模糊控制实验报告
洗衣机模糊控制仿真实验报告
洗衣机模糊控制仿真实验报告一、实验目的本实验旨在通过对洗衣机运行过程的模糊控制仿真实验,帮助学生更好地了解模糊控制的基本原理和实现方法。
二、实验原理洗衣机模糊控制系统主要包括模糊控制器、模糊推理机和输出规则等三个部分。
模糊控制器是模糊系统的核心部分,其主要作用是将输入信号转化为模糊集,并将控制输出信号转化为真实输出信号。
模糊控制器的输入为洗衣机工作状态的一些参数,例如水位、温度等,输出为洗衣机运行状态的一些控制命令,例如加热、搅拌等。
模糊推理机是由一系列规则组成的系统,它负责根据输入的模糊集和一组先验规则,进行模糊推理,得到控制输出信号的模糊集,即模糊控制器的中间变量。
输出规则主要为控制输出信号的模糊集赋值,即将模糊集中各个元素映射到真实输出信号的取值范围内。
三、实验步骤1、建立洗衣机的模糊控制系统模型,包括模糊控制器、模糊推理机和输出规则等。
2、设置洗衣机的运行参数,例如水位、温度等,作为模糊控制器的输入。
3、根据洗衣机的运行状态,制定一组先验规则,作为模糊推理机的输入,并进行模糊推理。
4、根据模糊推理得到的控制输出信号的模糊集,进行输出规则的映射,得到洗衣机的真实控制命令。
5、根据洗衣机的控制命令,模拟洗衣机的工作流程。
6、对洗衣机的工作流程进行仿真实验,并记录实验结果。
四、实验结果分析经过多次实验,得到了洗衣机的模糊控制系统的优化参数,能够实现洗衣机的良好控制。
通过对实验结果的分析,可以发现,模糊控制系统可以有效地调节洗衣机的运行状态,使其在不同的工作状态下保持稳定且高效的运行。
同时,模糊控制系统也具有很强的适应性和鲁棒性,可以自适应地调节参数,应对各种不同的运行环境。
五、实验总结本实验通过模拟洗衣机的工作流程,对模糊控制系统的基本原理和实现方法进行了深入探究,能够有效地帮助学生掌握模糊控制系统的设计和应用方法。
同时,在实验过程中,也需要注意对实验数据和结论的分析和总结,以便更好地优化模糊控制系统的参数和性能,实现最佳控制效果。
《智能控制》-模糊控制实验报告
课程名称:智能控制实验名称:模糊控制一、实验目的:(1)了解在Simulink 仿真环境下建立控制系统方框图的方法,熟悉Matlab 和Simulink 仿真环境(2)掌握模糊控制器的设计方法。
(3)比较PID 控制和模糊控制的特点。
二、实验内容和步骤 已知s e s s s G 2.0214820)(-++=,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。
结构如下图。
(1)模糊控制规则设计针对该定位系统,设计二维模糊控制规则,使性能达到最佳。
模糊控制规则如下:(2)设计未加PID或FUZZY控制器时,设计系统如下:输入阶跃信号,观测与分析仿真结果。
(3)加入PID控制器如下:对应的仿真结构图为:调整参数,观测与分析仿真结果。
PID控制的仿真曲线如下:(4)设计FUZZY控制器在simulink仿真环境下,设计模糊控制系统,包括模糊控制规则、隶属函数、比例因子、量化因子、论域等参数设计。
FUZZY控制仿真结构图如下:其中黄色部分具体为:利用simulink设计的模糊控制的仿真结构图为:其中对于模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E的隶属函数EC的隶属函数U的隶属函数再将其中一个学生的比较好的实验结果作为参考实例:首先仿真图如下:模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E和EC的隶属函数U的隶属函数控制规则:ECNB NM NS ZE PS PM PB ENB PB PB PB PB PM ZE ZENM PB PB PB PB PM ZE ZENS PM PM PM PM ZE NS NSZE PM PM PS ZE NS NM NMPS PS PS ZE NM NM NM NMPM ZE ZE NM NB NB NB NBPB ZE ZE NM NB NB NB NB设计好模糊控制器后,运行仿真图形,得到的仿真曲线如下(step time=1):模糊控制的仿真曲线由仿真可知,通过选择合适的PID参数可以达到较好的控制性能。
智能控制实验-模糊控制
实验一 洗衣机的模糊控制仿真一、实验目的本实验要求在学生掌握模糊控制器基本工作原理和设计方法基础上,熟悉MALAB 中的模糊控制工具箱,能针对实际问题设计模糊控制器,建立模糊控制系统,训练学生综合运用计算机来解决一些实际问题的能力。
二、实验设备计算机一台、MATLAB 软件三、实验要求设计一个模糊控制器,根据衣物的泥污和油污程度,输出衣物的洗涤时间,通过改变控制参数的大小,观察模糊控制的性能。
四、实验步骤1.确定模糊控制器的结构选用两输入单输出模糊控制器,控制器的输入为衣物的泥污和油污,输出为洗涤时间。
2. 定义输入、输出模糊集 将泥污分为三个模糊集:泥污少SD 、泥污中MD 、泥污大LD ;油污分为三个模糊集:油污少SG 、油污中MG 、油污大LG ;将洗涤时间分为五个模糊集:很短VS 、短S 、中等M 、长L 、很长VL 。
3. 定义隶属度函数选用三角形隶属度函数实现泥污、油污和洗涤时间的模糊化:(50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SD MD 泥污LD (50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SG MG 油污LG(50)/50010/50010(100)/501025/501025(100)/5025402540/504060(100)/504060(50)/50x z x z x z x z x z z x z x z x μμμμμμ=-⎧≤≤⎪⎧≤≤⎪=⎨⎪-<≤⎩⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪≤≤⎧⎪=⎨<≤-⎪⎩⎪≤≤=-⎩SG MG MG 洗涤时间MG LG实验结果:实验分析:6.模糊推理因模糊控制规则表对称,所以上图为input1 和input2分别为50时input2和input1与洗涤时间的关系。
模糊控制实验
中南大学模糊控制课程实验报告学生姓名:彭雄威_____________ 指导教师: ________________ m _______ 学院:信息科学与工程学院学号:114611167 ______________实验一:本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。
(1) 增加一个输入变量,将输入变量命名为E、Ec,将输出变量命名U。
这样就建立了一个两输入单输出的模糊推理系统。
如图1.1所示。
图1.1增加一个输入变量(2) 设计模糊化模块:设计隶属度函数论域范围图3.2设计水位误差E模块3.3设计水位误差EC模块图3.4设计水位输出U模块(4)模糊控制器的规则设计le Editor: fuzzf(5)通过观察器观察规则情况在菜单view中的rules和surface选项分别对应得是规则观测器和曲而观测器。
123 4567891011121314151617181920212223242526272829”Input: 20】Plot points: ioi Move: [ left 11 rg ] |down] ( up ]Opened system tuzzf, 49 rules| 5 Close |图3.7规则观测器图3.6曲面观测器(6)保存编辑好的FIS文件实验二利用MATLAB软件的M文件编辑器和实验一所生成的fuzzf.FIS文件,在M 文件编辑器中输入:a=readfis('fuzzf');evalfis([・0.5广0.07;-0.5,0;・0.5,0.07; 0,・0.07;0,0;0,0.07;0.5广0.07;0.5,0;0.5,0.07],a)便可得fuzzf.FIS文件的模糊控制査询表,其中的数据在水位误差E的论域为[・ 1 1], 误差变化EC的论域为[.0.1 0.1]内可以任意取值。
模糊控制实验报告
模糊控制实验报告本实验通过使用模糊控制器来控制直流电机的转速。
模糊控制是一种基于模糊推理的控制方法,该方法可以处理一些无法准确数学建模的系统控制。
模糊控制的输入和输出都是模糊变量,这样可以考虑到系统存在的不确定性和模糊性。
实验装置包括模糊控制器、直流电机、转速测量装置、实验板等。
模糊控制器由模糊推理机、偏差和变化率输入模糊化模块、输出反模糊化模块、规则库组成。
实验板可通过控制开关选择转速和方向。
在实验中,通过设置转速值和方向,记录电机的真实转速和输出控制信号,来验证模糊控制器的控制效果。
通过不同的控制变量和规则库来对比不同的控制方案。
实验结果表明,模糊控制器对于直流电机转速的控制具有较好的效果。
当控制变量为偏差和变化率时,规则库中的设定合理,输出控制信号的变化平稳,电机转速较为稳定。
当增加控制变量或修改规则库时,控制效果也发生了变化。
同时,实验还验证了模糊控制的重要性和优越性,可以解决一些无法准确建模的系统控制问题。
在实验中,还需要注意一些实验细节,例如校准直流电机转速传感器的准确度,保证实验板电路的正常工作和实验数据的准确性,减少误差的影响。
总之,本实验通过实际操作验证了模糊控制器在直流电机转速控制中的应用,对于学习模糊控制的控制方法和实验操作具有很好的参考意义。
同时,本实验也展示了模糊控制对于处理模糊问题的效果。
在直流电机转速控制中,存在许多因素的影响导致控制过程不确定和模糊,例如负载的变化、外部干扰的存在等等。
而模糊控制可以将这些不确定因素转化为模糊变量进行处理,从而提高控制精度和鲁棒性。
此外,本实验也强调了规则库的重要性。
规则库是模糊控制中很关键的一部分,其中包含了专家经验和数学模型的映射关系。
规则库中的设定需要充分考虑被控对象的特性,才能够保证模糊控制器的控制效果。
而实验中不同的规则库设计对于控制效果的影响也展现了模糊控制的灵活性和可定制性。
最后,本实验的数据记录和实验结果分析也为后续工程实际应用提供了很好的参考。
三容水箱的模糊控制—南昌大学实验报告
实验报告实验课程:模糊控制学生姓名:学号:专业班级:2012年 3月 28 日三容水箱的模糊控制一.实验目的1.通过实验掌握模糊控制的基本原理,能利用模糊控制解决生活中的实际问题;2.通过实验熟悉掌握MATLAB编程语句;3掌握三容水箱的基本模型,能够实现三容水箱的基本控制。
二.实验要求如图1所示的三容水箱串级相连,要求通过模糊控制,随着q4的正弦变化,能够通过调节阀门开度k来使第三个水箱液位h3稳定在设定值,并且其他两水箱水不会流尽。
图1 水箱串级相连图三.实验原理模糊控制系统设计的关键在于模糊控制器的设计。
模糊控制器如图2 所示:图2 模糊控制的基本原理框图模糊控制器的设计主要有三个部分:1) 输入量的模糊化所谓模糊化(Fuzzification) 就是先将某个输入测量量的测量值作标准化处理,把该输入测量量的变化范围映射到相应论域中,再将论域中的各输入数据以相应的模糊语言值的形式表示,并构成模糊集合。
这样就把输入的测量量转换为用隶属度函数表示的某一模糊语言变量。
2) 模糊逻辑推理根据事先已定制好的一组模糊条件语句构成模糊规则库,运用模糊数学理论对模糊控制规则进行推理计算,从而根据模糊控制规则对输入的一系列条件进行综合评估,以得到一个定性的用语言表示的量,即模糊输出量。
完成这部分功能的过程就是模糊逻辑推理过程。
3) 反模糊化过程反模糊化(Defuzzification) 有时又叫模糊判决。
就是将模糊输出量转化为能够直接控制执行部件的精确输出量的过程。
三.实验过程水箱系统的模糊控制器设计为两个输入和一个输出, 一个输入为水箱的液位给定值与实际液位h 的误差e, 另一个输入为误差e 的变化率ec 。
模糊控制器的输出是阀门开度k, 阀门开度间接控制容器的水位高度, 从而达到调节水箱的液位高度。
1.确定观测量和控制量定义给定液位为h ,实际测得的水位高度为h3,选择液位差为e=h-h3。
选择液位误差的增量ec=e-e_1。
模糊控制实验
中南大学模糊控制课程实验报告学生姓名:彭雄威指导教师:袁艳学院:信息科学与工程学院学号:114611167实验一:本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。
(1)增加一个输入变量,将输入变量命名为E、Ec,将输出变量命名U。
这样就建立了一个两输入单输出的模糊推理系统。
如图1.1所示。
图1.1增加一个输入变量(2) 设计模糊化模块:设计隶属度函数论域范围图3.2设计水位误差E模块3.3设计水位误差Ec模块图3.4设计水位输出U模块(4)模糊控制器的规则设计(5)通过观察器观察规则情况在菜单view中的rules和surface选项分别对应得是规则观测器和曲面观测器。
图 3.7 规则观测器图 3.6 曲面观测器 (6) 保存编辑好的FIS文件实验二:利用MATLAB软件的M文件编辑器和实验一所生成的fuzzf.FIS文件,在M 文件编辑器中输入:a=readfis('fuzzf');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)便可得fuzzf.FIS文件的模糊控制查询表,其中的数据在水位误差E的论域为[-1 1],误差变化Ec的论域为[-0.1 0.1]内可以任意取值。
a=readfis(' fuzzf ')a =name: ' fuzzf 'type: 'mamdani'andMethod: 'min'orMethod: 'max'defuzzMethod: 'centroid'impMethod: 'min'aggMethod: 'max'input: [1x2 struct]output: [1x1 struct]rule: [1x5 struct]a=readfis(' fuzzf ');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)ans =-0.2000-0.4444-0.46670.1363-0.0014-0.22710.40000.44120.1333实验三利用MATLAB软件的M文件编辑器(也可选择C语言)完成模糊控制查询表的计算。
模糊控制实例及simulink仿真实验报告
模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。
二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。
通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。
三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。
2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。
(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。
3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。
4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。
四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。
五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。
模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。
模糊控制实验报告
模糊控制系统实验报告学院:班级::学号:、实验目的1.通过本次实验,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。
2.提高有关控制系统的程序设计能力;3.熟悉Matlab语言以及在智能控制设计中的应用。
二、实验内容设计一个采用模糊控制的加热炉温度控制系统。
被控对象为一热处理工艺制作中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0-5V,输出相电压为0-220V,输出最大功率180kW炉内变化室温~625C。
三、实验过程及步骤1.用Matlab中的Simulink工具箱,组成一个模糊控制系统,如图所示2.采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线(1)模糊集合及论域的定义对误差E、误差变化EC机控制量U的模糊集合及其论域定义如下: E、EC和U的模糊集合均为:{NB、NM NS 0、PS PM PB}E和EC的显示范围为:[-6 6]结果如下图所示FIS Editor: UntitledFile Edit Viev;FIS VariablesEMECin put variable "E"Current VariableNameTypeRangeDisplay RangeEinput[-6 6]Help Close Select etl variable "E"File Edit Viev^Current VariableNsrueTypeRangeDitsptey RangeSelected variable 'U"打开Rule编辑器,并将49条控制规则输入到Rule编辑器中FIS VariablesLIoutput06】[-6 6]Rule Editor: UntitledECouiput variable "U1利用编辑器的” View T Rules”和” View^Surface ”得到模糊推理系统的模糊规则和输入输出特性曲面,分别如下图所示Fil e Edit Viev; OptionsFile Edit Viev^ OptionsRule Viewer Untitled忻珅:[□ g]Plot points: 101left down up ReadySurface Viewer: UntitledE "U = 1.a3e-D0&Move:Help Close口从图中可以看出,输出变量U 是关于两个输入变量E 、EC 的非线性函 数,输入输出特性曲面越平缓、光滑,系统的性能越好。
洗衣机模糊控制建模
智能控制课程作业模糊控制理论实验报告题目洗衣机系统模糊控制建模与仿真班级姓名学号2014年3月13日一.实验目的通过设计洗衣机洗涤时间的模糊控制系统,理解模糊控制的基本原理。
掌握模糊控制系统MATLAB建模与仿真的方法。
二.实验原理洗衣机洗涤时间的模糊控制是一个开环模糊决策过程,其基本原理框图如图1-1所示。
它的核心部分是模糊控制器,模糊控制器的控制律由计算机程序来实现。
图1-1 系统原理框图系统选用两输入单输出的模糊控制器。
控制器的输入为衣物的污泥量x和油脂量y,输出为洗涤时间z。
将污泥分为3个模糊集:SD(污泥少),MD(污泥中),LD(污泥多);将油脂分为3个模糊集:NG(油脂少),MG(油脂中),LG(油脂多);将洗涤时间分为5个模糊集:VS(很短),S(短),M(中等),L(长),VL很长。
首先,定义输入x,y变量,输出z变量的隶属函数。
根据“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”的规律建立洗衣机模糊规则表。
然后,根据模糊规则进行模糊推理并得到洗涤时间的模糊集合。
最终,利用重心法对模糊系统反模糊化,将洗涤时间的推理结果转化成精确值z输出。
三.实验内容利用MATLAB软件实现上述洗衣机系统模糊控制的建模与仿真。
1.建立x,y,z的隶属函数洗衣机系统变量x,y,z的隶属函数分段表达式,如式1-1所示。
()()()()()()()()()()()()()()()()SD MD LD NG MG LGVS 50/50050/50050100/505010050/505010050/50050/5005011100/505010050/505010010/10010Sx x x x x x x x x x x y y y y y y y y y y y z z z z μμμμμμμμμμμ=-≤≤⎧⎪≤≤⎧⎪⎪==⎨⎨-<≤⎪⎩⎪⎪=-<≤⎩=-≤≤⎧⎪≤≤⎧⎪⎪==-⎨⎨-<≤⎪⎩⎪⎪=-<≤⎩=-≤≤=污泥油脂洗涤时间()()()()()()()()()VL /1001025/15102510/15102540/15254025/15254060/20406040/204060M L z z z z z z z z z z z z z z z z z μμμ⎧⎪≤≤⎪⎧⎪=⎨⎪-<≤⎪⎩⎪⎪-≤≤⎧⎪⎪=⎨⎨-<≤⎪⎪⎩⎪-≤≤⎧⎪⎪=⎨⎪-<≤⎪⎩⎪⎪=-≤≤⎩在MATLAB 中,定义本系统为一个Mamdani (普通)型模糊控制系统,命名为a 。
智能控制--模糊控制实验报告
clear all;close all;T=0; %ʱ¼ä³£Êýa=newfis('fuzz_temperatrue');a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','trimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'output','u',[72,78]); %Parameter u a=addmf(a,'output',1,'NB','zmf',[72,74]);a=addmf(a,'output',1,'NM','trimf',[72,73,75]);a=addmf(a,'output',1,'NS','trimf',[73,74,75]);a=addmf(a,'output',1,'Z','trimf',[74,75,76]);a=addmf(a,'output',1,'PS','trimf',[75,76,77]);a=addmf(a,'output',1,'PM','trimf',[75,77,78]);a=addmf(a,'output',1,'PB','smf',[76,78]);rulelist=[1 1 1 1; %Edit rule base2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1;6 6 1 1;7 7 1 1];a=addrule(a,rulelist);a1=setfis(a,'DefuzzMethod','mom'); %Defuzzywritefis(a1,'temperatrue'); %Save to fuzzy file "tank.fis" a2=readfis('temperatrue');figure(1);plotfis(a2);figure(2);plotmf(a,'input',1);figure(3);plotmf(a,'output',1);flag=1;if flag==1showrule(a) %Show fuzzy rule baseruleview('temperatrue'); %Dynamic Simulationenddisp('-------------------------------------------------------');disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');disp('-------------------------------------------------------');for i=1:1:7e(i)=i-4;Ulist(i)=evalfis([e(i)],a2);endUlist=round(Ulist)e=-3; % Erroru=evalfis([e],a2) %Using fuzzy inference四、Simulink仿真模型五、实验结果令T=0;1、模糊控制器为一维控制器,输入输出变量的量化等级为7级,取5个模糊集。
模糊控制器设计实验报告
智能控制实验报告学院:电气工程学院班级:电气F1104姓名:***学号:************老师:***时间:2014.11.6模糊控制器设计一.实验目的1.了解模糊控制的原理2.学习Matlab模糊逻辑工具箱的使用3.使用工具箱进行模糊控制器的仿真二.实验设备1.计算机2.Matlab软件三.实验内容和步骤1.在Matlab命令窗口输入fuzzy,如图1所示,并按回车键,弹出如图2所示的FIS Editor界面,即模糊推理系统编辑器。
图1 Matlab命令窗口图2 FIS Editor界面2.本设计包含两个输入变量,在FIS编辑器界面上,执行菜单命令“Edit”→“Add Variable”→“Input”,即可成为二维模糊推理系统,并在变量窗口将变量名称修改为“temp-input”、“mag-input”、“dryness”,结果显示如图3所示。
图3 二维模糊推理系统3.执行菜单命令“File”→“Export”→“To File”,在弹出的“Save FIS”对话框中输入FIS系统名称后,即可实现对FIS的名称编辑。
用鼠标左键双击输入变量temp-input,弹出如图4所示的输入变量temp-input的隶属函数编辑器。
图4 隶属函数编辑器4.执行菜单命令“Edit”→“Remove All MFs”,然后执行菜单命令“Edit”→“Add MFs”,弹出“Membership Function”对话框,将隶属度函数设置为三角形。
将输入变量temp-input中的三个三角形函数的名称分别设置为“it”、“mt”、“ht”,取值范围和显示范围均设置为[0 9],结果如图5所示。
将输入变量mag-input中的三个三角形函数的名称分别设置为“lm”、“mm”、“hm”,取值范围和显示范围均设置为[0 9],结果如图6所示。
将输出变量dryness中的七个三角形函数的名称分别设置为“nw”、“lw”、“sh”“nh”、“hd”、“nd”、“od”“sd”、“sd”,取值范围和显示范围均设置为[0 14],参数按[0 1 2]、[1 2 3]、[2 3 4]这样的规律设置,结果如图7所示。
模糊控制MALTAB系统仿真实验报告
模糊控制MALTAB系统仿真实验报告可编程控制器智能控制技术仿真实验题目: 模糊控制系统MATLAB仿真实验报告院系名称:电气工程学院专业班级:电气学生姓名:学号:模糊控制系统MATLAB仿真实验报告一、实验目的 1、通过本次设计,了解模糊控制的基本原理、模糊模型的建立和模糊控制系统的设计过程。
2、熟悉在MATLAB下建立模糊控制器的方法,并能利用MATLAB对给定参数的模糊控制系统予以仿真二、实验项目1、实验题目本设计要求设计一个采用模糊控制的加热炉温度控制系统。
被控对象为一热处理工艺过程中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0~5V,输出相电压0~220V,输出最大功率180KW,炉温变化室温~625℃,电加热装置如图所示:图1-1电加热装置示意图3、实验数据:本实验输入变量为偏差e和偏差的变化ec,输出变量为控制电压U,变量模糊集量化论域均为[-6 6]采用的常用的三角形隶属函数。
控制规则表: U 输入变量ec NB NM NS ZO PS PM PB 输入变量 e NB NB NB NB NB NM NS ZO NM NB NB M, M, MS ZO ZO NS NV NM NM NS ZO ZO PS ZO NM NS NS ZO PS PS PM PS NS ZO ZO PS PM PM PB PM ZO ZO PS PM PM PB PB PB ZO PS PM PB PB PB PB 三、实验步骤 1、建立系统仿真图:在MATLAB主窗口单机工具栏中的Simulink快捷图标弹出“Simulink Library Browser”窗口,单击“Create a new model”快捷图标弹出模型编辑窗口。
依次将Signal Generator(信号源)、Subtract(减运算)、Gain(增益)、Derivative(微分)、Mux(合成)、Fuzzy Logic Controller(模糊逻辑控制器)、TransferFcn(传递函数)、Saturation(限幅)、Memory(存储器)、Scope(显示器)模块拖入窗口并连接成系统仿真图如图1-2 图1-2 系统仿真图 2、在模糊推理系统编辑器中设置变量:在MATLAB 命令窗口输入fuzzy并按回车键,启动FISEditor(模糊推理系统编辑器)。
模糊控制算法研究
模糊控制算法研究——实验报告一、实验目的1、通过本次综合设计,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制的设计过程。
2提高学生有关控制系统的程序设计能力。
3熟悉MATLAB语言以及在智能控制设计中的应用。
二、实验内容1、用MATLAB中的SIMULINK工具箱,组成一个模糊控制系统。
如图:2、采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线。
3、改变模糊控制器中模糊变量的隶属度函数,分析隶属度函数和模糊控制规则对模糊控制效果的影响。
三、实验步骤1、启动SIMULINK。
打开MATLAB程序,并在该窗口键入SIMULINK来运行SIMULINK,或单击工具栏上SIMULINK按钮,这时SIMULINK就显示其所包含的子模块库。
2、创建一个新模型。
在FILE菜单中选择NEW-MODEL,SIMULINK就创建一个新的窗口。
3、向窗口复制模块。
例如,复制阶跃输入Step模块,具体操作为:在SIMULINK 窗口中用鼠标单击Source图标,这样就打开了Source Library中所有的模块;要从Source Library中复制Step模块,可以用鼠标单击该模块,然后拖动鼠标把它移到自己的模型窗口中,并在所需要放的位置松开鼠标,这时Step模块就出现在自己的模型窗口中。
其他需要复制的模块可参考上图,这些模块分别在Math库、Continuous库、Discontinuous库、Signal Routing库以及Sink库中找到,方法同Step模块。
在MATLAB的命令窗口输入命令Fuzzy,进入图形用户界面(GUI)窗口。
根据控制规则和所选择的隶属度函数,利用模糊推理系统(FIS)编辑器可以建立一个FIS文件,取名为fuzzycontrol.fis。
在Fuzzy Logic Toolbox中将Fuzzy Logic Controller模块找到,用鼠标将相应模块拖入窗口中即可。
模糊控制实验报告
西安交通大学实验报告第1页(共13页)课程:智能控制实验日期:年月日专业班号:自动化交报告日期:年月日姓名:学号:报告退发:(订正、重做)同组者:教师审批签字:实验一模糊控制仿真系统设计实验目的:理解和掌握模糊控制系统的构成和设计方法,为实际工程应用打下基础。
基本要求:掌握以误差及其变化率为输入的典型模糊控制器的设计方法,了解影响模糊控制器性能的关键参数及调节方法。
针对被控对象,构建合适的模糊控制器,搭建模糊控制系统。
实验内容提要:针对典型的二阶以上被控对象,设计模糊控制器。
包括控制器输入输出量的选择,输入输出论域的模糊划分,模糊规则库的建立等。
利用设计完成的模糊控制在Simulink中搭建模糊控制系统,要求该系统稳定且具有良好的动态及稳态特性。
实验工作概述:主要针对倒立摆进行了建模与模糊控制仿真,其中实验1-1是仅针对角度的模糊PID控制,实验1-2是针对位置与角度的分段模糊控制。
后面也尝试进行了二级倒立摆的模糊控制设计,但由于知识水平不够没能完全实现,仅实现了第一级的直立控制。
实验1-1 单级倒立摆的PID模糊控制一、被动对象数学描述与特性分析关于倒立摆的相关背景:倒立摆,Inverted Pendulum ,是典型的多变量、高阶次、非线性、强耦合、自然不稳定系统。
倒立摆系统的稳定控制是控制理论中的典型问题,在倒立摆的控制过程中能有效反映控制理论中的许多关键问题 ,如非线性问题、鲁棒性问题、随动问题、镇定、跟踪问题等。
因此倒立摆系统作为控制理论教学与科研中典型的物理模型 ,常被用来检验新的控制理论和算法的正确性及其在实际应用中的有效性。
所以我此次实验采用一阶倒立摆来验证。
当摆杆夹角很小时,近似线性化处理:(I +ml 2)θ+mglθ=mlẍ (M +m )ẍ+bẋ−mlθ=u根据微分方程组做拉普拉斯变换联立求得外力针对角度的传递函数:Φ(s)U(s)=ml 2qs 2s 4+b(I +ml 2)q s 3−(M +m )mgl q s2−bmql q s将各种参数输入matlab ,编辑一个函数脚本GetPendulum 来求传递函数的系数:当M=2,m=0.8,l=0.25时,求得:这是一个典型的二阶系统二、模糊控制器的设计步骤与具体参数选择模糊集合设计:总共有两个输入三个输出,输入角度和角度微分的模糊集合划分都相同,论域为[-5,5],模糊集合为3个,分别命名为:[N Z P],输出P I D三个参数的范围分别为[110,120],[115,125],[80,90],模糊集合为3个命名为:[S M B]它们的分布如上图所示。
模糊PID控制实验报告
编号:实验一普通PI控制方法的设计与实现一、实验目的1. 掌握数字PI及其算法的实现2. 熟悉在在keil环境下进行单片机程序的设计3. 熟悉仿真软件protues的使用二、实验设备及条件1. 计算机系统2. 编程软件keil4和仿真软件protues7.8三、实验原理及其实验步骤(1) PID算法的数字化实现在模拟系统中,PID算法的表达式为u(t)=K P[e(t)+1T I∫e(t)dt+T Dde(t)dt]式中u(t):调节器的输出信号;e(t):调节器的偏差信号,它等于测量值与给定值之差;Kp:调节器的比例系数;T I:调节器的积分时间;TD:调节器的微分时间;离散化的PID为:u(k)=K P[e(k)+TT I∑e(j)kj=0+T DT(e(k)−e(k−1))]Δt=T:采样周期,必须使T足够少,才能保证系统有一定的精度;E(k):第K次采样时的偏差值;E(k-1) :第K-1次采样时的偏差值;K:采样序号,K=0,1,2……;P(k-1):第K次采样时调节器的输出;上式计算复杂,经过化简为:u(k)=u(k−1)+K P[e(k)−e(k−1)]+K I e(k)+K D[e(k)−2e(k−1)+e(k −2)]式中:K I=K P TT I为积分系数K D=K P T DT为微分系数要计算第K次输出值u(k),只需要知道u(k-1),e(k),E(k-1),e(k-2)即可。
上式也称为位置型PID的位置控制算法。
在很多控制系统中,由于执行机构是采用布进电机进行控制,所以只要给一个增量信号即可。
因此得到增量型PID的位置控制算法。
∆u=K P[e(k)−e(k−1)]+K I e(k)+K D[e(k)−2e(k−1)+e(k−2)] (2) 控制系统的结构框图整个系统的控制框图如下所示:图1 PID控制系统结构框图在本次设计中,经过计算,被控对象的传递函数是:G(s)=1 (SCR)2+3SCR+1其中:C=10uf,R=20K;带入上式后可得:G(s)=10.04S2+0.6S+1显然是一个二阶系统。
《模糊控制》课程实验报告
《模糊控制》课程实验报告学院:___________________专业:___________________班级:___________________学号:___________________姓名:___________________同组:___________________成绩:___________________指导教师:_______________提交日期:_______________批改日期:_______________存档日期:_______________Harbi n In stitute of Tech no logy2005.1一、实验目的利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID控制的性能,得出结论。
二、实验要求设计一个二维模糊控制器分别控制一个一阶被控对象和二阶被控对象。
先用模糊控制器进行控制,然后改变控制对象参数的大小,观察模糊控制的鲁棒性。
为了进行对比,再设计PID控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。
三、实验步骤叙述查询表式模糊控制系统仿真及在线推理模糊控制的仿真的主要步骤。
四、实验内容(一)查询表式模糊控制系统仿真实验11、一阶对象Gi(s) 米用查询表式方法进行仿真实验,自己选定Ke,Ts + 1Ku,Kec的值,通过仿真实验观察它们各自对控制性能的影响。
从而确定一组较好的参数值并填入表中。
然后按下表中给出的数值调整对象参数并观察输出响应曲线,将实验结果填入下表。
控制参数:Ke二Ku二Kec二2、给定对象参数T1二2,通过调整两组控制参数Ke, Ku, Kec 使其得到较 好的响 应 曲 线 , 将 结 果 填 入 下 表 中 。
(二)给定二阶对象G 2 (s ): 仃2+1皿+1)1、采用在线模糊推理方法进行仿真实验,自己选定对象参数,调整控制参数Ke ,Ku ,Kec ,得到较好的响应曲线,并把实验结果填入下表。
智能控制大作业-模糊控制
智能控制与应用实验报告模糊控制器设计一、 实验内容考虑一个单连杆机器人控制系统,其可以描述为:0.5sin()Mqmgl q y qτ+==(1)其中 20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长,29.8/g m s =,q 为杆的角位置,q为杆的角速度,q 为杆的角加速度,τ为系统的控制输入。
实验具体要求:1. 分别采用fuzzy 工具箱设计模糊控制器跟踪期望的角位置信号。
2. 分析量化因子和比例因子对模糊控制器控制性能的影响。
3. 分析系统在模糊控制和PID 控制作用下的抗干扰能力(加噪声干扰)和抗非线性能力(加死区和饱和特性)。
4. 为系统设计模糊PID 控制器。
二、 对象模型建立根据公式(1),令状态量121=,x q x x =得到系统状态方程为:121210.5**sin()x x mgl x x My x τ=-==(2)由此建立单连杆机器人的模型如图1所示。
图1 单连杆机器人模型三、模糊控制算法实现及仿真本次实验设计一个二维模糊控制器,令误差*=-,误差变化E q q= ,模糊控制器输出语言变量为U。
EC E1)三个变量E、EC和U的模糊词集为:﹛NB,NM,NS,ZO,PS,PM,PB﹜模糊论域为:E和EC:{-6,-5,-4,-3,-2,-1,0, 1, 2, 3, 4, 5, 6}U:{-7,-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7}2)模糊控制规则为:表1 模糊控制规则表3)确定E,EC和U的控制表4)建立模糊控制表5)建立SIMULINK模型在Matlab/Simulink中建立单连杆机器人模糊控制系统模型如图2所示:图2 单连杆机器人控制系统模型6) 仿真结果给定正弦参考信号,取量化因子5,1Ke Kec ==,比例因子50Ku =,得到系统角度跟踪为图3。
51015-1-0.8-0.6-0.4-0.200.20.40.60.81t/sa n g l e /r a d图3 正弦角度跟踪由图3可知,该模糊控制器能使得单连杆机器人控制系统实现很好的角度跟踪。
模糊控制实验报告
模糊控制实验报告1.引言随着科技的不断发展,模糊控制理论在控制系统中的应用越来越广泛。
模糊控制通过将精确的数学模型转化为模糊的规则,可以更好地适应复杂、非线性的控制系统。
本实验旨在通过设计一个模糊控制系统来实现对一个简单的水温控制过程的控制,以验证模糊控制在实际系统中的有效性。
2.实验原理本实验将一个简化的水温控制过程作为被控对象,控制目标是使得水温保持在一个设定的温度范围内。
水温的变化是由水流量和加热功率两个因素决定的。
因此,控制系统的输入变量为水流量、加热功率,输出变量为水温。
通过模糊控制器根据当前的水温及其变化率来调节水流量和加热功率,从而实现对水温的控制。
模糊控制器的输入变量为当前的水温和水温变化率,输出变量为水流量和加热功率的控制信号。
通过设定一系列模糊规则,模糊控制器可以根据当前的输入变量来决定输出变量的值,并调整其大小以实现对水温的精确控制。
3.实验步骤1)设定水温的设定值及其变化率,作为模糊控制器的输入变量。
2)使用模糊推理方法,通过设定一系列模糊规则,将输入变量映射到输出变量。
3)根据输出变量的值,调节水流量和加热功率的控制信号。
4)监测水温的变化,根据测量结果对模糊控制器进行调整,以提高控制的精度。
5)重复步骤3和4,直到水温稳定在设定的范围内。
4.实验结果经过多次实验,我们成功地设计出了一个能够稳定控制水温的模糊控制系统。
在不同的设定值和变化率下,模糊控制器都能够根据当前的输入变量来自适应地调节输出变量的值,使水温保持在设定的范围内。
通过对实验数据的分析,我们发现模糊控制系统具有较好的动态性能和鲁棒性。
在水温变化较快的情况下,模糊控制器能够及时地调整输出变量的值,使水温能够迅速回到设定的范围内。
而在水温变化较慢的情况下,模糊控制器能够稳定地控制输出变量的值,使水温能够保持在设定的范围内。
对比传统的PID控制器,我们发现模糊控制系统在对非线性系统和难以建模的系统进行控制方面具有明显的优势。
简单的模糊控制实验报告
实验报告课程名称智能控制学院自动化学院班级姓名学号日期2019.4.9基于mamdani 型模糊控制器线性系统的位置跟踪一、实验目的1.熟悉mamdani 模糊控制器的设计原理;2.掌握模糊控制器的设计步骤;3.熟悉模糊控制规则对控制系统效果的影响 ;4.熟悉模糊控制器设计的Matlab 命令;5.掌握用MATLAB 实现模糊控制系统仿真的方法。
二、设备及条件 计算机系统Matlab 仿真软件三、实验原理根据跟踪误差及其变化率,设计模糊控制器使得跟踪误差趋近于零。
四、设计要求 已知某一线性系统2400500s s+,根据误差及其变化率来设计模糊控制器,使得闭环系统的输出跟踪正弦信号0.5sin(10)t ,已知:误差及其变化率的范围初步定为[]33-,要求分为7个模糊集; 输出的范围初步定为[]4.5 4.5-,要求分为9个模糊集;设计隶属度函数误差变化划分表,控制电压变化划分表和模糊控制规则表,基于MATLAB 实现该控制器,并对控制效果进行仿真,根据仿真结果对模糊控制规则、控制信号范围、误差及其变化率进行调整。
五、实验环境I Simulink 介绍1.1 Simulink 简介Simulink 是MATLAB 中的一种可视化仿真工具, 是一种基于MATLAB 的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
1.2 Simulink 优点Simulink 提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink 提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。
II模糊控制工具箱介绍2.1 模糊控制工具箱简介MATLAB模糊控制工具箱为模糊控制器的设计提供了一种非常便捷的途径,通过它我们不需要进行复杂的模糊化、模糊推理及反模糊化运算,只需要设定相应参数,就可以很快得到我们所需要的控制器,而且修改也非常方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制系统实验报告
学院:班级:
:学号:
一、实验目的
1. 通过本次实验,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。
2. 提高有关控制系统的程序设计能力;
3. 熟悉Matlab语言以及在智能控制设计中的应用。
二、实验内容
设计一个采用模糊控制的加热炉温度控制系统。
被控对象为一热处理工艺制作中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0-5V,输出相电压为0-220V,输出最大功率180kW,炉内变化室温~625℃。
三、实验过程及步骤
1.用Matlab中的Simulink工具箱,组成一个模糊控制系统,如图所示
2.采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线。
(1)模糊集合及论域的定义
对误差E、误差变化EC机控制量U的模糊集合及其论域定义如下:E、EC和U的模糊集合均为:
{NB、NM、NS、0、PS、PM、PB}
E和EC的显示范围为:[-6 6]
结果如下图所示
打开Rule编辑器,并将49条控制规则输入到Rule编辑器中
利用编辑器的”View→Rules”和”View→Surface”得到模糊推理系统的模糊规则和输入输出特性曲面,分别如下图所示
从图中可以看出,输出变量U是关于两个输入变量E、EC的非线性函数,输入输出特性曲面越平缓、光滑,系统的性能越好。
将FIS嵌入Simulink
R(t)=400℃时系统阶跃响应
系数Ke变小时的系统阶跃响应
通过本设计可以知道,模糊控制具有能够得到良好的动态响应性能,并且不需要知道被控对象的数学模型,适应性强,上升时间快。
与PID控制相比有着很大的优势,采用PID控制虽然稳态性能较好,但是难以得到满意的动态响应性能。
当然,模糊控制也有着自身的缺点,容易受到模糊规则等级的限制而引起误差,需要进一步改进。
四、实验总结
通过这次《模糊控制系统》课程实验增加了对模糊调节器的理解,认识到了模糊控制器的优缺点。
并进一步熟练了用Matlab中Simulink 工具箱的应用,提高了自己的动手能力。
通过这次课程设计也使我认识到对Matlab中Simulink工具箱的应用还不够熟练,将来应该加强操作、学习。