标准化:egen x1=std(x)变量的缩尾处理:先安装:ssc install winsor, replacewinsor x , gen (x1) p(0.01)二、数据处理1.基本操作帮助:help ttestsearch ttest打开文件:use “ “查看:list x in 1/4展示数据集:describe (d)频率:tab x 或tab x y z命令窗口的执行命令:enter命令文件的执行命令:ctrl +D命令窗口换行:ctrl+enter清空内存(对新数据集开始检验时先清除原数据):clear点击历史窗口,可以将已执行的命令重新恢复为待执行的命令从小到大排列:sort x从大到小排列:gsort -x删除变量:drop x删除若干行:drop in 10/12删除前3行:drop in 1/3删除负数行:drop if x<0删除缺失值:drop if x==.删除不等于C的值:drop if x~=“C”保留变量x和y,删除其他变量:keep x y保留若干行,删除其他行:keep in 10/12保存:save “ 路径” , replace2.数据集合并横向合并:merge x y using “ “纵向合并:append using “ “按一个变量合并:merge 1:m code using "E:\Research\STATA\income.dta"drop _merge按两个变量合并:merge 1:1 code year using "E:\Research\STATA\income.dta"drop _merge3.三、数据导入导出1.Data=>data editor (改为数值型)=>将excel数据粘贴到data editor2.直接导入excel数据,并把第一行作为变量名称:import excel “路径”, firstrow clear3.导入stata 数据集:use “ ”4.导出: 安装asdoc: ssc intall asdoc, replace然后回归分析时:asdoc reg y x在结果窗口点击:Myfile.doc四、描述性统计1.summarize x2.su x3.su x if x>204.su 后不输入具体变量,则对全体变量进行描述性统计。
stata常用命令总结
![stata常用命令总结](https://img.taocdn.com/s3/m/2657afc1760bf78a6529647d27284b73f24236ff.png)
Stata常用命令总结Stata是一种统计分析软件,广泛用于社会科学、经济学、生物医学等领域的数据分析。
它具有丰富的功能和灵活的数据处理能力,能够进行各种统计分析、数据可视化和模型建立。
本文将总结Stata的常用命令,包括重要观点、关键发现和进一步思考,帮助读者更好地理解和使用Stata。
一、数据导入和处理e命令:用于导入Stata数据文件(.dta)。
2.import命令:用于导入其他格式的数据文件(如Excel、CSV等)。
3.save命令:用于保存当前数据文件。
4.drop命令:用于删除变量或观察值。
5.keep命令:用于保留指定的变量或观察值。
重要观点:在数据导入和处理阶段,要注意数据的完整性和准确性。
需要检查数据的缺失值、异常值和数据类型,做好数据清洗和预处理工作。
二、数据描述和统计分析1.summarize命令:用于计算变量的描述性统计量,如均值、标准差、最大值、最小值等。
2.tabulate命令:用于制作交叉表和列联表。
3.correlate命令:用于计算变量之间的相关系数。
4.regress命令:用于进行线性回归分析。
5.logit命令:用于进行二分类的逻辑回归分析。
重要观点:在进行数据描述和统计分析时,要根据研究问题选择合适的方法和指标。
同时要注意解释统计结果的意义,避免过度解读和误导。
三、数据可视化1.histogram命令:用于绘制直方图。
2.scatter命令:用于绘制散点图。
3.twoway命令:用于绘制多种类型的图形,如线图、柱状图、饼图等。
4.graph export命令:用于将图形导出为图片文件。
重要观点:数据可视化是数据分析的重要手段,能够直观地展示数据的分布和关系。
在进行数据可视化时,要选择合适的图形类型和参数,使图形简洁明了,易于理解和解释。
四、面板数据分析1.xtset命令:用于设置面板数据的时间和单位。
2.xtreg命令:用于进行面板数据的固定效应或随机效应模型分析。
stata最常用命令大全
![stata最常用命令大全](https://img.taocdn.com/s3/m/e0c6abc3370cba1aa8114431b90d6c85ec3a889f.png)
statasave命令FileSave A s例1. 表1.为某一降压药临床试验数据,试从键盘输入S tata,并保存为S tata格式文件。
STATA数据库的维护排序SORT变量名1 变量名2……变量更名r ename 原变量名新变量名STAT A数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2d rop x1-x5/* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录dropif x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generat e产生新变量gen erate 新变量=表达式genera te bh=_n /* 将数据库的内部编号赋给变量bh。
gener ate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。
直到数据库结束。
generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。
gener ate y=log(x) if x>0/* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。
e gen产生新变量s et obs 12egen a=seq() /*产生1到N的自然数egenb=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=se q(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。
【Stata】常用15条命令
![【Stata】常用15条命令](https://img.taocdn.com/s3/m/ed9442c3185f312b3169a45177232f60ddcce7cf.png)
【Stata】常⽤15条命令命令1】:导⼊数据⼀般做实证分析使⽤的是excel中的数据,其后缀名为.xls,需要将其修改为.csvinsheet using name.csv, clear【命令2】:删除重复变量sort var1 var2duplicatesdrop var1 var2, force【命令3】:合并数据use data1, clearmerge m:m var1 var2 using data2drop if _merge==2drop if _merge==1drop _merge【命令4】:描述性统计分析tabstat var1var2, stat(n min mean median p25 p75 max sd), if groupvar==0 or 1输出到word中:logout, save(name) word replace: tabstat var, stat(n min mean p50 max sd) col(stat)f(%9.2g)【命令5】:结果输出安装ssc install estout, replace单个回归reg y xesttab using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)多个回归⼀起reg y x1est store m1reg y x2est store m2esttab m1 m2 using name.rtf, compress nogap r2 ar2 star(* 0.1 ** 0.05 *** 0.01)【命令6】⽣成虚拟变量tab year, gen(year)tab industry, gen(industry)【命令7】数据缩尾处理findit winsor2之后安装winsor2 varname, replace cut(1 99)【命令8】异⽅差检验怀特检验ssc install whitetstreg y x1 x2estat imtest, white处理:“OLS+稳健标准差”reg y x1 x2 x3, robust【命令9】 DW检验gen id=_ntsset idestat dwatson【命令10】计算两个⽇期之间的间隔天数gen td=date(trading_date,'YMD')gen ed=date(eventdate,'YMD')form td ed %tdgen d=ed-td【命令11 】⽣成滞后、差分数据tsset code yeargen newvarname=l.varnamegen newvarname=d.varname【命令12】多重共线检验之⽅差膨胀因⼦reg y x1 x2 x3vif【命令13】多重共线修正之逐步回归stepwise, pe(0.1): reg y x【命令14】检验是否遗漏⾼次项reg y xestat ovtest或者estat ovtest, rhs【命令15】样本检验两样本均值T检验ttest var, by(groupvar)两样本中位数Z检验ranksum var, by(groupvar)。
stata常用命令资料
![stata常用命令资料](https://img.taocdn.com/s3/m/6c91f59851e2524de518964bcf84b9d528ea2c80.png)
stata常用命令资料Stata是一种广泛使用的统计分析软件,它提供了丰富的数据处理、统计计算和图形绘制功能。
下面是一些常用的Stata命令及其用法,以帮助您更好地使用Stata进行数据分析。
1. 数据导入与导出- `import excel:从Excel文件中导入数据。
- `import delimited:从文本文件中导入数据。
- `save:保存当前数据集。
- `use:加载已保存的数据集。
- `export excel:将数据导出到Excel文件。
2. 数据处理与清洗- `drop:删除变量或观察。
- `keep:保留指定变量或观察。
- `rename:重命名变量。
- `egen:生成新变量,如求和、平均值等。
- `egen group:按照指定的变量进行分组。
3. 描述统计- `summarize:计算变量的描述统计量,如均值、标准差等。
- `tabulate:制表统计,用于计算分类变量的频数和百分比。
- `histogram:绘制直方图。
- `correlate:计算变量之间的相关系数。
- `egen:生成新的汇总统计量,如总和、均值等。
4. 统计模型- `regress:线性回归分析。
- `logit:二项逻辑回归分析。
- `probit:概率回归模型。
- `ttest:单样本或双样本t检验。
- `anova:方差分析。
5. 数据可视化- `scatter:绘制散点图。
- `line:绘制折线图。
- `bar:绘制柱状图。
- `histogram:绘制直方图。
- `graph combine:将多个图形合并为一个图形。
6. 数据管理- `sort:对数据进行排序。
- `merge:合并两个数据集。
- `reshape:改变数据集的结构。
- `append:将多个数据集追加到一个数据集中。
- `collapse:将数据按照指定的变量进行折叠。
7. 循环与条件语句- `foreach:循环变量的值。
STATA最常用命令大全
![STATA最常用命令大全](https://img.taocdn.com/s3/m/4a94e50cf78a6529647d5373.png)
statasave命令FileSave As例1. 表1.为某一降压药临床试验数据,试从键盘输入Stata,并保存为Stata格式文件。
STATA数据库的维护排序SORT 变量名1 变量名2 ……变量更名rename 原变量名新变量名STATA数据库的维护删除变量或记录drop x1 x2 /* 删除变量x1和x2drop x1-x5 /* 删除数据库中介于x1和x5间的所有变量(包括x1和x5)drop if x<0 /* 删去x1<0的所有记录drop in 10/12 /* 删去第10~12个记录drop if x==. /* 删去x为缺失值的所有记录drop if x==.|y==. /* 删去x或y之一为缺失值的所有记录drop if x==.&y==. /* 删去x和y同时为缺失值的所有记录drop _all /* 删掉数据库中所有变量和数据STATA的变量赋值用generate产生新变量generate 新变量=表达式generate bh=_n /* 将数据库的内部编号赋给变量bh。
generate group=int((_n-1)/5)+1 /* 按当前数据库的顺序,依次产生5个1,5个2,5个3……。
直到数据库结束。
generate block=mod(_n,6) /* 按当前数据库的顺序,依次产生1,2,3,4,5,0。
generate y=log(x) if x>0 /* 产生新变量y,其值为所有x>0的对数值log(x),当x<=0时,用缺失值代替。
egen产生新变量set obs 12egen a=seq() /*产生1到N的自然数egen b=seq(),b(3) /*产生一个序列,每个元素重复#次egen c=seq(),to(4) /*产生多个序列,每个序列从1到#egen d=seq(),f(4)t(6) /*产生多个序列,每个序列从#1到#2encode 字符变量名,gen(新数值变量名)作用:将字符型变量转化为数值变量。
Stata常用命令100条
![Stata常用命令100条](https://img.taocdn.com/s3/m/b2e0b230e3bd960590c69ec3d5bbfd0a7956d57b.png)
Stata常用命令100条数据管理设置工作路径:cd导入间隔符为制表符或逗号等格式的文本文件:insheet 导入固定列格式的文件:infix导入自由格式的文本文件:infile导入XML格式文件:xmluse更改变量的存储格式:recast建立新变量:generate或egen重命名变量rename变量排序:order删除变量或观测值:drop生成分类变量:recode字符串与数值变量间转换:destring或encode升序或降序排列:gsort升序排列:sort检查数据是否存在重复观测值:isid报告、标记或删除重复观测值:duplicates长数据与宽数据间转换:reshape生成变量的统计指标数据:collapse横向合并数据:merge纵向添加数据:append根据组内配对合并变量:joinby标量:scalar随机抽样:sample有放回的抽样:bsample从多元正态分布随机变量中抽样:drawnorm 生成特定相关结构的变量:corr2data统计制图直方图:histogram一般绘图命令:graph或twoway对称图:symplot分位数图:quantile正态分布分位数图:qmormQQ分位数图:qqplot标准化正态概率图:pnorm卡方概率图:pchi37条外部命令:传送门描述统计数据概要描述:summarize或describe生成汇总统计表:tabstat或tabulate相关性:correlate或pwcorr假设检验t检验:ttest方差检验:sdtest比率检验:prtest二项概率检验:bitestK-S检验:ksmirnov符号检验:signtestWilcoxon符号秩检验:signrankWilcoxon秩和检验:ranksumKruskal-Wallis:H检验:kwallis方差分析方差分析:anova单因素方差分析:oneway多元统计分析主成分分析:pca主成分散点图:loadingplot因子分析:factor因子旋转:rotate模型适切度检验:estat smc及estat anti及estat kmo 计算主成分得分或因子得分:predict碎石图:screeplot聚类分析:cluster典型相关分析:canon回归分析OLS线性回归:regress受约束的线性回归:cnsreg非线性最小二乘估计:nl多变量回归:mvreg似不相关回归:suregProbit回归:probitLogistic回归:logit定序probit模型:oprobit定序logit模型:ologit归并模型:cnregTobit模型:tobit多层线性模型:mixed泊松回归:poisson负二项回归:nbreg时间序列分析定义时间序列:tssetARIMA,ARMAX和其它动态回归模型:arima 自相关:ac偏自相关:pac预测:predict时间序列图:tsline蒙特卡罗模拟:simulateADF单位根检验:dfullerPP单位根检验pperronDF-GLS单位根检验:dfgls跨相关图:xcorr结构向量自回归模型:svar自回归条件异方差模型:arch门限回归:threg状态空间模型:sspace面板数据分析定义面板:xtset面板数据结构:xtdescribe面板OLS模型:xtreg面板GLS模型:xtgls面板GEE模型:xtgee面板probit模型:xtprobit面板logit模型:xtlogit差分GMM模型:xtabond系统GMM模型:xtdpdsysHausman检验:hausman似然比检验:lrtest空间计量从截面数据到空间面板:传送门。
stata基本命令
![stata基本命令](https://img.taocdn.com/s3/m/18ccab14182e453610661ed9ad51f01dc3815770.png)
stata基本命令
Stata是一种数据分析软件,常用于统计分析、经济学和社会科学研究中。
以下是一些Stata基本命令的解释:
1. use命令:用于打开数据文件,例如:“use data.dta”。
2. describe命令:用于查看数据文件的结构和变量信息,例如:“describe data”。
3. summarize命令:用于统计变量的描述性统计量(如均值、标准差、最大最小值等),例如:“summarize var1 var2”。
4. tabulate命令:用于制作交叉表和频数表,例如:“tabulate var1 var2”。
5. regress命令:用于进行回归分析,例如:“regress depvar indepvar”。
6. scatter命令:用于制作散点图,例如:“scatter depvar indepvar”。
7. histogram命令:用于制作直方图,例如:“histogram var”。
8. twoway命令:用于制作多种类型的图表,例如:“twoway scatter
depvar indepvar”。
9. merge命令:用于将两个数据文件按照某一变量合并,例如:“merge 1:1 var using data.dta”。
10. sort命令:用于对数据文件按照某一变量进行排序,例如:“sort var”。
以上是Stata基本命令的简单解释,使用这些命令可以进行数据的读取、处理和分析。
在实际应用中,还需要结合具体情况选择合适的命令进行使用。
stata常用命令总结
![stata常用命令总结](https://img.taocdn.com/s3/m/b4d9d72c0a4e767f5acfa1c7aa00b52acfc79c9e.png)
stata常用命令总结Stata是一种统计分析软件,常用于数据处理、数据分析和统计建模等领域。
以下是一些常用的Stata命令的总结:1. 数据加载与保存:- `use`:加载Stata数据文件。
- `import`:导入其他文件格式的数据。
- `save`:保存当前数据文件。
- `export`:将数据导出到其他文件格式。
2. 数据处理与变量操作:- `generate`:创建新变量。
- `replace`:替换变量值。
- `drop`:删除变量或观测。
- `rename`:重命名变量。
- `sort`:对数据进行排序。
- `merge`:合并数据集。
3. 描述性统计与数据分析:- `summarize`:计算变量的描述性统计量。
- `tabulate`:制表统计。
- `regress`:进行线性回归分析。
- `logit`:进行Logistic回归分析。
- `anova`:进行方差分析。
- `ttest`:进行双样本t检验。
4. 绘图与可视化:- `histogram`:绘制直方图。
- `scatter`:绘制散点图。
- `line`:绘制折线图。
- `boxplot`:绘制箱线图。
- `graph combine`:组合多个图形。
5. 循环与条件语句:- `forvalues`:进行循环操作。
- `if`:根据条件进行数据筛选。
- `foreach`:对变量进行循环操作。
这只是一些常用的Stata命令的总结,Stata还有很多其他强大的功能和命令。
你可以参考Stata官方文档或其他相关资源,深入了解更多命令和用法。
stata 常用命令
![stata 常用命令](https://img.taocdn.com/s3/m/629a7811ae45b307e87101f69e3143323868f573.png)
stata 常用命令Stata是一款经济学和统计学分析软件,它拥有一个广泛的命令库,可用于数据分析、统计建模、可视化等。
在Stata中,我们可以使用很多命令来完成各种任务。
以下是一些常用的Stata命令:1. import 命令import 命令用于导入数据到Stata中。
我们可以使用 import 命令来导入各种文件格式,如 Excel、CSV、SPSS 等。
如果我们想要导入Excel 文件,我们可以使用以下命令:import excel "data.xlsx", sheet("Sheet1") firstrow clear该命令将导入 data.xlsx 文件中的 Sheet1 中的数据到 Stata 中。
指定的 firstrow 参数将告诉 Stata 该文件中的第一行是变量名,因此我们可以让 Stata 自动读取变量名称。
2. summarize 命令summarize 命令用于计算一个或多个变量的描述性统计量,如均值、标准差、最小/最大值等。
该命令的语法如下:summarize variable1 variable2 variable3…例如,要计算变量 x 的均值、标准差和最大值,我们可以使用以下命令:summarize x, detail3. sort 命令sort 命令用于按一个或多个变量对数据进行排序。
该命令的语法如下:sort variable1 variable2 variable3…例如,要按变量 x 排序数据集,我们可以使用以下命令:sort x4. tabulate 命令tabulate 命令用于计算一个或多个变量的频率分布表(也称为列联表)。
该命令的语法如下:tabulate varia ble1 [variable2] [variable3]…例如,要计算变量 x 和 y 的频率分布表,我们可以使用以下命令:tabulate x y5. regress 命令regress 命令用于估计回归模型。
stata常用命令总结
![stata常用命令总结](https://img.taocdn.com/s3/m/90257eb5d1d233d4b14e852458fb770bf78a3bbe.png)
stata常用命令总结Stata常用命令总结Stata是一款广泛应用于数据分析与统计建模的统计软件,具有强大的功能和广泛的应用领域。
在Stata中,我们可以通过命令来完成数据的读取、整理、分析和可视化等任务。
本文将对一些常用的Stata命令进行总结和介绍,以帮助读者更好地理解和应用Stata软件。
一、数据的读取与整理1. 读取数据文件:- use 文件名:读取已经存在的Stata数据文件。
- import delimited 文件名:读取以逗号、制表符或其他分隔符分隔的文本文件。
2. 显示数据:- describe:显示数据文件的基本信息,包括变量名、数据类型、有效观测数等。
- browse:以表格形式显示数据文件的部分观测值。
3. 数据整理:- generate 新变量名=计算公式:创建新的变量,并根据指定公式进行计算。
- egen 新变量名=计算函数:根据指定的计算函数对现有变量进行计算,并创建新的变量。
二、数据的统计分析与建模1. 描述性统计:- summarize 变量名:对指定变量进行描述性统计,包括均值、标准差、最小值、最大值等。
- tabulate 变量名:生成指定变量的频数表和百分比表。
2. 数据筛选与子集选择:- keep 如果条件:保留符合条件的观测值,删除不满足条件的观测值。
- drop 如果条件:删除符合条件的观测值,保留不满足条件的观测值。
- qui keep 如果条件:以无输出方式保留符合条件的观测值并生成新数据集。
- qui drop 如果条件:以无输出方式删除符合条件的观测值并生成新数据集。
3. 参数估计与假设检验:- regress 因变量自变量1 自变量2 ...:进行普通最小二乘回归分析。
- ttest 变量名, by(分组变量):进行两组样本均值差异的t检验。
4. 数据可视化:- scatter 变量1 变量2:绘制散点图。
- histogram 变量名:绘制直方图。
STATA常用命令总结(34个含使用示例)
![STATA常用命令总结(34个含使用示例)](https://img.taocdn.com/s3/m/29b2457f5627a5e9856a561252d380eb6394236f.png)
STATA常用命令总结(34个含使用示例)1. sum:计算变量的简要统计信息,如均值、标准差等。
示例:sum variable2. tabulate:生成变量的频数表。
示例:tabulate variable3. describe:显示数据集的基本信息,如变量名和数据类型。
示例:describe dataset4. drop:删除数据集中的变量。
示例:drop variable5. keep:保留数据集中的变量,删除其他变量。
示例:keep variable6. rename:重命名变量。
示例:rename variable newname7. gen:根据已有变量生成新的变量。
示例:gen newvar = expression8. egen:根据已有变量生成新的变量,可以使用更复杂的函数和运算符。
示例:egen newvar = function(variable)9. recode:对变量的取值进行重新编码。
示例:recode variable (oldvalues= newvalues) 10. dropif:根据条件删除观测。
示例:dropif condition11. keepif:根据条件保留观测。
示例:keepif condition12. sort:对数据集按指定变量进行排序。
示例:sort variable13. merge:将两个数据集按照共享变量合并。
示例:merge 1:1 variable using dataset214. reshape:将数据从宽格式转换为长格式或反之。
示例:reshape long var, i(id) j(year)15. regress:进行线性回归分析。
示例:regress dependent_var independent_vars 16. logistic:进行逻辑回归分析。
示例:logistic dependent_var independent_vars 17. probit:进行Probit回归分析。
STATA常用命令总结(34个含使用示例)
![STATA常用命令总结(34个含使用示例)](https://img.taocdn.com/s3/m/c5a6110c2f3f5727a5e9856a561252d380eb2081.png)
STATA常用命令总结(34个含使用示例)1. clear:清空当前工作空间中的数据。
示例:clear2. use:加载数据文件。
示例:use "data.dta"3. describe:查看数据文件的基本信息。
示例:describe4. summarize:统计数据的描述性统计量。
示例:summarize var1 var2 var35. tabulate:制作数据的列联表。
示例:tabulate var1 var26. scatter:绘制散点图。
示例:scatter x_var y_var7. histogram:绘制直方图。
示例:histogram var8. boxplot:绘制箱线图。
示例:boxplot var1 var29. ttest:进行单样本或双样本t检验。
示例:ttest var, by(group_var)10. regress:进行最小二乘法线性回归分析。
示例:regress dependent_var independent_var1 independent_var211. logistic:进行逻辑斯蒂回归分析。
示例:logistic dependent_var independent_var1 independent_var212. anova:进行方差分析。
示例:anova dependent_var independent_var13. chi2:进行卡方检验。
示例:chi2 var1 var214. correlate:计算变量之间的相关系数。
示例:correlate var1 var2 var315. replace:替换数据中的一些值。
示例:replace var = new_value if condition16. drop:删除变量或观察。
示例:drop var17. rename:重命名变量。
示例:rename old_var new_var18. generate:生成新变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安装estat:ssc install estout,replace\2010-10-14 11:38:15来自: 杨囡囡(all a woman lack is a wife)(转自人大论坛)调整变量格式:format x1 %10.3f ——将x1的列宽固定为10,小数点后取三位format x1 %10.3g ——将x1的列宽固定为10,有效数字取三位format x1 %10.3e ——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐合并数据:use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge using "C:\Documents and Settings\xks\桌面\1999.dta"——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来use "C:\Documents and Settings\xks\桌面\2006.dta", clearmerge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort)建议采用第一种方法。
对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除sample 50,count在观测案例中随机选取50个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)edit x1 x2 if x3>3 (按所列变量与条件打开数据编辑器)数据合并(merge)与扩展(append)merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。
one-to-one merge:数据源自stata tutorial中的exampw1和exampw2第一步:将exampw1按v001~v003这三个编码排序,并建立临时数据库tempw1clearuse "t:\statatut\exampw1.dta"su ——summarize的简写sort v001 v002 v003save tempw1第二步:对exampw2做同样的处理clearuse "t:\statatut\exampw2.dta"susort v001 v002 v003save tempw2第三步:使用tempw1数据库,将其与tempw2合并:clearuse tempw1merge v001 v002 v003 using tempw2第四步:查看合并后的数据状况:ta _merge ——tabulate _merge的简写su第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错erase tempw1.dtaerase tempw2.dtadrop _merge数据扩展append:数据源自stata tutorial中的fac19和newfacclearuse "t:\statatut\fac19.dta"ta regionappend using "t:\statatut\newfac"ta region合并后样本量增加,但变量数不变茎叶图:stem x1,line(2) (做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~4,后半段为5~9)stem x1,width(2) (做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组距为2)stem x1,round(100) (将x1除以100后再做x1的茎叶图)直方图采用auto数据库histogram mpg, discrete frequency normal xlabel(1(1)5)(discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值,(1)为单位)histogram price, fraction norm(fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“percent”百分比,和“density”密度;未加上discrete就表示将price当作连续变量来绘图)histogram price, percent by(foreign)(按照变量“foreign”的分类,将不同类样本的“price”绘制出来,两个图分左右排布)histogram mpg, discrete by(foreign, col(1))(按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布)histogram mpg, discrete percent by(foreign, total) norm(按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图)二变量图:graph twoway lfit price weight || scatter price weight(作出price和weight的回归线图——“lfit”,然后与price和weight的散点图相叠加)twoway scatter price weight,mlabel(make)(做price和weight的散点图,并在每个点上标注“make”,即厂商的取值)twoway scatter price weight || lfit price weight,by(foreign)(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布)twoway scatter price weight || lfit price weight,by(foreign,col(1))(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布)twoway scatter price weight [fweight= displacement],msymbol(oh)(画出price和weight的散点图,“msybol(oh)”表示每个点均为中空的圆圈,[fweight= displacement]表示每个点的大小与displacement的取值大小成比例)twoway connected y1 time,yaxis(1) || y2 time,yaxis(2)(画出y1和y2这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1)”为y1的度量,右边“yaxis(2)”为y2的)twoway line y1 time,yaxis(1) || y2 time,yaxis(2)(与上图基本相同,就是没有点,只显示曲线)graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4(做三个点图的叠加)graph twoway line var1 var4 || line var2 var4 || line var3 var4(做三个线图的叠加)graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4(叠加三个点线相连图)更多变量:graph matrix a b c y(画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图)graph matrix a b c d,half(生成散点图矩阵,只显示下半部分的三角形区域)用auto数据集:graph matrix price mpg weight length,half by( foreign,total col(1) )(根据foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具)其他图形:graph box y,over(x) yline(.22)(对应x的每一个取值构建y的箱型图,并在y轴的0.22处划一条水平线)graph bar (mean) y,over(x)对应x的每一个取值,显示y的平均数的条形图。
括号中的“mean”也可换成median、sum、sd、p25、p75等graph bar a1 a2,over(b) stack(对应在b的每一个取值,显示a1和a2的条形图,a1和a2是叠放成一根条形柱。
若不写入“stack”,则a1和a2显示为两个并排的条形柱)graph dot (median)y,over(x)(画点图,沿着水平刻度,在x的每一个取值水平所对应的y的中位数上打点)qnorm x(画出一幅分位-正态标绘图)rchart a1 a2 a2(画出质量控制R图,显示a1到a3的取值范围)简单统计量的计算:ameans x(计算变量x的算术平均值、几何平均值和简单调和平均值,均显示样本量和置信区间)mean var1 [pweight = var2](求取分组数据的平均值和标准误,var1为各组的赋值,var2为每组的频数)summarize y x1 x2,detail(可以获得各个变量的百分比数、最大最小值、样本量、平均数、标准差、方差、峰度、偏度)***注意***stata中summarize所计算出来的峰度skewness和偏度kurtosis有问题,与ECELL和SPSS有较大差异,建议不采用stata的结果。
summarize var1 [aweight = var2], detail(求取分组数据的统计量,var1为各组的赋值,var2为每组的频数)tabstat X1,stats(mean n q max min sd var cv)(计算变量X1的算术平均值、样本量、四分位线、最大最小值、标准差、方差和变异系数)概率分布的计算:(1)贝努利概率分布测试:webuse quickbitest quick==0.3,detail(假设每次得到成功案例…1‟的概率等于0.3,计算在变量quick所显示的二项分布情况下,各种累计概率和单个概率是多少)bitesti 10,3,0.5,detail(计算当每次成功的概率为0.5时,十次抽样中抽到三次成功案例的概率:低于或高于三次成功的累计概率和恰好三次成功概率)(2)泊松分布概率:display poisson(7,6).44971106(计算均值为7,成功案例小于等于6个的泊松概率)display poissonp(7,6).14900278(计算均值为7,成功案例恰好等于6个的泊松概率)display poissontail(7,6).69929172(计算均值为7,成功案例大于等于6个的泊松概率)(3)超几何分布概率:display hypergeometricp(10,3,4,2).3(计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中恰好有2个为成功案例的概率)display hypergeometric(10,3,4,2).96666667(计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中有小于或等于2个为成功案例的概率)检验极端值的步骤:常见命令:tabulate、stem、codebook、summarize、list、histogram、graph box、gragh matrixstep1.用codebook、summarize、histogram、graph boxs、graph matrix、stem看检验数据的总体情况:codebook y x1 x2summarize y x1 x2,detailhistogram x1,norm(正态直方图)graph box x1(箱图)graph matrix y x1 x2,half(画出各个变量的两两x-y图)stem x1(做x1的茎叶图)可以看出数据分布状况,尤其是最大、最小值step2.用tabulate、list细致寻找极端值tabulate code if x1==极端值(作出x1等于极端值时code的频数分布表,code表示地区、年份等序列变量,这样便可找出那些地区的数值出现了错误)list code if x1==极端值(直接列出x1等于极端值时code的值,当x1的错误过多时,不建议使用该命令)list in -20/l(l表示last one,-20表示倒数第20个样本,该命令列出了从倒数第20个到倒数第一个样本的各变量值)step3.用replace命令替换极端值replace x1=? if x1==极端值去除极端值:keep if y<1000drop if y>1000对数据排序:sort xgsort +x(对数据按x进行升序排列)gsort -x(对数据按x进行降序排列)gsort -x, generate(id) mfirst(对数据按x进行降序排列,缺失值排最前,生成反映位次的变量id)对变量进行排序:order y x3 x1 x2(将变量按照y、x3、x1、x2的顺序排列)生成新变量:gen logx1=log(x1)(得出x1的对数)gen x1`=exp(logx1)(将logx1反对数化)gen r61_100=1 if rank>=61&rank<=100(若rank在61与100之间,则新变量r61_100的取值为1,其他为缺失值)replace r61_100 if r61_100!=1(“!=”表示不等于,若r61_100取值不为1,则将r61_100替换为0,就是将上式中的缺失值替换为0)gen abs(x)(取x的绝对值)gen ceil(x)(取大于或等于x的最小整数)gen trunc(x)(取x的整数部分)gen round(x)(对x进行四舍五入)gen round(x,y)(以y为单位,对x进行四舍五入)gen sqrt(x)(取x的平方根)gen mod(x,y)(取x/y的余数)gen reldif(x,y)(取x与y的相对差异,即|x-y|/(|y|+1))gen logit(x)(取ln[x/(1-x)])gen x=autocode(x,n,xmin,xmax)(将x的值域,即xmax-xmin,分为等距的n份)gen x=cond(x1>x2,x1,x2)(若x1>x2成立,则取x1,若x1>x2不成立,则取x2)sort xgen gx=group(n)(将经过排序的变量x分为尽量等规模的n个组)egen zx1=std(x1)(得出x1的标准值,就是用(x1-avgx1)/sdx1)egen zx1=std(x1),m(0) s(1)(得出x1的标准分,标准分的平均值为0,标准差为1)egen sdx1=sd(x1)(得出x1的标准差)egen meanx1=mean(x1)(得出x1的平均值)egen maxx1=max(x1)(最大值)egen minx1=min(x1)(最小值)egen medx1=med(x1)(中数)egen modex1=mode(x1)(众数)egen totalx1=total(x1)(得出x1的总数)egen rowsd=sd(x1 x2 x3)(得出x1、x2和x3联合的标准差)egen rowmean=mean(x1 x2 x3)(得出x1、x2和x3联合的平均值)egen rowmax=max(x1 x2 x3)(联合最大值)egen rowmin=min(x1 x2 x3)(联合最小值)egen rowmed=med(x1 x2 x3)(联合中数)egen rowmode=mode(x1 x2 x3) (联合众数)egen rowtotal=total(x1 x2 x3)(联合总数)egen xrank=rank(x)(在不改变变量x各个值排序的情况下,获得反映x值大小排序的xrank)数据计算器display命令:display x[12](显示x的第十二个观察值)display chi2(n,x)(自由度为n的累计卡方分布)display chi2tail(n,x)(自由度为n的反向累计卡方分布,chi2tail(n,x)=1-chi2(n,x))display invchi2(n,p)(卡方分布的逆运算,若chi2(n,x)=p,那么invchi2(n,p)=x)display invchi2tail(n,p)(chi2tail的逆运算)display F(n1,n2,f)(分子、分母自由度分别为n1和n2的累计F分布)display Ftail(n1,n2,f)(分子、分母自由度分别为n1和n2的反向累计F分布)display invF(n1,n2,P)(F分布的逆运算,若F(n1,n2,f)=p,那么invF(n1,n2,p)=f)display invFtail(n1,n2,p)(Ftail的逆运算)display tden(n,t)(自由度为n的t分布)display ttail(n,t)(自由度为n的反向累计t分布)display invttail(n,p)(ttail的逆运算)给数据库和变量做标记:label data "~~~"(对现用的数据库做标记,"~~~"就是标记,可自行填写)label variable x "~~~"(对变量x做标记)label values x label1(赋予变量x一组标签:label1)label define label1 1 "a1" 2 "a2"(定义标签的具体内容:当x=1时,标记为a1,当x=2时,标记为a2)频数表:tabulate x1,sorttab1 x1-x7,sort(做x1到x7的频数表,并按照频数以降序显示行)table c1,c(n x1 mean x1 sd x1)(在分类变量c1的不同水平上列出x1的样本量和平均值)二维交互表:auto数据库:table rep78 foreign, c(n mpg mean mpg sd mpg median mpg) center row col(rep78,foreign均为分类变量,rep78为行变量,foreign为列变量,center表示结果显示在单元格中间,row表示计算行变量整体的统计量,col表示计算列变量整体的统计量)tabulate x1 x2,all(做x1和x2的二维交互表,要求显示独立性检验chi2、似然比卡方独立性检验lrchi2、对定序变量适用的等级相关系数gamma和taub、以及对名义变量适用的V)tabulate x1 x2,column chi2(做x1和x2的二维交互表,要求显示列百分比和行变量和列变量的独立性检验——零假设为变量之间独立无统计关系)tab2 x1-x7,all nofreq(对x1到x7这七个变量两两地做二维交互表,不显示频数:nofreq)三维交互表:by x3,sort:tabulate x1 x2,nofreq col chi2(同时进行x3的每一个取值内的x1和x2的二维交互表,不显示频数、显示列百分比和独立性检验)四维交互表:table x1 x2 x3,c(ferq mean x1 mean x2 mean x3) by(x4)tabstat X1 X2,by(X3) stats(mean n q max min sd var cv) col(stats)tabstat X1 X2,by(X3) stats(mean range q sd var cv p5 p95 median),[aw=X4](以X4为权重求X1、X2的均值,标准差、方差等)ttest X1=1count if X1==0count if X1>=0gen X2=1 if X1>=0corr x1 x2 x3(做x1、x2、x3的相关系数表)swilk x1 x2 x3(用Shapiro-Wilk W test对x1、x2、x3进行正太性分析)sktest x1 x2 x3(对x1、x2、x3进行正太性分析,可以求出峰度和偏度)ttest x1=x2(对x1、x2的均值是否相等进行T检验)ttest x1,by(x2) unequal(按x2的分组方式对x1进行T检验,假设方差不齐性)sdtest x1=x2(方差齐性检验)sdtest x1,by(x2)(按x2的分组方式对x1进行方差齐性检验)聚类分析:cluster kmeans y x1 x2 x3, k(3)——依据y、x1、x2、x3,将样本分为n类,聚类的核为随机选取cluster kmeans y x1 x2 x3, k(3) measure(L1) start(everykth)—— "start"用于确定聚类的核,"everykth"表示将通过构造三组样本获得聚类核:构造方法为将样本id为1、1+3、1+3×2、1+3×3……分为一组、将样本id为2、2+3、2+3×2、2+3×3……分为第二组,以此类推,将这三组的均值作为聚类的核;"measure"用于计算相似性和相异性的方法,"L1"表示采用欧式距离的绝对值,也直接可采用欧式距离(L2)和欧式距离的平方(L2squared)。