等差数列优秀课件
合集下载
等差数列(优秀课件)
全国统一鞋号中成年男鞋的各种尺码
(表示鞋底长,单位:cm)分别是:
ห้องสมุดไป่ตู้
23
1 2
,24,24
1 2
,25,25
1 2
,26,26
1 2
,27,27
1 2
,28,28
1 2
,29,29
1 2
,30.
某此系统抽样所抽取的样本号分别是: 7,19,31,43,55,67,79,91,103,115.
交流
这三个数列有何共同特征 从第2项起,每一项与其前一项之差等 于同一个常数。
故 a12= 0, a 3n = 12 – 3 n.
1.等差数列{an}中,a1+a5=10,a4=7, 求数列{an}的公差
2.
2. 在数列{an}中a1=1,an= an+1+4,则a10=
.
3.等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1, 则 a 等于( )
A. 1
B. -1
由此得到an a1 (n 1)d (n 2)
当n 1时,上面等式两边均为a1,即等式也成立
等差数列的通项公式为an a1 (n 1)d
2、等差数列的通项公式
思考:已知等差数列{an }的首项为a1,公差为d,求an .
} a2 a1 d,
a3 a2 d,
结论
1、已知等差数列的首项与公差,可求得 其任何一项;
2、在等差数列的通项公式中,a1,d,n, an四个量中知三求一.
3.等差中项
如果 a, A, b 成等差数列,那么 A 叫做 a 与 b 的 等差中项 .
由等差中项的定义可知, a, A, b 满足关系:
4.2.1等差数列的概念 课件(共13张PPT)(2024)高二下学期数学人教A版选择性必修第二册
a, A, b 成等差数列
等差数列填空:
12,
,
,
,
0
探究新知
三.等差数列的通项公式
如果一个数列a1, a2, … , an, …是等差数列,它的公差是d, 那么
a2-a1=d
a2=a1+d
a3-a2=d
不
累
a3=a2+d=(a1+d)+d=a1+2d
完
a4-a3=d
加
…
…
全
a4=a3+d=(a1+2d)+d=a1+3d
[练习1]等差数列{an }中, 若a1 5, 公差d 3, 则a11 ___ .
析 : a11 a1 10 d 5 10 3 35
[变式]等差数列{an }中, 若a4 14 , 公差d 3, 则a11 ___ .
析 : a4 a1 3d a1 9 14, a1 5.
不是
(6), , , , …
不是
公差可为正、可为负也可为0
说明:判断数列是不是等差数列,
运用定义:看+ − 是否为
同一个常数.
探究新知
二.等差中项的定义
在如下的两个数之间, 插入一个数使这三个数成为一个等差数列:
(1) 2, ( 3 ), 4
(2) -1, ( 2 ), 5
新课导入
【情景2】 XXS,XS,S,M,L,XL,XXL,XXXL型号的女装
对应的尺码分别是: 34,36,38,40,42,44,46,48
新课导入
【情景3】 测量某地垂直地面方向上海拔500m以下的大气温度,得
等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?
等差数列的概念PPT优秀课件
anan1an1(n2); 2
(2)在数列{an}中,若对于任意的正整数n(n≥2),
a a 都满足 a n
n 1
n 1
2
那么数列{an}一定是等差数列。
随堂练习
1.已知下列数列是等差数列,填空: (1) ( 0 ),5 ,10 (2) 1, 2 ,( 2 21 ) (3) 31, ( 24 ),( 17 ),10
2.2.1等差数列的概念
问题引入
请从日历中挑几个数,构成一个你认为有意思的数列。
❖ 等差数列的定义:一般地,如果一个数列 从第 2项起,每一项减去它的前一项所得 的差等于同一个常数,那么这个数列就叫 等差数列,这个常数叫做等差数列的公差, 公差通常用字母 d表示。
•你能再举出一些等差数列的例子吗?
例1.判断下列数列是否为等差数列:
(1) 1 , 1 , 1 , 1 , 1 ; (2) 4 , 7 , 10 , 13 , 1 6; (3) -2, -1 , 0 , 2 , 3.
;.
例1.判断下列数列是否为等差数列:
(4) an n ; n 1
(5) a n1 2 n.
❖ 等差数列的定义:一般地,如果一个数列 从第 2项起,每一项减去它的前一项所得 的差等于同一个常数,那么这个数列就叫 等差数列,这个常数叫做等差数列的公差, 公差通常用字母 d表示。
课堂小结
❖知识点:
❖思想方法:
课后作业
❖1.课本p38 习题2.2(1) 2,8 ❖2.《评》p27 2.2(1)
谢谢!
2.已知 a , b , c 成等差数列, 求证:b +c , c +a , a +b成等差数列.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
(2)在数列{an}中,若对于任意的正整数n(n≥2),
a a 都满足 a n
n 1
n 1
2
那么数列{an}一定是等差数列。
随堂练习
1.已知下列数列是等差数列,填空: (1) ( 0 ),5 ,10 (2) 1, 2 ,( 2 21 ) (3) 31, ( 24 ),( 17 ),10
2.2.1等差数列的概念
问题引入
请从日历中挑几个数,构成一个你认为有意思的数列。
❖ 等差数列的定义:一般地,如果一个数列 从第 2项起,每一项减去它的前一项所得 的差等于同一个常数,那么这个数列就叫 等差数列,这个常数叫做等差数列的公差, 公差通常用字母 d表示。
•你能再举出一些等差数列的例子吗?
例1.判断下列数列是否为等差数列:
(1) 1 , 1 , 1 , 1 , 1 ; (2) 4 , 7 , 10 , 13 , 1 6; (3) -2, -1 , 0 , 2 , 3.
;.
例1.判断下列数列是否为等差数列:
(4) an n ; n 1
(5) a n1 2 n.
❖ 等差数列的定义:一般地,如果一个数列 从第 2项起,每一项减去它的前一项所得 的差等于同一个常数,那么这个数列就叫 等差数列,这个常数叫做等差数列的公差, 公差通常用字母 d表示。
课堂小结
❖知识点:
❖思想方法:
课后作业
❖1.课本p38 习题2.2(1) 2,8 ❖2.《评》p27 2.2(1)
谢谢!
2.已知 a , b , c 成等差数列, 求证:b +c , c +a , a +b成等差数列.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
4.2.1等差数列的概念PPT课件(人教版)
an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3
等差数列ppt课件
等差数列的表示方法
通项公式
an = a1 + (n-1)d,其中an是第n项 ,a1是首项,d是公差。
前n项和公式
Sn = n/2 * (2a1 + (n-1)d),其中Sn 是前n项和,a1是首项,d是公差。
等差数列的性质
01
02
03
公差性质
公差d是任意两个相邻项 的差,即an - a(n-1) = d 。
04
等差数列的应用
在数学中的应用
基础概念理解
等差数列是数学中的基础 概念,对于理解数列、函 数等其他数学概念有着重 要作用。
数学运算
等差数列的特性使其在数 学运算中有着广泛的应用 ,例如求和、求差等。
解决数学问题
等差数列可以用来解决一 些复杂的数学问题,例如 求解方程、不等式等。
在物理中的应用
综合练习题
题目:已知一个等差数列的前4项 和为40,前8项和为64,求这个 等差数列的前12项和。
答案:88
解析:根据等差数列的求和公式 ,得到前4项和$S_4 = frac{4}{2} times (2a_1 + (4-1)d) = 40$, 前8项和$S_8 = frac{8}{2} times (2a_1 + (8-1)d) = 64$。解这个 方程组得到首项$a_1=13$,公差 $d=-2$。然后根据等差数列的求 和公式,得到前12项和$S_{12} = frac{12}{2} times (2 times 13 + (12-1) times (-2)) = 88$。
等差数列在日常生活和科学研究中有着广泛的应用,如计算 存款利息、解决几何问题等。
公式中的参数意义
01
02
等差数列公式ppt课件
下节课预告
• 下节课我们将学习等差数列在实际生活中的应用,以及如何利 用等差数列解决实际问题。同时,我们还将学习等差数列的性 质,进一步加深对等差数列的理解。
感谢观看
THANKS
一般形式
等差数列的通项公式可以 表示为an=kn+b,其中k 和b是常数,n是项数。
特殊形式
当k=0时,等差数列变为 常数列;当b=0时,等差 数列变为等差序列。
扩展形式
通过变换通项公式,我们 可以得到其他形式的等差 数列。
等差数列通项公式的应用
数学问题求解
数学建模
利用通项公式可以求解等差数列中的 未知数。
日常计数
在日常生活中,我们经常使用等差 数列来计数物品,例如按顺序排列 的电话号码、门牌号等。
等差数列在数学领域中的应用
数学分析
在数学分析中,等差数列是研究 函数和级数的重要工具,可以用
于证明一些数学定理和性质。
几何学
在几何学中,等差数列可以用于 计算一些几何形状的周长、面积
和体积等。
组合数学
在组合数学中,等差数列可以用 于计算组合数的公式和性质。
通过建立数学模型,我们可以利用通 项公式解决实际问题。
实际应用
等差数列在日常生活和科学研究中有 着广泛的应用,例如在统计学、物理 学等领域。
03
等差数列的求和公式
等差数列求和公式的推导
01
通过对等差数列的性质进行归纳 和演绎,利用倒序相加法推导出 等差数列的求和公式。
02
倒序相加法的原理是将等差数列 的前n项和与后n项和相加,再除 以2得到n项和的公式。
等差数列求和公式还可以用于解决一 些实际问题,例如计算存款的本金和 利息、计算工资等。
《等差数列课》课件
等差为负数的等差数列
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用