智能控制技术实验报告

合集下载

智能控制实验报告模板

智能控制实验报告模板

智能控制实验报告模板1. 引言在本次智能控制实验中,我们研究了智能控制的基本概念和应用。

通过实际操作,我们深入了解了智能控制系统的原理和设计方法。

本报告将详细介绍我们在实验中所进行的步骤、实验结果分析以及我们的总结和思考。

2. 实验目的本次实验的主要目的是探索智能控制系统的工作原理、学习其基本概念以及了解在实际应用中的方法。

具体目标如下:1. 熟悉智能控制的基本原理和概念;2. 了解智能控制系统的硬件和软件设计;3. 实践并掌握智能控制系统的参数调整和优化方法。

3. 实验步骤3.1 硬件搭建我们首先根据实验要求搭建了智能控制系统的硬件平台。

这个平台包括传感器、执行器和控制器等组件。

我们按照指导书的要求连接各个模块,并确保它们能够正常工作。

3.2 软件配置在硬件搭建完成后,我们开始进行软件配置。

我们根据实验要求,通过软件工具对智能控制系统进行编程,设置不同的控制策略和参数调整方法。

3.3 实验数据采集一切就绪后,我们开始采集实验数据。

通过传感器测量和执行器反馈,我们得到了系统运行过程中的各种参数和状态。

这些数据将用于后续的分析和优化。

3.4 参数调整与优化根据实验数据,我们对智能控制系统进行参数调整与优化。

我们通过反复试验,观察系统响应并调整参数,以达到最优控制效果。

4. 实验结果与分析我们根据实验数据和分析对比,得出以下实验结果与分析:1. 实验结果A- 数据分析A1- 结果评价A22. 实验结果B- 数据分析B1- 结果评价B2通过实验数据和分析,我们发现实验结果A 表现较好,系统响应稳定,控制效果较好。

而实验结果B 则存在一些问题,需要进一步优化。

5. 总结与思考通过本次智能控制实验,我们深入了解了智能控制系统的原理和设计方法。

在实验过程中,我们掌握了智能控制系统的搭建、参数调整与优化等关键技术。

通过对实验结果的分析,我们对智能控制系统的优势和应用范围有了更深入的理解。

然而,本次实验也存在一些问题和不足之处。

智能灯光控制实验报告

智能灯光控制实验报告

智能灯光控制实验报告前言随着科技的发展,智能家居变得越来越普及。

智能灯光控制技术作为其中一种应用技术,可以为人们带来更加便捷舒适的生活体验。

本次实验旨在通过搭建智能灯光控制系统,深入了解智能灯光控制技术的原理与实现方式。

一、实验目的1.学习智能灯光控制技术的原理和实现方式;2.通过实验掌握基本的电路连接方法和编程方法;3.实现智能灯光的远程控制。

二、实验原理智能灯光控制系统是一种基于微处理器的控制系统,其基本原理是将智能灯光系统中的各种设备和传感器连接到微处理器上,通过编程实现对智能灯光的远程控制。

在本次实验中,我们将使用Arduino作为微处理器,利用WiFi模块实现远程控制,使用光线传感器实现智能灯光的自动控制。

三、实验步骤1.准备工作(1)准备Arduino主板、WiFi模块、光线传感器、电阻、导线、LED等器材;(2)将Arduino主板连接至电脑,下载并安装相应的驱动程序和开发环境;(3)将WiFi模块和光线传感器连接至Arduino主板上,并接上相应的电阻和导线。

2.编程(1)在Arduino开发环境中编写程序,设定WiFi模块和光线传感器的参数;(2)编写智能灯光控制程序,实现通过WiFi远程控制LED灯的开关;(3)编写光线传感器程序,实现根据环境光线状况自动调节LED 灯的亮度。

3.实验验证(1)将Arduino主板连接至电源,开启WiFi模块和光线传感器;(2)连接至WiFi网络,通过手机APP远程控制LED灯的开关;(3)通过调节环境光线,验证光线传感器程序是否能够自动调节LED灯的亮度。

四、实验结果通过本次实验,我们成功搭建了一个基于Arduino的智能灯光控制系统。

该系统可以实现通过WiFi远程控制LED灯的开关,并且能够根据环境光线状况自动调节LED灯的亮度。

该系统的实现,为智能家居的实现提供了可靠的技术支持。

五、实验总结本次实验学习了智能灯光控制技术的原理和实现方式,通过实验掌握了基本的电路连接方法和编程方法,并且成功实现了智能灯光的远程控制。

智能灯控实验报告

智能灯控实验报告

一、实验目的本次实验旨在了解智能灯控系统的基本原理和设计方法,掌握智能灯控系统的硬件选型、软件编程以及系统调试等技能。

通过实验,培养学生的创新意识和实践能力,提高学生对智能家居系统的认识。

二、实验原理智能灯控系统利用现代电子技术、传感器技术、网络通信技术等,实现对灯光的远程控制、定时控制、场景控制等功能。

本实验以单片机为核心控制器,通过传感器采集环境信息,实现对灯光的智能控制。

三、实验器材1. 单片机开发板(如:AT89S52)2. 传感器模块(光强检测模块、声强检测模块、热释电红外传感器模块)3. 灯具(LED灯、白炽灯等)4. 连接线5. 电源6. 示波器7. 编程软件(如:Keil C51)四、实验步骤1. 硬件连接(1)将单片机开发板与传感器模块、灯具、电源等设备连接,确保连接正确无误。

(2)使用示波器检测各个模块的信号,确保信号传输正常。

2. 软件编程(1)根据实验要求,编写单片机控制程序,实现对灯光的智能控制。

(2)使用编程软件编译、下载程序到单片机。

3. 系统调试(1)开启电源,观察系统运行情况,确保程序正常运行。

(2)根据实际需求,调整传感器参数和程序逻辑,优化系统性能。

4. 功能测试(1)测试灯光的远程控制、定时控制、场景控制等功能。

(2)测试系统在不同环境下的稳定性,确保系统可靠运行。

五、实验结果与分析1. 灯光远程控制实验结果表明,通过手机APP或远程服务器,可以实现灯光的远程开关控制,方便用户随时随地调整室内照明。

2. 定时控制通过设置定时任务,可以实现灯光的自动开关,节约能源,提高生活品质。

3. 场景控制根据用户需求,设置不同的场景模式,如“会客模式”、“观影模式”等,实现一键切换灯光效果。

4. 稳定性测试在不同环境条件下,系统运行稳定,无明显故障。

六、实验总结本次实验成功实现了智能灯控系统的设计、编程和调试,验证了系统的可行性。

通过实验,我们掌握了以下技能:1. 单片机编程和调试2. 传感器模块的应用3. 智能家居系统的设计4. 系统调试和优化本实验为后续智能家居系统的研究和开发奠定了基础,有助于提高学生的创新能力和实践能力。

智能小车控制实验报告

智能小车控制实验报告

一、实验目的本次实验旨在通过设计和搭建一个智能小车系统,学习并掌握智能小车的基本控制原理、硬件选型、编程方法以及调试技巧。

通过实验,加深对单片机、传感器、电机驱动等模块的理解,并提升实践操作能力。

二、实验原理智能小车控制系统主要由以下几个部分组成:1. 单片机控制单元:作为系统的核心,负责接收传感器信息、处理数据、控制电机运动等。

2. 传感器模块:用于感知周围环境,如红外传感器、超声波传感器、光电传感器等。

3. 电机驱动模块:将单片机的控制信号转换为电机驱动信号,控制电机运动。

4. 电源模块:为系统提供稳定的电源。

实验中,我们选用STM32微控制器作为控制单元,使用红外传感器作为障碍物检测传感器,电机驱动模块采用L298N芯片,电机选用直流电机。

三、实验器材1. STM32F103C8T6最小系统板2. 红外传感器3. L298N电机驱动模块4. 直流电机5. 电源模块6. 连接线、电阻、电容等7. 编程器、调试器四、实验步骤1. 硬件搭建:- 将红外传感器连接到STM32的GPIO引脚上。

- 将L298N电机驱动模块连接到STM32的PWM引脚上。

- 将直流电机连接到L298N的电机输出端。

- 连接电源模块,为系统供电。

2. 编程:- 使用Keil MDK软件编写STM32控制程序。

- 编写红外传感器读取程序,检测障碍物。

- 编写电机驱动程序,控制电机运动。

- 编写主程序,实现小车避障、巡线等功能。

3. 调试:- 使用调试器下载程序到STM32。

- 观察程序运行情况,检查传感器数据、电机运动等。

- 调整参数,优化程序性能。

五、实验结果与分析1. 避障功能:实验中,红外传感器能够准确检测到障碍物,系统根据检测到的障碍物距离和方向,控制小车进行避障。

2. 巡线功能:实验中,小车能够沿着设定的轨迹进行巡线,红外传感器检测到黑线时,小车保持匀速前进;检测到白线时,小车进行减速或停止。

3. 控制性能:实验中,小车在避障和巡线过程中,表现出良好的控制性能,能够稳定地行驶。

汽车智能技术实验报告(3篇)

汽车智能技术实验报告(3篇)

第1篇一、实验目的本次实验旨在通过实际操作和理论学习,加深对汽车智能技术的理解和掌握,重点探索汽车智能电子产品的设计、开发、调试及测试过程,提升对智能驾驶、智能座舱等领域的认知。

二、实验内容1. 实验背景随着科技的飞速发展,汽车行业正经历着前所未有的变革。

电动化、智能化、网联化成为汽车产业发展的三大趋势。

汽车智能技术作为支撑这一变革的核心,日益受到重视。

2. 实验环境实验室配备了先进的汽车智能技术设备和软件,包括汽车微控制器、车载网络与总线系统、车载终端应用程序、汽车传统传感器及智能传感器等。

3. 实验步骤(1)智能驾驶系统开发- 设计智能驾驶系统的硬件架构,包括微控制器、传感器、执行器等。

- 编写智能驾驶算法,实现车道保持、自适应巡航、自动泊车等功能。

- 对智能驾驶系统进行仿真测试,验证其性能。

(2)智能座舱系统开发- 设计智能座舱的硬件架构,包括显示屏、触摸屏、语音识别等。

- 开发智能座舱软件,实现语音控制、信息娱乐、导航等功能。

- 对智能座舱系统进行用户体验测试,优化交互逻辑。

(3)车载网络与总线系统测试- 对CAN、FlexRay、MOST、LIN控制器局域网及以太网Ethernet车载网络进行测试。

- 分析测试数据,诊断网络故障。

(4)车载AI应用运维- 使用Python程序实现机器学习数据预处理、算法设计、程序实现、车载AI应用运维。

- 对车载AI应用进行测试和优化。

4. 实验结果与分析(1)智能驾驶系统- 通过仿真测试,验证了智能驾驶系统的性能,实现了车道保持、自适应巡航、自动泊车等功能。

(2)智能座舱系统- 用户测试结果显示,智能座舱系统操作便捷,用户体验良好。

(3)车载网络与总线系统- 测试结果表明,车载网络与总线系统运行稳定,故障率低。

(4)车载AI应用- 通过优化算法和模型,车载AI应用在准确性和效率方面得到了显著提升。

三、实验总结1. 实验收获通过本次实验,我们深入了解了汽车智能技术的相关知识,掌握了智能驾驶、智能座舱等领域的开发流程,提高了实际操作能力。

智能控制实验报告

智能控制实验报告

《智能控制》 课程实验报告实验题目:模糊控制器设计与实现 一、 实验目的1.掌握模糊控制系统的设计方法;2.比较常规控制与模糊控制的优缺点; 3.训练Matlab 程序设计能力。

二、 实验内容1.针对一个二阶系统,分别设计模糊控制器和常规控制器; 2.分别PID 控制和模糊控制两种情况下系统阶跃响应; 3.对实验结果进行对比分析。

三、 实验设备计算机 1台Window XP 操作系统 Matlab 6.5软件四、 实验原理1、 模糊控制模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。

图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或针对模糊控制器每个输入,输出,各自定义一个语言变量。

因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。

所以在模糊控制器的设计中,通常取系统的误差值e 和误差变化率ec 为模糊控制器的两个输入,则在e 的论域上定义语言变量“误差E ” ,在ec 的论域上定义语言变量“误差变化EC ” ;在控制量u 的论域上定义语言变量“控制量U ” 。

通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e ,对误差取微分得到误差变化率ec ,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。

2、PID 控制在模拟控制系统中,控制器最常用的控制规律是PID 控制。

PID 控制器是一种线性控制器。

它根据给定值与实际输出值之间的偏差来控制的。

其传递函数的形式是:)11()(s T sT k s G D I p ++=,PID 控制原理框图如图1-2所示。

式中p k ——比例系数;I T ——积分时间常数;D T ——微分时间常数。

先进控制技术实验报告(3篇)

先进控制技术实验报告(3篇)

第1篇一、实验目的1. 理解先进控制技术的概念、原理及其在实际应用中的重要性。

2. 掌握先进控制算法(如模型预测控制、自适应控制、鲁棒控制等)的基本原理和实现方法。

3. 通过实验验证先进控制算法在实际控制系统中的应用效果,提高对控制系统优化和性能提升的认识。

二、实验器材1. 实验台:计算机控制系统实验台2. 控制系统:直流电机控制系统、温度控制系统等3. 软件工具:Matlab/Simulink、Scilab等三、实验原理先进控制技术是近年来发展迅速的一门控制领域,主要包括模型预测控制(MPC)、自适应控制、鲁棒控制、模糊控制等。

这些控制方法在处理复杂系统、提高控制性能和抗干扰能力等方面具有显著优势。

1. 模型预测控制(MPC):基于系统动态模型,预测未来一段时间内的系统状态,并根据预测结果进行最优控制策略的设计。

MPC具有强大的适应性和鲁棒性,适用于多变量、时变和不确定的控制系统。

2. 自适应控制:根据系统动态变化,自动调整控制参数,使系统达到期望的控制效果。

自适应控制具有自适应性、鲁棒性和强抗干扰能力,适用于未知或时变的控制系统。

3. 鲁棒控制:在系统参数不确定、外部干扰和噪声等因素的影响下,保证系统稳定性和性能。

鲁棒控制具有较强的抗干扰能力和适应能力,适用于复杂环境下的控制系统。

4. 模糊控制:利用模糊逻辑对系统进行建模和控制,适用于不确定、非线性、时变的控制系统。

四、实验内容及步骤1. 直流电机控制系统实验(1)搭建直流电机控制系统实验平台,包括电机、电源、传感器等。

(2)利用Matlab/Simulink建立电机控制系统的数学模型。

(3)设计MPC、自适应控制和鲁棒控制算法,并实现算法在Simulink中的仿真。

(4)对比分析不同控制算法在电机控制系统中的应用效果。

2. 温度控制系统实验(1)搭建温度控制系统实验平台,包括加热器、温度传感器、控制器等。

(2)利用Matlab/Simulink建立温度控制系统的数学模型。

踏瑞实验报告

踏瑞实验报告

实验名称:踏瑞智能控制系统性能测试实验目的:通过对踏瑞智能控制系统的性能进行测试,评估其在实际应用中的稳定性和效率,为后续产品优化和推广提供数据支持。

实验时间:2023年X月X日至X月X日实验地点:XX科技有限公司实验室实验设备:1. 踏瑞智能控制系统1套2. 测试计算机1台3. 网络测试仪1台4. 数据采集器1台5. 温湿度传感器1套6. 实验环境模拟装置1套实验人员:张三、李四、王五一、实验原理踏瑞智能控制系统是一款集成了物联网、大数据、人工智能等先进技术的智能控制系统。

该系统通过对环境数据的实时采集和分析,实现环境参数的自动调节,以达到节能、环保、舒适的目的。

二、实验内容1. 系统稳定性测试2. 数据采集准确性测试3. 系统响应速度测试4. 系统能耗测试5. 系统扩展性测试三、实验方法1. 系统稳定性测试:将踏瑞智能控制系统置于实验环境中,连续运行24小时,观察系统是否出现故障或崩溃现象。

2. 数据采集准确性测试:将温湿度传感器放置于实验环境中,同时接入踏瑞智能控制系统,实时采集数据并与传感器直接读取的数据进行对比,评估数据采集准确性。

3. 系统响应速度测试:模拟用户操作,观察系统响应时间,记录系统处理数据的时间。

4. 系统能耗测试:记录系统在正常工作状态下的能耗,并与同等功能的传统控制系统进行对比。

5. 系统扩展性测试:在系统中添加新的传感器和执行器,测试系统对新设备的识别、配置和运行情况。

四、实验结果与分析1. 系统稳定性测试:经过24小时连续运行,踏瑞智能控制系统运行稳定,未出现故障或崩溃现象。

2. 数据采集准确性测试:温湿度传感器采集的数据与系统实时采集的数据基本一致,误差在±0.5%以内,数据采集准确性较高。

3. 系统响应速度测试:系统响应时间在0.5秒以内,满足实际应用需求。

4. 系统能耗测试:踏瑞智能控制系统在正常工作状态下的能耗为X瓦,与传统控制系统相比,能耗降低约20%。

智能生活实验报告结论(3篇)

智能生活实验报告结论(3篇)

第1篇一、实验背景与目的随着科技的飞速发展,智能生活逐渐成为人们追求更高生活品质的重要方向。

为了探究智能技术在日常生活中的应用效果,提升生活质量,我们开展了一系列智能生活实验。

本次实验旨在通过实际操作和体验,评估智能设备在提高生活便利性、安全性和舒适度方面的表现,并总结出适合不同用户需求的智能生活方案。

二、实验方法与过程1. 实验对象:本次实验选取了智能照明、智能安防、智能家电、智能健康管理四个方面的智能设备进行测试。

2. 实验方法:通过对设备的安装、操作和使用,观察和记录设备在实际生活中的表现,包括稳定性、易用性、功能丰富度、能耗等方面。

3. 实验过程:实验周期为三个月,分为前期准备、中期测试和后期总结三个阶段。

三、实验结果与分析1. 智能照明(1)稳定性:智能照明设备在实验过程中表现稳定,无故障现象。

(2)易用性:用户可通过手机APP或语音助手实现远程控制,操作便捷。

(3)功能丰富度:设备支持多种场景模式,如自动调节亮度、色温等,满足不同需求。

(4)能耗:相较于传统照明设备,智能照明在节能方面具有明显优势。

2. 智能安防(1)稳定性:智能安防设备在实验过程中表现稳定,有效防止了盗窃等安全隐患。

(2)易用性:用户可通过手机APP实时查看监控画面,方便快捷。

(3)功能丰富度:设备支持移动侦测、紧急报警等功能,提高安全性。

(4)能耗:相较于传统安防设备,智能安防在能耗方面具有优势。

3. 智能家电(1)稳定性:智能家电在实验过程中表现稳定,无故障现象。

(2)易用性:用户可通过手机APP实现远程控制,操作便捷。

(3)功能丰富度:设备支持语音控制、自动调节温度等功能,提高生活品质。

(4)能耗:相较于传统家电,智能家电在节能方面具有明显优势。

4. 智能健康管理(1)稳定性:智能健康管理设备在实验过程中表现稳定,无故障现象。

(2)易用性:用户可通过手机APP查看健康数据,操作便捷。

(3)功能丰富度:设备支持心率监测、睡眠质量分析等功能,帮助用户了解自身健康状况。

唐浦华智能控制实验报告

唐浦华智能控制实验报告

实验报告(计算机类)课程名称: 智能控制课程代码: 106003599学生所在学院: 机械工程学院年级/专业/班:机电12(3)-2 学生姓名:吴丽学号: 3320120193208实验总成绩:任课教师:唐浦华开课学院: 机械工程学院实验中心名称:5A-107.西华大学实验报告(计算机类)开课学院及实验室: 机械工程学院 实验时间 : 年 月 日一、实验目的和任务采用matlab 仿真,进行验证性实验并分析。

二、验仪器、设备及材料Pc 机,matlab 软件,洗衣机模糊控制系统仿真程序三、实验原理及步骤以洗衣机洗涤时间的模糊控制系统设计为例,其控制是一个开环的模糊决策过程,模糊控制按以下步骤进行:① 确定模糊控制器的结构; ② 定义输入、输出模糊集; ③ 定义隶属度函数; ④ 建立模糊控制规则; ⑤ 建立模糊控制表; ⑥ 模糊推理; ⑦仿真实例。

四、实验结果① 污泥和油脂隶属度函数设计仿真结果,如图一; ② 洗涤时间隶属度函数设计仿真结果,如图二;图一图二③洗衣机模糊控制系统仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日采用matlab仿真,进行验证性实验并分析。

二、验仪器、设备及材料Pc机,matlab软件,模糊PID仿真程序三、实验原理及步骤被控对象为G(s)=133/(s2+25s)采样时间为1ms,采用z变换进行离散化,离散化后的被控对象为Y(k)=-den(2)y(k-1)-den(3)y(k-2)+num(2)u(k-1)+num(3)u(k-2)位置指令为幅值为1.0的阶跃信号,r(k)=1.0。

仿真时,先运行模糊推理系统设计程序chap4_7a.m,实现模糊推理系统fuzzpid.fis,并将此模糊推理系统调入内存中,然后运行模糊控制程序chap4_7b.m。

四、实验结果①模糊控制程序chap4_7a.m仿真结果:②模糊控制程序chap4_7b.m仿真结果:五、实验结果分析西华大学实验报告(计算机类)开课学院及实验室:机械工程学院实验时间:年月日并采用matlab仿真,进行验证性实验并分析。

智能控制实验报告

智能控制实验报告

智能控制实验实验名称 单神经元自适应PID 控制电子工程与自动化 学院智能科学与技术 专业班 作者 学号实验日期 2011 年 11 月 15 日辅导员意见:辅导员 成绩 签 名单神经元自适应PID 控制一、实验目的1、熟悉单神经元PID 控制器的原理。

2、通过实验进一步掌握有监督的Hebb 学习规则及其算法仿真。

二、实验内容利用单神经元实现自适应PID 控制器,对如下二阶对象进行控制,在MATLAB 环境中进行仿真。

被控对象为:y(k)=0.368y(k-1)+0.26y(k-2)+0.1u(k-1)+0.632u(k-2)三、实验原理线性神经网络是最简单的一种神经元结构,它不同于感知器,其函数是一线性函数,因此神经元的输出可以是任意值。

我们可以用它实现增量PID 控制器的功能,误差为神经元的输入,权系数为PID 控制系数,由于神经网络可以用在线学习对权系数进行实时修改,所以使得PID 控制具有了自适应功能。

PID 控制器的增量公式为:一个三输入的线性神经元的计算公式为:k 为神经元的比例系数,w i 为神经元权系数,x i 为神经元输入,u 为神经元的输出。

神经元的学习方法可以采用Hebb 学习规则。

有监督的Hebb 学习算法规范法处理后为)2()(211---+-⨯+-+=∆k k k d k k P K i k e e e k e e k e k u )(332211x w x w x w k u ++=∆3131111222333()()()()(1)()()(1)()()()()(1)()()()()(1)()()()()i i ii i i i i p d k k k u k u k k k x k k k u k e k x k k k u k e k x k k k u k e k x k ωωωωωωηωωηωωη=='==-++=++=++=+∑∑ 四、实验步骤1、编写程序实现单神经元的自适应PID 控制器,输入信号为单位阶跃信号。

智能控制实验报告

智能控制实验报告

一、实验目的1. 了解智能控制的基本原理和方法。

2. 掌握智能控制系统的设计和实现方法。

3. 熟悉智能控制实验平台的操作和应用。

二、实验原理智能控制是利用计算机技术、控制理论、人工智能等知识,实现对复杂系统的自动控制。

实验主要涉及以下原理:1. 模糊控制:利用模糊逻辑对系统进行控制,实现对系统不确定性和非线性的处理。

2. 专家控制:通过专家系统对系统进行控制,实现对系统复杂性和不确定性的处理。

3. 神经网络控制:利用神经网络强大的学习能力和泛化能力,实现对系统的自适应控制。

三、实验器材1. 实验平台:智能控制实验箱2. 传感器:温度传感器、湿度传感器、压力传感器等3. 执行器:电机、继电器、阀门等4. 控制器:单片机、PLC等5. 信号线、连接线等四、实验内容1. 模糊控制器设计(1)建立模糊控制模型:根据实验要求,确定输入、输出变量和模糊控制规则。

(2)设计模糊控制器:根据模糊控制规则,设计模糊控制器,包括模糊化、去模糊化等环节。

(3)仿真实验:利用仿真软件对模糊控制器进行仿真实验,验证控制效果。

2. 专家控制器设计(1)建立专家系统:收集专家知识,构建专家系统。

(2)设计专家控制器:根据专家系统,设计专家控制器,实现对系统的控制。

(3)仿真实验:利用仿真软件对专家控制器进行仿真实验,验证控制效果。

3. 神经网络控制器设计(1)建立神经网络模型:根据实验要求,确定神经网络的结构和参数。

(2)训练神经网络:利用实验数据对神经网络进行训练,提高网络的控制能力。

(3)设计神经网络控制器:根据训练好的神经网络,设计神经网络控制器,实现对系统的控制。

(4)仿真实验:利用仿真软件对神经网络控制器进行仿真实验,验证控制效果。

五、实验步骤1. 熟悉实验平台,了解各模块的功能和操作方法。

2. 根据实验要求,设计模糊控制器、专家控制器和神经网络控制器。

3. 利用仿真软件对控制器进行仿真实验,验证控制效果。

4. 分析实验结果,对控制器进行优化和改进。

智能控制实验报告

智能控制实验报告

智能控制技术实验报告1、建立一个模糊洗衣机模型,并用规则观测窗和输出量观测窗观测结果。

要求能够调出这两个窗口的图形。

①确定模糊控制器的结构:二维模糊控制器:两个输入、一个输出。

②编辑输入变量“level”和“rate”③编辑输出量“valve”首先,编辑“取值范围”和“显示范围”。

其次,增添模糊子集的数目。

再次,编修模糊子集的名称。

最后,调整模糊子集的分布。

④编辑模糊规则2、在GUI(图形用户界面)的FIS(模糊推理系统)中,编辑一个具有如下隶属函数和控制规则的水位F控制器。

1).如果液位偏低,则快开阀门;2).如果液位正好,则阀门开度不变;3).如果液位偏高,则快关阀门;4).如果液位正好而进液流速慢,则慢关阀门;5).如果液位正好而进液流速快,则慢开阀门。

现在设计一个模糊系统,使容器中的液位保持恒定。

为此,建立起该模糊系统的仿真模型图并进行仿真。

1、利用GUI编辑FIS结构文件,即构建模糊控制器1)编辑出名称为“tank3”的液位模糊控制系统FIS2)编辑覆盖输入、输出变量的模糊子集3)编辑“tank3”的模糊控制规则2、在模型编辑器中构建模糊控制系统的仿真模型图,将各模块连接起来,最后形成如图所示的系统仿真模型图。

3利用模型图对系统进行仿真1).仿真前的准备工作。

(1)对信号源的参数进行编修(2)使“示波器”显现出来,以便观测波形的变化2).开始仿真。

3、用GUI设计Mamdani型模糊系统举例(洗衣机)1.选择模糊控制器的结构及模糊逻辑算法2.定义覆盖输入、输出变量的模糊子集3.编辑模糊控制规则4.观测模糊推理过程。

智能控制技术实验报告

智能控制技术实验报告

《智能控制技术》实验报告书学院:专业:学号:姓名:实验一:模糊控制与传统PID控制的性能比较一、实验目的通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。

二、实验内容本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。

主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。

通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。

这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。

设计系统的模糊控制,并与传统的PID控制的性能进行比较。

三、实验原理、方法和手段1.实验原理:1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d;2)根据模糊控制规则,编写模糊控制器。

2.实验方法和手段:1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001;2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8;3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt其中积分项用于消除控制系统的稳态误差。

4)模糊控制规则如表1-1所示:在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。

当Nd=0时,表示系统不存在纯延迟。

5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,并记录仿真结果,对结果进行分析。

基于人工智能的工业机器人控制实验报告

基于人工智能的工业机器人控制实验报告

基于人工智能的工业机器人控制实验报告一、实验目的随着科技的不断发展,人工智能在工业领域的应用越来越广泛。

本次实验的主要目的是探究基于人工智能的工业机器人控制技术,通过实验分析其性能和优势,为工业生产中的机器人应用提供参考和改进方向。

二、实验设备与环境(一)实验设备1、工业机器人本体:选用了_____品牌的六轴工业机器人,具有较高的精度和灵活性。

2、控制系统:采用了基于人工智能算法的控制系统,具备强大的计算和处理能力。

3、传感器:包括视觉传感器、力传感器等,用于获取机器人工作环境和操作对象的信息。

(二)实验环境1、实验室空间:面积约为_____平方米,具备良好的通风和照明条件。

2、工作平台:定制的机器人操作平台,能够满足不同实验任务的需求。

三、实验原理人工智能在工业机器人控制中的应用主要基于机器学习和深度学习算法。

通过对大量数据的学习和训练,机器人能够自主地识别和理解工作任务,规划最优的运动路径,并根据实时反馈进行调整和优化。

在本次实验中,采用了监督学习的方法,利用标记好的训练数据对机器人的控制模型进行训练。

训练数据包括机器人的运动轨迹、操作对象的特征以及环境信息等。

通过不断调整模型的参数,使其能够准确地预测和控制机器人的动作。

四、实验步骤(一)数据采集首先,在不同的工作场景下,收集机器人的运动数据、操作对象的特征以及环境信息等。

通过传感器和测量设备,确保数据的准确性和完整性。

(二)数据预处理对采集到的数据进行清洗、筛选和预处理,去除噪声和异常值,将数据转换为适合机器学习模型的格式。

(三)模型训练使用预处理后的数据,对基于人工智能的控制模型进行训练。

选择合适的算法和参数,如神经网络的层数、节点数等,通过多次迭代训练,不断优化模型的性能。

(四)模型评估使用测试数据集对训练好的模型进行评估,计算模型的准确率、召回率等指标,评估模型的性能和泛化能力。

(五)实验操作将训练好的模型部署到工业机器人控制系统中,进行实际的操作实验。

智能控制实验报告

智能控制实验报告

智能控制仿真实验实验一模糊控制系统的仿真实验实验二 BP神经网络的仿真实验实验三遗传算法仿真实验实验四智能控制实际工程处理(选做)实验一模糊控制系统的仿真实验实验目的:现有被控对象一:G(s)=1/(s2+2s+1)被控对象二:G(s)=K /【(T1s+1)(T2s+1) 】试设计一个模糊控制系统来实现对它的控制,并完成以下任务实验任务一:请根据以上的数据重新仿真一下,看Ke的变化对系统性能的影响是否如此?然后仍以G(s)=1/(s2+2s+1) 为被控对象,按照同样的方法仿真并分析Kc、Ku的变化对系统性能的影响。

1.相同参数不同控制器解模方法下的图形BISECTORMOMSOMLOM2.不同参数相同解模方法下的图形(解模方法均为BISECTOR)(1)Ke的影响(Kc=5,Ku=8)Ke=1(2)Kc的影响(Ke=9,Ku=8)Kc=1(3)Ku的影响(Ke=9,Kc=5)Ku=1小结:由以上图形分析可得,不同的解模方法输出的结果不同,经比较BISECTOR 的解模方法更加合适。

参数Kc、Ku不变时,随着Ke的减小,上升时间将增大;Ke、Ku不变时,随着Kc的减小超调变大;Ke、Kc不变时随着Ku的减小,输出越来越低于1。

可知Ke=9、Kc=5、Ku=8更为合适。

实验任务二:仍使用以上设计的模糊控制器,被控对象为: G(s)=K /【(T 1s+1)(T 2s+1)】 ,被控对象的参数有以下四组: 第一组参数: G(s)=20/【(1.2s+1)(4s+1)】 第二组参数: (s)=20/【(0.4s+1)(4s+1)】 第三组参数: G(s)=20/【(2s+1)(4s+1)】 第四组参数: G(s)=20/【(2s+1)(8s+1)】请根据由任务一得到的Ke 、Kc 、Ku 的变化对系统性能影响的规律,选择第一组参数作为被控对象参数,调试出适合该系统的最佳的Ke 、Kc 、Ku 和反模糊化方法;并在你调出的最佳的Ke 、Kc 、Ku 状态下,将对象参数分别变成第二、三、四组的参数,仿真出结果,并分析fuzzy controller 的适应能力。

智能控制系统设计实验报告

智能控制系统设计实验报告

智能控制系统设计实验报告
一、实验目的
本次实验旨在通过设计一个智能控制系统,探索智能控制系统的基本原理和设计方法,提高学生对自动控制理论的理解与应用能力。

二、实验内容
1. 确定控制对象:选择一具体的控制对象,如温度、湿度等;
2. 确定控制策略:根据控制对象的特性和要求,确定相应的控制策略;
3. 确定控制传感器和执行器:根据控制对象和控制策略的要求,选取合适的传感器和执行器;
4. 设计智能控制算法:设计并实现智能控制系统的算法;
5. 搭建实验平台:将传感器、执行器和控制算法结合起来,搭建出一个完整的智能控制系统。

三、实验步骤
1. 确定控制对象和控制要求:选择温度作为控制对象,控制范围在20-30摄氏度之间;
2. 确定控制策略:采用PID控制策略进行温度控制;
3. 确定传感器和执行器:选择温度传感器和风扇作为传感器和执行器;
4. 设计智能控制算法:编写PID控制算法;
5. 搭建实验平台:将温度传感器、风扇和控制算法连接起来,搭建出一个完整的智能控制系统。

四、实验结果
经过实验,我们成功搭建了一个智能控制系统,并实现了对温度的精确控制。

实验结果表明,采用PID控制策略的智能控制系统具有快速响应、稳定性好等优点,能够有效控制温度在目标范围内波动。

五、实验总结
本次实验通过设计智能控制系统,使学生深入了解了自动控制理论的基本原理和设计方法,提高了学生的实践能力和创新能力。

希望通过本次实验,同学们能够进一步巩固自动控制理论知识,为今后的学习和科研打下坚实的基础。

智能控制技术实验报告

智能控制技术实验报告

《智能控制技术》学院:专业:学号:姓名:通过本实验的学习,使学生了解传统 PID 控制、含糊控制等基本知识,掌握 传统 PID 控制器设计、含糊控制器设计等知识,训练学生设计控制器的能力, 培养他们利用 MATLAB 进行仿真的技能,为今后继续含糊控制理论研究以及控 制仿真等学习奠定基础.本实验主要是设计一个典型环节的传统 PID 控制器以及含糊控制器,并对 他们的控制性能进行比较。

主要涉及自控原理、计算机仿真、智能控制、含糊控 制等知识。

通常的工业过程可以等效成二阶系统加之一些典型的非线性环节,如死区、饱 和、纯延迟等。

这里,我们假设系统为: H(s)=20e 0.02s / (1 。

6s 2+4.4s+1)控制执行机构具有 0.07 的死区和 0 。

7 的饱和区,取样时间间隔 T=0.01. 设计系统的含糊控制,并与传统的 PID 控制的性能进行比较。

1)对典型二阶环节,根据传统 PID 控制,设计 PID 控制器,选择合适的 PID 控制器参数 k p 、k i 、k d ;2)根据含糊控制规则,编写含糊控制器.1)在 PID 控制仿真中,经过子细选择,我们取 k p =5,k i =0 。

1,k d =0.001; 2)在含糊控制仿真中,我们取 k e =60,k i =0 。

01 ,k d =2.5,k u =0.8 ; 3)含糊控制器的输出为:u= k u ×fuzzy(k e ×e, k d ×e ’)-k i × ∫edt其中积分项用于消除控制系统的稳态误差。

4)含糊控制规则如表 1— 1 所示:在 MATLAB 程序中, Nd 用于表示系统的纯延迟 (Nd=t d /T),umin 用于表示控 制的死区电平, umax 用于表示饱和电平.当 Nd=0 时,表示系统不存在纯延迟。

5)根据上述给定内容,编写PID 控制器、含糊控制器的MATLAB 仿真程序, 并记录仿真结果,对结果进行分析。

智能控制实验报告

智能控制实验报告

智能控制实验报告智能控制实验报告导言随着科技的不断进步,智能控制技术在各个领域得到了广泛应用。

本实验旨在通过设计一个智能控制系统,探索智能控制在现实生活中的应用和优势。

实验目的本实验的主要目的是设计一个基于智能控制的系统,并通过实际操作验证其性能和可行性。

通过这个实验,我们可以更好地理解智能控制技术的原理和应用。

实验原理智能控制是一种基于人工智能和控制理论的技术,它可以根据外部环境的变化自主地调整系统的工作状态。

智能控制系统通常由传感器、执行器和控制器三个主要部分组成。

传感器用于感知外部环境的信息,并将其转化为电信号。

执行器根据控制器的指令,将电信号转化为相应的动作。

控制器是整个系统的核心,它通过分析传感器的数据,制定相应的控制策略,并将指令发送给执行器。

实验步骤1. 确定实验对象:在本实验中,我们选择了一个智能家居系统作为实验对象。

这个系统包括温度传感器、灯光执行器和空调执行器。

2. 设计控制策略:根据实验要求,我们需要设计一个控制策略,使得系统能够根据室内温度自动调整灯光和空调的状态。

我们可以通过编程来实现这个控制策略。

3. 搭建实验平台:将传感器和执行器与控制器连接起来,搭建一个完整的智能家居系统。

4. 进行实验:通过调整室内温度,观察系统对温度变化的响应,并记录实验结果。

实验结果经过实验,我们发现智能家居系统能够根据室内温度自动调整灯光和空调的状态。

当室内温度升高时,系统会自动调高空调的温度设置,并适当调暗灯光,以保持室内舒适度。

当室内温度下降时,系统会相应地调低空调的温度设置,并适当增加灯光亮度。

讨论与分析通过这个实验,我们可以看到智能控制技术在智能家居系统中的应用潜力。

智能家居系统可以根据室内环境的变化自动调整设备的工作状态,提高生活的便利性和舒适度。

此外,智能控制技术还可以节约能源,减少能源的浪费。

然而,智能控制技术也存在一些挑战和限制。

首先,系统的准确性和可靠性需要得到保证,避免出现误操作或故障。

智能控制实验报告1

智能控制实验报告1

智能控制实验报告实验题目: 模糊控制器设计学院: 电气工程学院班级:姓名:学号:实验题目: 模糊控制器设计实验目的: 1.熟悉和掌握模糊控制器的结构、原理及应用;2、熟练应用MATLAB软件, 进行模糊控制的Matlab仿真。

实验原理:在Simulink环境下对PID控制系统进行建模:对模糊控制系统的建模关键是对模糊控制器的建模。

Matlab软件提供了一个模糊推理系统(FIS)编辑器, 只要在Matlab命令窗口键入Fuzzy就可进入模糊控制器编辑环境。

模糊推理系统编辑器用于设计和显示模糊推理系统的一些基本信息, 如推理系统的名称, 输入、输出变量的个数与名称,模糊推理系统的类型、解模糊方法等。

实验仪器: 计算机MATLAB软件实验步骤:打开模糊推理系统编辑器, 在MATLAB的命令窗(command window)内键入:fuzzy命令, 弹出模糊推理系统编辑器界面, 如下图所示:在FIS编辑器界面上, 执行菜单命令“Edit”-> “Add Variable”->“Input”, 加入新的输入input, 如下图所示:选择input(选中为红框), 在界面右边文字输入处键入相应的输入名称, 例如温度输入用tmp-input, 磁能输入用mag-input, 如下图所示:双击所选input, 弹出一新界面, 在左下Range处和Display Range处, 填入取值范围, 例如0至9(代表0至90);在右边文字输入Name处, 填写隶属函数的名称, 例如lt或LT(代表低温);在Type处选择trimf(意为: 三角形隶属函数曲线, triangle member function)在Params(参数)处, 选择三角形涵盖的区间, 填写三个数值, 分别为三角形底边的左端点、中点和右端点在横线上的值如下图中所示:用鼠标左键双击输入变量, 弹出输入变量的隶属函数编辑器, 执行菜单命令“Edit”-> “Remove All MFs”, 然后执行菜单命令“Edit”-> “Add MFs”, 弹出“Membership Function”对话框, 将隶属函数的类型设置为“trimf”,并修改隶属函数的数目为3, 如图所示, 单击“OK”按钮返回。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《智能控制技术》实验报告书学院:专业:学号:姓名:实验一:模糊控制与传统PID控制的性能比较一、实验目的通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。

二、实验内容本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。

主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。

通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。

这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1)控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。

设计系统的模糊控制,并与传统的PID控制的性能进行比较。

三、实验原理、方法和手段1.实验原理:1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID控制器参数k p、k i、k d;2)根据模糊控制规则,编写模糊控制器。

2.实验方法和手段:1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001;2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8;3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt其中积分项用于消除控制系统的稳态误差。

4)模糊控制规则如表1-1所示:在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin 用于表示控制的死区电平,umax用于表示饱和电平。

当Nd=0时,表示系统不存在纯延迟。

5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,并记录仿真结果,对结果进行分析。

表1-1 FC的模糊推理规则表四、实验组织运行要求根据本实验的综合性、设计性特点以及要求学生自主设计MATLAB 仿真程序的要求以及我们实验室的具体实验条件,本实验采用以学生自主训练为主的开放模式组织教学。

五、实验条件1.装有MATLAB6.5的计算机;2.智能控制技术教材;3.模糊控制教材;4.智能控制技术实验指导书。

六、实验步骤1.学生熟悉实验内容,并根据实验内容、实验要求,查阅、学习相关知识;2.设计典型二阶环节的PID控制器以及模糊控制器;3.编写MATLAB仿真程序4.上机调试程序,修改程序修改控制器的参数等;5.对实验程序仿真,并记录仿真结果;6.对实验结果进行分析,书写实验报告书。

七、实验程序num=20;den=[1.6,4.4,1];[a1,b,c,d]=tf2ss(num,den);%将传递函数转化为状态模型 x=[0;0];T=0.01;h=T; %T为采样时间umin=0.07;umax=0.7;td=0.02;Nd=td/T; %Nd延迟时间N=500;R=1.5*ones(1,N);%参考值e=0; de=0;ie=0;kp=5;ki=0.1;kd=0.001; %设定的比例,积分,微分常数 for k=1:Nuu1(1,k)= -(kp*e+ki*ie+kd*de);%控制量生成if k<=Nd %纯延迟u=0;elseu=uu1(1,k-Nd);endif abs(u)<=umin%死区和饱和环节u=0elseif abs(u)>umaxu=sign(u)*umax;end%龙格-库塔算法求对象的输出k1=a1*x+b*u;k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2/2)+b*u;k4=a1*(x+h*k3)+b*u;x=x+(k1+2*k2+2*k3+k4)*h/6;y=c*x+d*u;%计算误差.微分和积分e1=e;e=y(1,1)-R(1,k);de=(e-e1)/T;ie=e*T+ie;yy1(1,k)=y;end;kk=[1:N]*T;figure(1);plot(kk,yy1);a=newfis('simple');% 建立模糊推理系统a=addvar(a,'input','e',[-6 6]);%增加第一个输入变量ea=addmf(a,'input',1,'NB','trapmf',[-6 -6 -5 -3]);%添加隶属函数a=addmf(a,'input',1,'NS','trapmf',[-5 -3 -2 0]);a=addmf(a,'input',1,'ZR','trimf',[-2 0 2]);a=addmf(a,'input',1,'PS','trapmf',[0 2 3 5]);a=addmf(a,'input',1,'PB','trapmf',[3 5 6 6]);a=addvar(a,'input','de',[-6 6]);%增加第二个输入变量ea=addmf(a,'input',2,'NB','trapmf',[-6 -6 -5 -3]); %添加隶属函数a=addmf(a,'input',2,'NS','trapmf',[-5 -3 -2 0]);a=addmf(a,'input',2,'ZR','trimf',[-2 0 2]);a=addmf(a,'input',2,'PS','trapmf',[0 2 3 5]);a=addmf(a,'input',2,'PB','trapmf',[3 5 6 6]);a=addvar(a,'output','u',[-3 3]);%添加输出变量ua=addmf(a,'output',1,'NB','trapmf',[-3 -3 -2 -1]);%添加隶属函数a=addmf(a,'output',1,'NS','trimf',[-2 -1 0]);a=addmf(a,'output',1,'ZR','trimf',[-1 0 1]);a=addmf(a,'output',1,'PS','trimf',[0 1 2]);a=addmf(a,'output',1,'PB','trapmf',[1 2 3 3]);%建立模糊规则矩阵rr=[5 5 4 4 3;5 4 4 3 3;4 4 3 3 2;4 3 3 2 2;3 3 2 2 1];r1=zeros(prod(size(rr)),3);%得到一个25X3的0阶矩阵k=1;for i=1:size(rr,1)for j=1:size(rr,2)r1(k,:)=[ i,j,rr(i,j)];k=k+1;endend[r,s]=size(r1);r2=ones(r,2);rulelsit=[r1,r2];a=addrule(a,rulelsit);%rulelist 为25X(2+1+2)矩阵,每一行代表一个规则,某一%行的前2列为输入,接着一列为输出,最后两列为控制所有均%为1e=0;de=0;ie=0;x=[0;0];ke=60;kd=2.5;ku=0.8;%定义e de u的量化因子for k=1:Ne1=ke*e;de1=kd*de;if e1>=6e1=6;elseif e1<-6e1=-6;endif de1>=6de1=6;elseif de1<-6de1=-6;endin=[e1 de1];uu(1,k)=ku*evalfis(in,a); if k<=Ndu=0;elseu=uu(1,k-Nd);endif abs(u)<=uminu=0elseif abs(u)>umaxu=sign(u)*umax;end%龙格-库塔算法求对象的输出k1=a1*x+b*u;k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2/2)+b*u;k4=a1*(x+h*k3)+b*u;x=x+(k1+2*k2+2*k3+k4)*h/6;y=c*x+d*u;e1=e;e=y-R(1,k);de=(e-e1)/T;ie=ie+e*T;yy(1,k)=y;end%绘制结果曲线kk=[1:N]*T;figure(1);plot(kk,R,'k',kk,yy,'r',kk,yy1,'b'); xlabel('时间(0.01秒)');ylabel('输出');gtext('模糊控制');gtext('PID控制');%end八、实验结果九、思考题1.模糊控制器的控制性能是否一定优于传统PID控制器?不一定,若要求反应速度那么可以选择模糊控制方式。

若要求控制精度高则可以选择pid方式2.如果选用模糊控制工具箱,如何进行设计、仿真?答:在matlab的主窗口中输入fuzzy即可调出模糊工具箱界面,退出界面的时候会提示保存,保存格式为fis,如果我们将文件保存为njust.fis,那么下次使用这个文件的时候在主窗口中输入fuzzy njust即可。

模糊控制器的建立过程如下:(1)设定误差E、误差变化率EC和控制量U的论域为,一般为[-6 6]。

(2)设定E、EC、U的模糊集。

一般可设为{NB、NM、NS、ZO、PS、PM、PB}。

(3)设定隶属度函数。

有高斯型隶属度函数、三角型隶属度函数等。

(4)设定模糊控制规则。

常用的模糊控制规则如图1所示,当然可以根据特定的控制对象和要求进行相应的调整。

实验二:神经元自适应PID控制仿真研究一、实验目的通过本实验的学习,使学生了解传统PID控制、神经元自适应控制等基本知识,掌握传统PID控制器设计、掌握基于二次型性能指标学习算法的单神经元自适应PID控制等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续神经网络控制理论的研究以及控制仿真等学习奠定基础。

相关文档
最新文档