实验一 典型环节的MATLAB仿真资料
(完整word版)MATLAB实训实验讲解
2015/2016学年下学期《信号与系统》实验报告班级:学号:学生姓名:指导教师:2016年3月8 日实验一 基本函数仿真实验项目: 基本函数仿真实验时间: 2016年 3 月 8 日 星期 二 第 34 节课 实验地点: 1501实验室 实验目的:1、 学习使用MATLAB 软件2、 学习MATLAB 中各种函数,并应用函数分析3、 对MATALB 的进一步的学习了解,熟练掌握MATALB 的各种操纵,学会使用MATALB 解决复杂的运算并学会用MATALB 解决平时学习4、 了解MATALB 的数值运算5、 了解MATALB 的基本函数和命令6、 学习掌握MATALB 有关命令 实验内容: 1、(1) 题目:应用MA TLAB 方法实现单位阶跃信号和矩形脉冲。
(2) 程序清单(源程序)解:对于阶跃函数,MATLAB 中有专门的stairs 绘图命令。
例如,实现)(t 和矩形脉冲的程序如下:t=-1:2; % 定义时间范围向量t x=(t>=0);subplot(1,2,1),stairs(t,x);axis([-1,2,-0.1,1.2]); grid on % 绘制单位阶跃信号波形 t=-1:0.001:1; % 定义时间范围向量t g=(t>=(-1/2))-(t>=(1/2));subplot(1,2,2),stairs(t,g);axis([-1,1,-0.1,1.2]); grid on % 绘制矩形脉冲波形(3) 运行结果(截图)00.20.40.60.8100.20.40.60.81图1 例1图(4)函数解析Subplot:使用方法:subplot (m,n,p )或者subplot (m n p )。
是将多个图画到一个平面上的工具。
其中,m 表示是图排成m 行,n 表示图排成n 列,也就是整个figure 中有n 个图是排成一行的,一共m 行,如果m=2就是表示2行图。
MATLAB仿真实验项目
二、实验设备
PC 机,MATLAB 仿真软件。
三、实验内容
10 ,运用串联校正方法,设计控制器,使 0.5s 2 s 系统的性能满足要求。
被控对象 G p ( s)
四、实验步骤
+ 校 正
阶跃信号
10 0.5s 2 s
1、作原系统的 bode 图,求出静态误差系数 K v 0 ,相位裕度 c 0 和开 环截止频率 c 0 。 2、作时域仿真,求出阶跃响应曲线,记录未校正系统的时域性能 Mp 和 ts,并记录下所选择的参数。 3、设计超前校正装置 Gc(s),实现希望的开环频率特性,即
s=-5。
(b)
G2 ( s )
s 2 0.5s 10 s 2 2s 10 ,分子分母多项式阶数相等,即 n=m=2。
(c) G3 ( s) (d) G4 ( s)
s 2 0.5s ,分子多项式零次项系数为零。 s 2 2s 10
s ,原响应的微分,微分系数为 1/10。 s 2s 10
1 修改参数,写出程序分别实现 n1 = n 0 和 n 2 =2 n 0 的响应曲线,并作记录。 2
% n 0 10 3、试作以下系统的脉冲响应,并比较与原系统响应曲线的差别与特点,作出 相应的实验分析结果 (a) G1 (s)
2s 10 ,有系统零点情况,即 s 2 2s 10
2
2、修改参数,分别实现 =1, =2 的响应曲线,并作记录。 程序为: n0=10;d0=[1 2 10];step(n0,d0 )
%原系统 =0.36 hold on %保持原曲线 n1=n0,d1=[1 6.32 10];step(n1,d1) % =1 n2=n0;d2=[1 12.64 10];step(n2,d2) % =2
实验一典型环节的MATLAB仿真
实验一典型环节的MATLAB仿真第一篇:实验一典型环节的MATLAB仿真实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink 仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
图1-1SIMULINK仿真界面图1-2系统方框图以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
matlab仿真实验报告
matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。
本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。
实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。
该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。
我们将通过Matlab对该电路进行仿真,以了解其放大性能。
实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。
这些参数将作为Matlab仿真的输入。
2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。
可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。
3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。
可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。
4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。
可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。
实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。
可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。
2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。
通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。
讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。
通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。
Matlab仿真实验报告
Matlab仿真实验报告姓名:黄涛学号:2011302540056学院:电气工程学院[在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
]实验一直流电路一实验目的1、加深对直流电路的节点电压法和网孔电流法的理解。
2、学习MATLAB的矩阵运算方法。
二、实验内容:1、电阻电路的计算如图,已知:R1=2,R2=6,R3=12,R4=8,R5=12,R6=4,R7=2.(1) 如Us=10V,求i3,u4,u7;(2) 如U4=4V,求Us,i3,i7.(1)Z = [20 -12 0;-12 32 -12;0 -12 18];V = [10 0 0]';I = inv(Z)*V;i3 = I(1)-I(2);u4 = 8*I(2);u7 = 2*I(3);fprintf('i3=%f \n',i3)fprintf('u4=%f \n',u4)fprintf('u7=%f \n',u7)仿真结果:i3=0.357143u4=2.857143u7=0.476190(2)Z = [0 8 0;-12 32 -12;0 -12 18];V = [4 0 0]';I = inv(Z)*V;Us = 20*I(1)-12*I(2);i3 = I(1)-I(2);i7 = I(3);fprintf('Us=%f \n',Us)fprintf('i3=%f \n',i3)fprintf('i7=%f \n',i7)仿真结果:Us=14.000000i3=0.500000i7=0.3333332、求解电路里的电压,例如V1,V2,……V5.Y = [1 -1 2 -2 0;0 5 -13 8 0;2 0 4 -11 0;176 -5 5 -196 0;0 0 0 0 1];I = [0 -200 -120 0 24]';V = inv(Y)*I;fprintf('V1=%fV\nV2=%fV\nV3=%fV\nV4=%fV\nV5=%fV\n',V(1),V(2),V(3),V(4),V(5))仿真结果:V1=117.479167VV2=299.770833VV3=193.937500VV4=102.791667VV5=24.000000V3、如图,已知R1=R2=R3=4,R4=2,控制常数k1=0.5,k2=4,is=2,求i1和i2.Z = [1 0 0 0;-4 16 -8 -4;0 0 1 0.5;0 -8 4 6];V = [2 0 0 0]';I = inv(Z)*V;i1 = I(2)-I(3);i2 = I(4);fprintf('i1=%f V\ni2=%f V\n',i1,i2)仿真结果:i1=1.000000 Vi2=1.000000 V三、实验总结Matlab可用于计算矩阵,方便电路分析过程中的计算。
MATLAB仿真实验全部
实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些?三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二) 分析系统稳定性有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den) 2.用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
《MATLAB仿真》实验讲义(2015)
《控制系统仿真与计算机辅助设计》实验讲义(MATLAB)目录实验一 MATLAB实验环境及其基本运算实验二 MATLAB符号运算实验三 MATLAB程序设计实验四控制系统模型的表示及时间响应实验五控制系统的分析实验六控制系统的校正及综合设计实验一 MATLAB 实验环境及其基本运算一、实验目的1、 通过本次实验,要求学生熟悉MATLAB 软件操作环境;2、 掌握MATLAB 常用的命令、函数。
二、实验要求1、 了解MATLAB 操作环境的各个窗口、菜单的内容和使用方法。
2、熟悉下列命令: Help,who,look,save ,load,exit,demo 等的使用。
3、熟悉下列常用的基本函数的使用:abs(x),sqrt(x),exp(x),sin(x),cos(x),asin(x),acos(x),tan(x),atan(x),log(x),log10(x),imag(x),real(x)4、掌握矩阵的表示和基本运算:5、向量的表示:6、掌握熟悉多项式表达及运算: 三、实验原理1、矩阵的表示和基本运算:a) 矩阵表达:123456789A, >>A=[1 2 3;4 5 6;7 8 9], >>A=[1 2 3 4 5 6 7 8 9]>>A(2,6)另外,熟悉下列生成矩阵函数:eye(x),zeros(x),ones(x),[ ],rand(x),company(x) 1) 矩阵加法:C=A+B 2) 矩阵减法: C=A-B 3) 矩阵乘法: C=A*B4) 矩阵除法:C=A/B,C=A\B; 5) 矩阵乘方:C=A^P 6) 矩阵转置:C=A ’ 7) 矩阵求逆:C=inv(x) 8) 矩阵特征值:C=eig(x) 2、向量的表示: 1)>> t=1:2:9 2) >> x=1:53、熟悉多项式表达及运算: 1)多项式的构造表达:5432()38210a x x x x x x ,32()2971b x x x xa=[1 3 -8 2 -1 10],b=[2 -9 -7 1]2)多项式运算: 加法:c=a+[0 0 b] 减法: c=a+[0 0 b] 乘法: c=conv(a,b)除法: [div,rest]=deconv(a,b) 微分: c=polyder(a) 求根: c=roots(a)求值: c=polyval(a,-2)四、实验内容1、实验原理三中,1-2项内容在计算机中操作;第3项内容,自己假设x ,记录函数运算结果。
自动实验一——典型环节的MATLAB仿真报告
自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
matlab仿真实验报告,Matlab仿真及其应用实验报告.doc
matlab仿真实验报告,Matlab仿真及其应⽤实验报告.doc Matlab仿真及其应⽤ 实验报告温州⼤学物理与电⼦信息⼯程学院Matlab仿真及其应⽤ 实验报告课程名称:Matlab仿真及其应⽤班 级:10电信姓名:吴** 学号:1011000****实验地点:5B305⽇期:12.25实验⼆ Matlab 基本编程基础[实验⽬的和要求]熟悉MATLAB环境与⼯作空间熟悉变量与矩阵的输⼊、矩阵的运算熟悉M⽂件与M函数的编写与应⽤熟悉MATLAB控制语句与逻辑运算掌握if语句、switch语句、try语句的使⽤。
掌握利⽤for语句、while语句实现循环结构的⽅法。
[实验内容]1⾏100列的Fibonacc 数组a,a(1)=a(2)=1,a(i)=a(i-1)+a(i-2),⽤for循环指令来寻求该数组中第⼀个⼤于10000的元素,并之处其位置i。
编写M函数表⽰曲线以及它的包络线,并从命令窗⼝输⼊命令语句绘制曲线。
t的取值范围是[0,4π]。
设,编写⼀个M函数⽂件,使得调⽤f(x)时,x可⽤矩阵代⼊,得出的f(x)为同阶矩阵。
根据,求时的最⼤n值;与(1)的n值对应的y值。
已知求中,最⼤值、最⼩值、各数之和,以及正数、零、负数的个数。
输⼊⼀个百分制成绩,要求输出成绩等级A,B,C,D,E。
其中,90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E。
求分段函数的值。
⽤if语句实现输出x=-5.0, -3.0, 1.0, 2.0, 2.5, 3.0, 5.0时的y值。
编写⼀M函数,实现近似计算指数,其中x为函数参数输⼊,当n+1步与n步的结果误差⼩于0.00001时停⽌。
编写⼀M函数,a和x作为M函数参数输⼊,函数⾥⾯分别⽤if结构实现函数表⽰实验结果及分析:1.a=ones(1,100); %定义数组for i=3:100a(i)=a(i-1)+a(i-2);if(a(i)>10000)a(i),break;endend ,i2.function y=ff(t)y1=exp(-t/3);y2=exp(-t/3).*sin(3*t); y=[y1;y2]3.function y=f(x);a=input('输⼊a值:');x=input('输⼊x值:');if(x<=-a)y=-1;elseif(x-a)y=x/a;elsey=1;endend4.for n=1:100f(n)=1./(2*n-1);y=sum(f)if y>=3my=y-f(n)breakendendmy5.f(1)=1,f(2)=0,f(3)=1; for n=4:100f(n)=f(n-1)-2*f(n-2)+f(n-3);enda=sum(f);b=max(f);c=min(f);p=f==0,d=sum(p);%p等于f为0的个数p1=f>0,e=sum(p1);p2=f<0,f=sum(p2);a,b,c,d,e,f6.clear;n=input('输⼊成绩:');m=floor(n/10);%取整switch mcase num2cell(9:10)disp('A'); %显⽰在控制框case 8disp('B');case 7disp('C');case 6disp('D');case num2cell(0:5)disp('E');otherwisedisp('error')end7.function y=ex3_4(x)for i=1:length(x)if (x(i)<0)&(x(i)~=-3)y(i)=x(i)^2+x(i)-6elseif (x(i)>=0)&(x(i)<5)&(x(i)~=2)&(x(i)~=3) y(i)=x(i)^2-5*x(i)+6else y(i)=x(i)^2-x(i)-1 endendy8.function t=ex3_4(x) n=0;t=1;y=1;x=input(‘’);while y>=0.00001n=n+1;y=x^n/factorial(n);t=t+y;endn9.function y=f(x);a=input('输⼊a值:'); x=input('输⼊x值:'); if。
自动控制原理MATLAB仿真实验报告
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
自动控制理论实验指导书(仿真).详解
实验一典型环节的MATLAB仿真Experiment 1 MATLAB simulation of typical link一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
合肥工业大学自动控制原理matlab实验
实验 典型环节的MATLAB 仿真一、实验目的1.熟悉MA TLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法 二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
图1-1 SIMULINK 仿真界面 图1-2 系统方框图4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
MATLAB系统仿真实验报告一
MATLAB系统仿真实验报告(一实验一、MATLAB语言环境与基本运算一、实验目的及要求1.学习了解MATLAB语言环境2.练习MATLAB命令的基本操作3.练习MATLAB数值运算相关内容4.练习MATLAB符号运算相关内容5.撰写实验报告二、实验内容1.熟悉Matlab语言环境1).学习了解MATLAB语言环境MATLAB语言操作界面(主界面的各个窗口)主界面:工具栏:状态栏:命令窗口:文件窗口:工作空间窗口:历史命令窗口:变量查询命令who, whosWho:列出当前存储器中的所有变量Whos:列出当前工作空间中的所有变量,包括与他们的维数、字节、类型有关的变量目录与目录结构目录,文件夹,文件搜索路径联机帮助2).MATLAB基本操作命令demos,clc,clf,clear,contro-c(^c),diary Demos:Clc:命令窗口清屏。
Clf:清楚当前图形。
清楚工作空间。
Control+c:复制选定区域到粘贴板。
Diary:用于记录MATLAB窗口的输入的命令和响应输出,diary off关闭记录,diary on打开记录。
2.Matlab数值运算与符号运算1).MATLAB数值运算相关内容MATLAB变量及变量赋值变量名以字母开头,后接字母、数字或下划线的字符序列,最多63个字符。
变量名区分大小写,不可使用保留字。
变量赋值:变量名=表达式。
初等矩阵函数ones, zeros, eye, rand, randn, sizeOnes:生成常熟1构成的数组。
Zeros:零数组。
Eye:生成单位矩阵。
Rand:生成随机数和矩阵。
产生标准正态分布的随机数或矩阵的函数。
Size:求矩阵的维数。
矩阵的基本运算+ 加- 减* 乘^ 乘方‘共轭转置/或\ 矩阵相除./或.\ 数组相除矩阵的特征运算det, eig, rank, svdDet:求行列式。
Eig:求特征值和特征向量。
Rank:计算矩阵的秩。
典型环节频域特性的仿真实验
实验题目:典型环节频域特性的仿真实验一、实验目的:1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验设备:Matlab三、实验内容:用Matlab绘制典型环节(比例、积分、微分、惯性、二阶)的Nyquis图、Bode图,研究频率特性。
四、实验步骤:1.绘制比例环节传递函数g(s)=K的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,0,2];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=2,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
2.绘制积分环节传递函数g(s)=1/Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:num=[1];den=[0,3,0];G1=tf(num,den)nyquist(G1) (回车)则显示传递函数g(s)=1/4s ,及对应的Nyquist图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明频率ω的变化情况。
再键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
3.绘制微分环节传递函数g(s)=Ts 的频率特性图。
运行Matlab,进入命令窗口,键入命令:gridbode(G1) (回车)则显示对应的Bode图曲线,观察并分析曲线,然后记录该曲线,并要求在曲线图上注明纵、横坐标。
五、仿真和实验结果记录比例环节Nyquist图曲线(K=2)比例环节Bode图曲线积分环节Nyquist图曲线(T=3)积分环节Bode图曲线微分环节Nyquist图曲线(T=3)微分环节Bode图曲线惯性环节Nyquist图曲线(T=5) 惯性环节Bode图曲线二阶环节Nyquist图曲线(ξ=0.9)二阶环节Bode图曲线六、实验结果分析。
实验一 典型环节的MATLAB仿真
以图 1 所示的系统为例说明基本设计步骤如下: 1)进入线性系统模块库构建传递函数。点击 simulink 下的“Continuous” 再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。 2)改变模块参数。在 simulink 仿真环境“untitled”窗口中双击该图标即 可改变传递函数。其中方括号内的数字分别为传递函数的分子、分母各次幂由高 到低的系数数字之间用空格隔开设置完成后选择 OK即完成该模块的设 置。 3)建立其它传递函数模块。按照上述方法在不同的 simulink 的模块库中 建立系统所需的传递函数模块。例比例环节用“Math”右边窗口“Gain”的图 标。 4)选取阶跃信号输入函数。用鼠标点击 simulink 下的“Source”将右边窗 口中“Step”图标用左键拖至新建的“untitled”窗口形成一个阶跃函数输入模
图 2 系统方框图
块。 5)选择输出方式。用鼠标点击 simulink 下的“Sinks”就进入输出方式模 块库通常选用“Scope”的示波器图标将其用左键拖至新建的“untitled”窗 口。 6)选择反馈形式。为了形成闭环反馈系统需选择“Math” 模块库右边 窗口“Sum”图标并用鼠标双击将其设置为需要的反馈形式改变正负号。 7)连接各元件用鼠标划线构成闭环传递函数。 8)运行并观察响应曲线。用鼠标单击工具栏中的“运行”按钮便能自动运行仿真环境下 的系统框图模型。运行完之后用鼠标双击“Scope”元件即可看到响应曲线。 三、实验原理 1比例环节的传递函数为
1. 比例环节
和
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
实验一典型环节的MATLAB仿真
典型环节的MATLAB仿真1、 实验目的:1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。
①比例环节 G1(S)=-1和G2(S)=-2②惯性环节 G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」③积分环节 G1(S)=-(1/S)和G2(S)=-(1/(0.5S)④微分环节 G1(S)=-0.5S和G2(S)=-S⑤比例微分环节 G1(S)=-(2+S)和G2(S)=-(1+2S)⑥比例积分环节(PI)G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」2、 实验步骤及结果启动MATLAB 6.0,进入Simulink后新建文档,分别在各文档绘制各典型环节的结构框图。
双击各传递函数模块,在出现的对话框内设置相应的参数。
然后点击工具栏的按钮或simulation菜单下的start命令进行仿真,双击示波器模块观察仿真结果。
在仿真时设置各阶跃输入信号的幅度为1,开始时间为0(微分环节起始设为0.5,以便于观察)传递函数的参数设置为框图中的数值,自己可以修改为其他数值再仿真观察其响应结果。
1、 比例环节G1(S)=-1和G2(S)=-2:2、 惯性环节G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」3、 积分环节G1(S)=-(1/S)和G2(S)=-(1/(0.5S)4、 微分环节G1(S)=-0.5S和G2(S)=-S5、 比例微分环节: G1(S)=-(2+S)和G2(S)=-(1+2S)6、 比例积分:G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」四、实验结果分析:比较前后两个阶跃曲线的区别与联系,作出相应的实验分析结果。
MATLAB仿真实验模板(新)
MATLAB仿真实验报告册姓名:班级:学号:日期:实验一 MATLAB 软件的安装和基本操作一、 实验目的1、 掌握MATLAB 的安装知识;2、 熟练MATLAB 软件的基本操作。
二、 实验工具电脑、MATLAB 软件三、 实验内容在MATLAB 命令窗口建立函数82sin 5+=t y 和t y cos 5=,并要求:1、 采用plot 命令绘制曲线(要求在同一个图中绘制,且两个采用不同的颜色);2、 将上述曲线采用不同线型进行绘制;3、 采用坐标命令进行坐标大小调整4、 为该图进行必要的标注。
四、实验过程t=0:pi/20:2*pi;>> y1=5*sin(2*t)+8;>> y2=5*cos(t);>> hold on;>> plot(t,y1,'b');plot(t,y2,'r');>> axis[0 2*pi -6 14];>> axis([0 2*pi -6 14]);>> xlabel('时间');ylabel('幅值');>> title('三角曲线');>> gtext('y1=5*sin(2*t)+8');>> gtext('y2=5*cos(t)');>> legend('y1=5*sin(2*t)+8','y2=5*cos(t)')>> grid on五、实验结论时间幅值实验二 用MATLAB 实现数学运算一、实验目的1、掌握MATLAB 的基本数学运算;2、掌握MATLAB 的矩阵数学运算。
二、实验工具电脑、MATLAB 软件三、实验内容1、用MATLAB 实现运算5ln 573sin 3+++=e y ;2、设]4,2,1[=t ,求2t 和5t ;3、建立矩阵=A ⎪⎪⎪⎭⎫⎝⎛987654321和=B ⎪⎪⎪⎭⎫⎝⎛631,求B A ⨯和A 的秩。
MatLab仿真实验报告
实验一 一阶系统及二阶系统时域特性MatLab 仿真实验 一:实验目的1、通过实验中的系统设计及理论分析方法,进一步理解自动控制系统的设计与分析方法。
2、熟悉仿真分析软件。
3、利用Matlab 对一、二阶系统进行时域分析。
4、掌握一阶系统的时域特性,理解常数T 对系统性能的影响。
5、掌握二阶系统的时域特性,理解二阶系统重要参数对系统性能的影响。
二、实验设备计算机和Matlab 仿真软件。
三、实验内容1、一阶系统时域特性 一阶系统11)(+=Ts s G ,影响系统特性的参数是其时间常数T ,T 越大,系统的惯性越大,系统响应越慢。
Matlab 编程仿真T=0.4,1.2,2.0,2.8,3.6,4.4系统单位阶跃响应。
2、二阶系统时域特性a 、二阶线性系统 16416)(2++=s s s G 单位脉冲响应、单位阶跃响应、单位正弦输入响应的 Matlab 仿真。
b 、二阶线性系统3612362++s s ξ,当ξ为0.1,0.2,0.5,0.7,1.0,2.0时,完成单位阶跃响应的Matlab 仿真,分析ξ值对系统响应性能指标的影响。
四、实验步骤1、一阶系统时域特性clearclcnum=1for del=0.4:0.8:4.4den=[del 1];step(tf(num,den))hold onendlegend('t=0.4','t=1.2','t=2.0','t=2.8','t=3.6','t=4.4') 2、二阶系统时域特性a、clearclcnum=16den=[1 4 16]sys=tf(num,den)[y1,t1]=impulse(sys)impulse(sys)figure ,plot(t1,y1)[y2,t2]=step(sys)step(sys)figure ,plot(t2,y2)hold ont=0:0.1:20figure,lsim(sys,sin(t),t)hold onc、clearclcnum=[0 0 4];den=[1 0.5 4];t=0:0.1:10;step(num,den,t)gridtitle('Step-Response Curves of G(s)=4/[s^2+2s+4]')num=[0 0 36]; den1=[1 1.2 36]; den2=[1 2.4 36]; den3=[1 4.8 36]; den4=[1 8.4 36]; den5=[1 12 36]; den6=[1 24 36];t=0:0.1:10; step(num,den1,t)gridtext(4,1.7,'Zeta=0.1'); holdstep(num,den2,t)text(3.3,1.5,'0.2')step(num,den3,t)text(3.5,1.2,'0.4')step(num,den4,t)text(3.3,0.9,'0.7')step(num,den5,t)text(3.3,0.6,'1.0')step(num,den6,t)text(3.0,0.4,'2.0')title('Step-Response Curves for G(s)=36/[s^2+12(zeta)s+1]')五、实验结果1、2、a、b、。
自动控制原理MATLAB仿真实验指导书(4个实验)
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 典型环节的MATLAB 仿真
一、实验目的
1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用
MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击
按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:
1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
图1-1 SIMULINK 仿真界面 图1-2 系统方框图
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
6)选择反馈形式。
为了形成闭环反馈系统,需选择“Math ” 模块库右边窗口“Sum ”图标,并用鼠标双击,将其设置为需要的反馈形式(改变正负号)。
7)连接各元件,用鼠标划线,构成闭环传递函数。
8)运行并观察响应曲线。
用鼠标单击工具栏中的“”按钮,便能自动运行仿真环境下的系统框图模型。
运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。
三、实验原理
1.比例环节的传递函数为
K R K R R R
Z Z s G 200
,
1002)(211
212==-=-=-
=
其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为
uf C K R K R s C R R R Z Z s G 1,200,1001
2.021)(1211212
12===+-=+-=-
=
其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为
uf C K R s
s C R Z Z s G 1,1001.01
1)(111112==-=-=-
=
其对应的模拟电路及SIMULINK 图形如图1-5所示。
图1-3 比例环节的模拟电路及SIMULINK 图形
4.微分环节(D)的传递函数为
uf C K R s s C R Z Z s G 10,
100)(11111
2
==-=-=-
=
uf C C 01.012=<<
其对应的模拟电路及SIMULINK 图形如图1-6所示。
5.比例+微分环节(PD )的传递函数为
)11.0()1()(111
212+-=+-=-
=s s C R R R
Z Z s G uf C C uf C K R R 01.010,10012121=<<===
其对应的模拟电路及SIMULINK 图形如图1-7所示。
6.比例+积分环节(PI )的传递函数为 )1
1(1
)(11212s
R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===
图1-4 惯性环节的模拟电路及SIMULINK 图形
图1-5 积分环节的模拟电路及及SIMULINK 图形 图1-6 微分环节的模拟电路及及SIMULINK 图形
其对应的模拟电路及SIMULINK 图形如图1-8所示。
四、实验内容
按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其
单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ;
图2-1 比例环节的模拟电路
图1-7 比例+微分环节的模拟电路及SIMULINK
图形
图1-8 比例+积分环节的模拟电路及SIMULINK 图形
图2-2比例环节SIMULINK 仿真模型
② 惯性环节11)(1+=
s s G 和1
5.01)(2+=s s G
图3-1惯性环节模拟电路
图3-2惯性环节SIMULINK 仿真模型
③ 积分环节s
s G 1)(1=
图4-1积分环节的模拟电路
图4-2积分环节SIMULINK 仿真模型
④ 微分环节s s G =)(1
图5-1微分环节的模拟电路
图5-2微分环节SIMULINK 仿真模型
⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G
图6-1比例+微分环节的模拟电路
图6-2比例+微分SIMULINK 仿真模型
⑥ 比例+积分环节(PI )s s G 11)(1+=和s
s G 211)(2+=
图7-1比例+积分环节的模拟电路
图7-2比例+积分SIMULINK仿真模型
五、心得体会
通过这次接触MATLAB,真正的体会到了它强大的数值计算和符号计算功能,以及强大的数据可视化、人际智能交互能力。
该工具主要处理以传递函数为主要特征的经典控制和以状态空间为主要特征的现代控制中的主要问题,它能够使图形生动形象的展现给我们,使理解更深刻。