侧视雷达图像的几何特征

侧视雷达图像的几何特征
侧视雷达图像的几何特征

3.2.3 侧视雷达图像的几何特征

侧视雷达图像在垂直飞行方向(y)的像点位置是以飞机的目标的斜距来确定,见图3-27所示,称之为斜距投影。图像点的斜距算至地面距离为:

(3-17)

飞行方向(x)则与推扫式扫描仪同。由于斜距投影的特性,产生以下几种图像的几何特点:

1、垂直飞行方向(y)的比例尺由小变大,见图3-28所示。地面上有A、B、C 三段距

图3-27斜距投影

离相等,投影至雷达图像上为a、b、c。由于c>b>a,因此。显然这是由于com的作用造成的。从图3-27中可知:地面上AB线段投影到影

像上为ab,比例尺为:(3-18)

弧线Aaˊ┴SB。假定:弧线近假为直线段,并且∠AaˊB也近似为直角。

变成通式(3-19)

考虑到实测的斜距是按比例尺缩小为影像,因此在侧视方向上的比例尺为:

(3-20)

可见,°,cos,即趋于0°时比例尺大,而°,cos,即趋于90°时比例尺小。

2、山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。如图3-29所示,地物点AC之间的山坡在雷达

图3-28 侧视雷达影像的比例尺

图像上被压缩,在中心投影像片上是拉伸,CD之间的山坡出现的现象正好相反。地物点A和B在雷达图像上出现重影,在中心投影像片中不会出现这种现象。

图3-29重影现象

3、高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不同。见图3-30所示。

投影差(3-21)

而(3-22)

图3-30投影差

由于

所以取(3-23)

当△h>0时,也大于0为正值,反之为负值。投影差改正时用加法:

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

雷达原理复习

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB的工作频带宽度。 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发

实验三 遥感图像的几何校正

实验法三遥感图像的几何校正 一实验目的 通过实验操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 二实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下: 表1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图像选择3次方。次方数与所需要的最

雷达图像 处理

与光学图像相比,SAR图像视觉可读性较差,并且受到相干斑噪声及阴影、透视收缩、迎坡缩短、顶底倒置等几何特征的影响。因此对SAR雷达图像的图像增强与边缘检测将有别于一般的光学图像。 首先,图像增强技术是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,它是一种将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,使之改善图像质量,丰富信息量,加强图像判读和识别效果的图像处理方法。从纯技术上讲,图像技术分为频域处理法和空域处理法。 空域图像增强是直接对图像中的像素进行处理,基本上是以灰度影射变化为基础的,所用的影射变换取决于增强的目的。具体来说,空域法包括点运算和模板处理,其中点运算时针对每个像素点进行处理的,与周围的像素点无关。空域增强方法大致分为3种,它们分别是用于扩展对比度的灰度变换、清除噪声的各种平滑方法和增强边缘的各种锐化技术。灰度变换主要利用点运算来修改图像像素的灰度,是一种基于图像变换的操作;而平滑和锐化都是利用模板来修改像素灰度,是基于图像滤波的操作。 频域处理法的基础是卷积定理。传统的频域法是将需要增强的图像进行傅里叶变换或者离散余弦变换,或者是小波变换,然后将其与一个转移函数相乘,再将结果进行反变换得到增强的图像。 在空域图像增强中,形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的,利用不同的数学形态学变换滤波方法在对S AR图像直接进行平滑滤波的应用中取得较好的结果。算法简单,物理意义明显。 形态学的基本思想是使用具有一定形态的结构元素度量和提取图像中的对应形状,从而达到图像进行分析和识别的目的。由于形态学算子实质上是表达物体或形状的集合与结构元素之间的相互作用,结构元素的形态就决定了这种运算所提取的信号的形态信息。因此数学形态学对信号的处理具有直观上的简单性和数学上的严谨性,在描述信号形态特征上具有独特的优势。同时,形态学中的形态滤波器可借助于先验的几何特征信息,利用形态学算子有效地滤除噪声,又保留图像中的原有信息。因此在图像平滑滤波、分割、识别、形状描述等方面得到了广泛的应用,它最显著的特点是直接处理图像表面的几何形状,具有快速、健壮和精确的特性。 本文将开运算和闭运算的另外一种组合方法——交替顺序滤波运用到s AR图像增强处理中。它是用一系列不断增大的结构元素来执行开闭滤波。具体过程如下:本文开始使用的是一个2 ×2较小的结构元素,然后增加其大小,直到其大小与获得单个开闭滤波器最佳效果所用的3 ×3结构元素的大小相同为止。 在频域图像增强中,小波变换的时域与频域是具有多分辨率的时频分析方法,我们可以利用它的这个特性来对信号做高通滤波和低通滤波,得到原始信号的逼近信号和细节信号。对一幅图像sar进行基于小波变换的增强处理,主要步骤:1、对图像用mallat快速算法进行小波分解;2、选取增强系数;3、对处理后的小波系数进行小波逆变换,得到增强图像。多尺度积用于图像边缘检测。但小波变换各向同性的性质导致方向选择性差,不能有效地捕捉轮廓信息。 其次图像边缘检测边缘的种类分为两种,一种为阶跃性边缘,它两边的像素的灰度值有着显著的不同;另一种成为屋顶状边缘,它位于灰度值从增加到减少的变化转折点。边缘特征提取的常用方法有Sobel算子和Cannny算子,其中canny算子对高斯加性噪声有一定的抑制作用,提取的边缘方向和位置信息比较准确,但是SAR的噪声为Gamma分布的乘性噪声,

ERDAS遥感图像的几何校正

遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作如下:ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:tmatlanta.img 在Viewer2中打开作为地理参考的校正过的SPOT图像:panatlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框,如图2

幼儿认识几何形体有以下几个特点

7幼儿认识几何形体有以下几个特点: (1)幼儿认识几何形体要经历一个由粗略到精细的过程 (1)幼儿认识几何形体易受他们生活经验的影响 (2)平面图形和几何体容易混淆 (3)认识几何形体受摆放位置的影响。 8认识平面图形的教学要求: 小班: (1)使幼儿初步认识圆形,正方形,三角形,看到图形能叫出名称,按名称能找出图形(2)使幼儿不受几何形体的颜色,大小的影响,会按圆形,正方形,三角形进行分类。(3)使幼儿知道正方形有4条边,4个角;三角形有3条边,3个角。 中班: (1)认识长方形,椭圆形,梯形,能区分正方形和长方形,圆形和椭圆形,长方形和梯形。 (2)不受形体的颜色,大小以及摆放位置的影响 (3)能运用学过的平面图形进行简单的拼合活动 9认识平面图形的教学方法: (1)从观察物体到逐步抽象出平面图形 (2)在操作中巩固对图形的认识 (3)通过平面图形的分解和组合,初步认识图形之间的关系。 10教幼儿观察图形时要注意以下几点: (1)选用适当的教具 (2)幼儿在观察过程中,不仅让幼儿看,还应让亲自动手摸摸 (3)注意数与形适当结合 (4)着重通过直观使幼儿对图形特征形成表象,不要自编定义叫死记硬背。 11幼儿园常见的操作活动有以下几种: (1)拼合平面图形 (2)给平面图形涂色 (3)用平面图形拼成物体的形象 (4)对平面图形进行分类 (5)分割平面图形 (6)比较平面图形的形状 (7)数图案中各种平面图形的数量 12认识几何体的教学方法: (1)观察几何体的主要特征 (2)比较平面图形和几何体 (3)自制几何体,巩固对几何体特征的认识 13等分的教学方法:(教幼儿二等分,四等分。) 第八章认识空间方位和时间的教学 1日常生活中的位置定向包括以下三方面的内容: (1)主体对它周围客体的相对位置 (2)周围物体对主体的相对位置 (3)各个物体相互之间的空间位置 2幼儿空间方位知觉发展的特点:

侧视雷达图像的几何特征

3.2.3 侧视雷达图像的几何特征 侧视雷达图像在垂直飞行方向(y)的像点位置是以飞机的目标的斜距来确定,见图3-27所示,称之为斜距投影。图像点的斜距算至地面距离为: (3-17) 飞行方向(x)则与推扫式扫描仪同。由于斜距投影的特性,产生以下几种图像的几何特点: 1、垂直飞行方向(y)的比例尺由小变大,见图3-28所示。地面上有A、B、C 三段距 图3-27斜距投影 离相等,投影至雷达图像上为a、b、c。由于c>b>a,因此。显然这是由于com的作用造成的。从图3-27中可知:地面上AB线段投影到影 像上为ab,比例尺为:(3-18) 弧线Aaˊ┴SB。假定:弧线近假为直线段,并且∠AaˊB也近似为直角。

则 变成通式(3-19) 考虑到实测的斜距是按比例尺缩小为影像,因此在侧视方向上的比例尺为: (3-20) 可见,°,cos,即趋于0°时比例尺大,而°,cos,即趋于90°时比例尺小。 2、山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。如图3-29所示,地物点AC之间的山坡在雷达 图3-28 侧视雷达影像的比例尺 图像上被压缩,在中心投影像片上是拉伸,CD之间的山坡出现的现象正好相反。地物点A和B在雷达图像上出现重影,在中心投影像片中不会出现这种现象。

图3-29重影现象 3、高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不同。见图3-30所示。 投影差(3-21) 而(3-22)

图3-30投影差 由于 所以取(3-23) 当△h>0时,也大于0为正值,反之为负值。投影差改正时用加法:

雷达原理第三章

第三章雷达接收机 通过适当的滤波将天线上接收到的微弱高频信号从噪声和干扰中选择出来,并经放大和检波后,送至显示器、信号处理器或由计算机控制的雷达终端设备中。 第一节雷达接收机的组成和 主要质量指标 超外差接收机的组成 接收机保护器 低噪高放 混频器 中放 检波器 视放 本振 高频输入 至终端 高频部分 发射机工作时,使接收机输入端短路,并对大信号限幅保护 提高灵敏度,降低接收机噪声系数,热噪声增益 保证本振频率与 发射频率差频为中频,实现变频 视频部分 至质量指标部分 超外差技术 如上图所示,当接收的电波频率f RF 变化时,本振频率f L 和选频滤波器的中心频率f 0= f RF 能够同步改变,从而使输出的f IF 固定不变,这种技术称为外差技术,当f IF 低于f RF 而高于信号带宽B 时就称为超外差技术。超外差技术具有灵敏度高、选择性好、工作稳定、中频部分可标准化等优点。 选频滤波 混频器 本振滤波解调滤波 无线电波 解调输出f L f IF f RF 返回框图 高频部分: (1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。 (2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。 (3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。 返回框图

中频部分及AGC: (1)匹配滤波: (2)AGC:auto gain control. 视频部分: (1)检波:包络检波,同步(频)检波(正交两路),相位检波。 (2)放大:线性放大,对数放大,动态范围。 返回框图 主要质量指标 1.灵敏度:S imin,用最小可检测信号功率S imin表示,检测灵敏度,给定虚警概率P fa,达到指定检测概率P d 时的输入端的信号功率: 通常所需接收机gain= 120 ~ 160 dB, S imin=-120~-140dbw 主要由中频完成。 2. 工作频带宽度:指瞬时工作频率范围,频率捷变雷达要求的接收机工作频带宽度为10~20% 。 3.动态范围:表示接收机能够正常工作所允许的输入信号强度的变化范围。 过载时的S i/S i min,80~120 dB 4. 中频的选择与滤波特性: 中频输出频率f o≥0.5?f R ,中频选择通常选择30M~500M。抑制镜频的效果,在实际工作中还与发射波形特性、接收机工作带宽有关。 经混频后进入中频信道的两个信号在射 频上对称地位于本振频率f L两边互为镜 像,因此将这种现象称为镜频干扰。当 射频选频滤波器的选频特性一定时,混 频器输出的中频频率越高,两个镜像频 率间相隔越远,镜频抑制的效果越好。5.工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度较高的本振,“稳定本振”。 6.抗干扰能力:杂波干扰(MTI,MTD)、有源干扰、假目标干扰。 7.微电子化和模块化结构。MMIC 微波单片集成电路、IMIC 中频单片集成电路、ASIC 专用集成电路。

遥感图像的几何校正实验报告

实验报告 实验名称:遥感图像的几何校正课程名称:《遥感导论》 教师: 院系:矿业工程学院 班级: 姓名:

遥感图像的几何校正实验报告 一、实验目的 通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。 二、实验环境 操作系统:windows 8.1 软件:ENVI 4.3 三、实验内容 ERDAS 软件中图像预处理模块下的图像几何校正 几何校正的必要性: 由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。 几何校正的原理: 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。 在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'2 5243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图 像坐标的关系,从而对图像进行几何校正。 实验步骤: 运行ENVI 软件

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

浅析遥感图像的几何校正原理及方法

浅析遥感图像的几何校正原理及方法 摘要:几何校正,就是清除遥感图像中的几何变形,是遥感影像应用的一项重要的前期处理工作。本文简单分析了几何校正的原理和基本方法,并以ERDAS软件为例,对青海海东地区遥感影像进行了几何校正,从而直观地表述了遥感图像几何校正的完整过程。结果表明,几何校正的精度受多方面因素影响,最主要的是控制点GCP的选取数量和选取位置。本次校正精度小于0.5个像元,符合要求。 关键词:遥感、ERDAS、几何校正、GCP 引言:遥感20世纪60年代发展起来的对地观测综合性技术。狭义遥感指从远距离、高空,以至外层空间的平台上,利用可见光、红外、微波等遥感器, 通过摄影、扫描等各种方式,接收来自地球表层各类地物的电磁波信息,并对这些信息进行加工处理,从而识别地面物质的性质和运动状态的综合技术。遥感已然成为地理数据获取的重要工具。但是遥感技术的成图规律决定了遥感图像不能直接被应用,因为遥感图像在成像时, 由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响, 使得遥感图像存在一定的几何变形[2] , 即图像上的像元在图像坐标系中的坐标与其在地图坐标系等参考坐标系统中的坐标之间存在差异, 其主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲[3] 。而且随着当今遥感技术的飞速发展,人们对遥感数据的需求也多源化,它们可以是来自不同的波段, 不同的传感器, 不同的时间。这些多源数据在使用时, 必须具有较高的空间配准精度。这就需要对原始影像进行高精度的几何校正。因此, 几何校正是遥感影像应用的一项重要的前期处理工作。 ERDAS IMAGINE 是美国ERDAS 公司开发的遥感图像处理系统,它以先进的图像处理技术友好灵活的用户界面和操作方式、面向广阔应用领域的产品模块、服务于不同层次用户的模型开发工具以及高度RS/GIS 集成功能为遥感及相关应用领域的用户提供内容丰富且功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势[5]。基于此软件强大的功能性和灵活的操作性,本文采用erdas软件对海东地区影像图进行几何纠正。 2 研究区概况与研究方法 海东地区位于青海省东北部,"海东"以位于青海湖东而得名。地处祁连山支脉大板山南麓和昆仑山系余脉日月山东坡,属于黄土高原向青藏高原过渡镶嵌地带,海拔在1650~2835米之间。境内山峦起伏,沟整纵横,气候属于高原气候,高寒、干旱、日照时间长,太阳辐射强,昼夜温差大。年平均气温6.9℃,年均降水量为323.6 毫米,总蒸发量为1644毫米。本文采用校正过的2004年的海东地区参考影像对2009年对应影像进行校正。 3 几何校正的原理与方法 遥感图像几何校正包括光学校正和数字纠正。本文主要介绍数字纠正。 数字纠正是通过计算机对图像每个像元逐个地解析纠正处理完成的,其包括两方面,一是像元坐标变换,二是像元灰度值重新计算(重采样)。 (三) 数字图像灰度值的重采样 校正前后图像的分辨率变化、像元点位置相对变化引起输出图像阵列中的同名点灰度值变化,如图3所示

实验一 图像统计特征及图像几何变换

实验一图像统计特征及图像几何变换 一、实验目的 1)掌握MATLAB语言中图像数据与信息的读取方法; 2)掌握图像的基本类型,了解常用图像格式及类型之间的转换; 3)掌握图像的典型统计特征计算方法; 4)掌握在MATLAB中绘制灰度直方图的方法; 5)掌握图像典型几何变换的计算方法; 6)掌握计算机的使用方法和常用系统软件及应用软件的使用。 7)通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1. BMP图像及JPG图像的编码格式 1) BMP格式是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持,并被广泛应用。这种格式包含的图像信息较丰富,几乎不进行压缩,由此导致了它与生俱生来的缺点——占用磁盘空间过大。它有这样一些特点:只能存放一幅图像;只能存储四种图像数据:单色、16色、256色、真彩色;图像数据有压缩或不压缩两种处理方式;调色板的数据存储结构较为特殊,其存储格式不是固定的,而是与文件头的某些具体参数密切相关。 BMP图像文件的文件结构可分为三部分:表头、调色板和图像数据。表头固定54字节,只有真彩色BMP图像文件内没有调色板数据,其余不超过256种颜色的图像文件都必须设定调色板信息。调色板是包含不同颜色的颜色表,每一种颜色以红绿蓝三种颜色的组合来表示,图像每一像素对应一个数字,而该数字对应调色板中一种颜色,如某像素值为1,表示给颜色为调色板的编号为1的颜色。调色板的单元个数等于图像的颜色数。真彩色图像的每个像素值直接用RGB三个字节来表示颜色,不需要调色板。所谓16色或256色,只是表示该幅图像最多只能有16种颜色或256种颜色。 2) JPEG格式与JPEG2000格式:JPEG格式是常见的一种图像格式,由联合图像专家小组开发。它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,可用最少的磁盘空间得到较好的图像质量。JPEG格式具有调节图像质量的功能,允许用不同的压缩比例对这种文件压缩,比如可以把1.37MB的BMP位图文件压缩至20.3KB。实际使用中,需

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正 摘要 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。ERDAS IMAGINE是一款遥感图像处理系统软件。遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 关键词:遥感,erdas imagine,几何纠正

1.前言 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。ERDAS IMAGINE是一款遥感图像处理系统软件。ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。 遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。 遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。要在这样的遥感图像上进行研究,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 2.国内外发展状况 2.1国内发展状况

实验二遥感图像的几何校正与镶嵌实验报告

实验二遥感图像的几何校正与镶嵌实验报告 实验目的: 通过本实验熟练操作遥感图像处理的专业软件进行基础图像处理,包括图像几何校正、镶嵌等。 实验容: 1、熟悉图像几何校正、镶嵌的基本原理; 2、学习图像几何校正具体操作; 3、学习图像镶嵌正具体操作。 本实验的图像几何校正是通过“像图配准”的方式获取地面控制点的方里网坐标的,并对传统的从纸质地形图上量算坐标的方法进行改进,利用Auto CAD或Photoshop等软件从扫描后的电子地形图上直接量算坐标。 实验步骤: 第一步、熟悉图像几何校正、镶嵌的基本原理 第二步、图像几何校正 运行PCI,选择GCPWorks模块,在Source of GCPs选择User Entered Coordinates(用户输入投影坐标系统),点击Accept后,弹出校正模块: 选择第一项加载需要校正的图像(由实验一方法导出的125-42.pix)->点击

Default->Load & Close->得到下图: 选择第二项,选择Other确定投影系统: 注意输入6度带的中央经度与向东平移500公里(500000米):

点击Earth Model确定地球模型: 点击Accept:

选择第三项采集地面控制点。在采集地面控制点之前,利用Photoshop软件打开扫描后的电子地形图。 分别在遥感图像和地形图中找到一个同名点,如下图(可以用放大遥感图)。 然后在地形图中量算出该点的坐标,精确到米,X坐标为6位(要去掉2位6度带的带号),Y坐标7位(运用测出)。再将坐标输入到GCP编辑窗口中,并点击Accept as GCP接受为一个控制点。

一种合成孔径雷达图像特征提取与目标识别的新方法

第30卷第3期电子与信息学报Vol.30No.3 2008年3月 Journal of Electronics & Information Technology Mar.2008 一种合成孔径雷达图像特征提取与目标识别的新方法 宦若虹①②杨汝良①岳晋①② ①(中国科学院电子学研究所北京 100080) ②(中国科学院研究生院北京 100039) 摘 要:该文提出了一种利用小波域主成分分析和支持向量机进行的合成孔径雷达图像特征提取与目标识别的新方法。该方法对图像小波分解后提取低频子带图像的主成分分量作为目标的特征,利用支持向量机进行分类完成目标识别。实验结果表明,该方法可以明显提高目标的正确识别率,是一种有效的合成孔径雷达图像特征提取和目标识别方法。 关键词:合成孔径雷达;小波变换;主成分分析;支持向量机;识别 中图分类号:TN957.52 文献标识码:A 文章编号:1009-5896(2008)03-0554-05 A New Method for Synthetic Aperture Radar Images Feature Extraction and Target Recognition Huan Ruo-hong①②Yang Ru-liang①Yue-Jin①② ①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100080, China) ②(Graduate University of the Chinese Academy of Sciences, Beijing 100039, China) Abstract: This paper presents a new method for synthetic aperture radar images feature extraction and target recognition which based on principal component analysis in wavelet domain and support vector machine. After wavelet decomposition of a SAR image, feature extraction is implemented by picking up principal component of the low-frequency sub-band image. Then, support vector machine is used to perform target recognition. Results are presented to verify that, the correctness of recognition is enhanced obviously, and the method presented in this paper is a effective method for SAR images feature extraction and target recognition. Key words: Synthetic Aperture Radar (SAR); Wavelet transform; Principal Component Analysis (PCA); Support Vector Machine (SVM); Recognition 1引言 合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别是SAR图像解译和分析的重要组成部分,具有重要的商业和军事价值,是国内外SAR图像处理和模式识别领域的研究热点。特征提取是SAR图像目标识别过程中最重要的一步。为了得到可靠的目标识别结果,用于识别的特征必须在分类空间上具有良好的类内凝聚性和类间差异性[1]。目标识别过程的另一个关键步骤是分类方法的选择,分类方法性能的优劣,直接影响到最后的识别结果。 本文提出了一种利用小波域主成分分析(Principal Component Analysis,PCA)和支持向量机[2](Support Vector Machine,SVM)进行的SAR图像特征提取和目标识别方法。对小波分解得到的低频子带图像进行主成分分析[3]提取目标特征,得到的特征向量用支持向量机分类完成目标识别。用MSTAR数据对该方法进行验证,结果表明,该方法可以有效地提高目标的正确识别率。 2006-08-15收到,2007-01-05改回2目标识别步骤 本文的识别过程如图1所示由3个步骤组成:(1)图像预处理。对图像数据进行规则化调整。(2)特征提取。通过二维离散小波变换将图像变换到不同分辨率下的小波域;对低频子带图像进行主成分分析后提取主成分分量作为目标的特征向量。(3)利用支持向量机进行分类。在特征向量所形成的低维特征空间上完成目标识别并输出识别结果。 图1 识别过程框图 3图像预处理 3.1实验数据 本文使用的图像数据是MSTAR项目组公布的3类SAR 地面静止军用目标数据,包括装甲车BMP2,装甲车BTR70

遥感图像的几何校正实验报告

遥感图像的几何校正 一、实验目的 通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。 二、实验环境 操作系统:Windows Vista 软件:Erdas Imagine 8.4 三、实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正的必要性: 由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。 几何校正的原理: 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。 Erdas软件中提供了7中几何校正的模型,具体如下: 表 1 几何校正计算机模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Landsat卫星图像正射校正 Spot Spot卫星图像正射校正

在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数: 2 52 43210' 2 52 43210' y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=, 得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。 四、实验步骤 运行Erdas Imagine 软件 第一步:显示图像文件 1) 在Erdas 图标面板中单击Viewer 图标两次,打开两个视窗:Viewer 1和 Viewer 2; 2) 在Viewer 1视窗下打开需要校正的遥感影像wucesourse.img , 在Viewer 2 视窗下打开参考图像wucepoint.img ; 第二步:启动几何校正模块(Set Geometric Model ) 单击Viewer 1视窗菜单栏中的Raster →Geometric Correction →打开Set Geometric Model 对话框(见图1) →选择多项式几何校正模型 Polynomial →OK →打开Geometric Correction Tools 对话框(见图2)和Polynomial Model Properties 对话框(见图3) →在Polynomial Model Properties 对话框中定义多项式次方(Polynomial Order )为2(见图3) →单击Apply →单击Close →打开GCP Tool Reference Setup 对话框(见图4 ) 图1 Set Geometric Model 对话框 图2 Geometric Correction Tools 对话框

遥感图像几何精校正实验报告

遥感图像几何精校正 实验名称:遥感图像的几何精校正。 实验目的:1.了解和熟悉envi软件的几何校正的原理 2.熟悉和掌握envi软件的几何校正的功能和使用方法; 3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一 角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达 到消减以及消除遥感图像的几何畸变。 多项式几何校正激励实现的两大步: 1. 图像坐标的空间变换: 有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一 样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分 布。为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐 标系统的空间装换。 图1:图像几何校正示意图 在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元 n次多项式,表达式如下: 其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2, 3, ?。 二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应 不同坐标系统中的像元坐标。这是一种多项式数字模拟坐标变换的方法,一旦有 了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。 如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何 校正成败的关键。数学上有一套完善的计算方法,核心是通过已知若干存在于不 同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出 二元n次多项式系数。 不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的 像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间 坐标的完全配准,是需要考虑和分析的。 在二元n次多项式数字模拟中,从提高几何校正精度的角度考虑,需要兼顾的因素

相关文档
最新文档