(苏教版)七年级上学期期末考试数学试题
苏教版七年级上册数学期末试卷测试卷附答案
苏教版七年级上册数学期末试卷测试卷附答案一、选择题1 .下列各组单项式中,是同类项的一组是()2 .如图,点A 、。
、O 在一条直线上,此图中大于0。
且小于180。
的角的个数是()3 .如图,AB 〃CD, NBAP=6(T — a, ( )D. 30c22一,3.3O3OO3OOO3…,一区-053.14,其中是无理数有() 76 .在5x5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平 移方法是()7 .如图,若将三个含45。
的直角三角板的直角顶点重合放置,则N1的度数为()A. 3x 3y 与 3xy 3B. 2ab2与-3a2bC. a?与 b?D. 2xy 与3 yx A. 3个B. 4个c. 5个 D. 6个 A.1个 2x-l5.方程j —B. 2个3 -x c. 3个 D. 4个丁去分母后正确的结果是() OA. 2(2〜1) = 1 —(3 T) C. 2x - 1 = 8 - (3 -B. 2(2工-1) = 8 — (3— 幻ZAPC=500 +2a, NPCD 二30。
-a.则 a 为 C. 20°A.先向下移动1格,再向左移动1格: C.先向下移动2格,再向左移动1格:B.先向下移动1格,再向左移动2格D.先向下移动2格,再向左移动2格 4.下列四个数: 1525A. 15°B. 20°C. 25° D, 30°8 .若x>y,则下列式子错误的是()x yA. x - 3>y - 3B. - 3x> - 3yC. x+3>y+3D. —>y9 . 一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小 明同学在解此题的时候,设标价为X 元,列出如下方程:0.8x —20 = 0.6/+10.小明同 学列此方程的依据是()A.商品的利润不变 C.商品的成本不变10 .如图所示的几何体的左视图是()13. 一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()X X _X X _C. ---- 1— =5D. -------- 1 ---- = 520 420 + 4 20-414.如图1是AO 〃 8c 的一张纸条,按图1 -图2—图3,把这一纸条先沿所折叠并压 平,再沿8月折登并压平,若图3中NC 庄= 24。
苏教版七年级数学上册 期末试卷测试卷附答案
(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;
(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)
(1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)
②若线段 , 是线段 的“二倍点”,则 (写出所有结果)
(深入研究)
如图2,若线段 ,点 从点 的位置开始,以每秒2 的速度向点 运动,当点 到达点 时停止运动,运动的时间为 秒.
(2)问 为何值时,点 是线段 的“二倍点”;
(3)同时点 从点 的位置开始,以每秒1 的速度向点 运动,并与点 同时停止.请直接写出点 是线段 的“二倍点”时 的值.
33.先化简,再求值: ,其中 、 满足 与 互为相反数.
23.如图,一根绳子对折以后用线段 表示,在线段 的三等分点处将绳子剪短,若所得三段绳长的最大长度为 ,则这根绳子原长为________ .
24.若a-2b=1,则3-2a+4b的值是__.
25.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n) (其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=13,则: 若n=24,则第100次“F”运算的结果是________.
A.2.85×10 B.2.85×10 C.28.5×10 D.2.85×10
12.如图,OA方向是北偏西40°方向,OB平分∠AOC,则∠BOC的度数为()
最新苏教版七年级数学上册期末试卷(共4套)(含答案)
最新苏教版七年级数学上册期末试卷一、选择题(每小题3分,共36分)1、在下图的四个图形中,不能由左边图形经过旋转或平移得到的是( )2、在()()22007228,1,3,1,0,,53π--------中,负有理数共有( ) A .4个 B.3个 C.2个 D.1个3、b a 、两数在数轴上位置如图,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a - 4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( )A .13107.4⨯元B .12107.4⨯元C .131071.4⨯元D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 B .单项式m 的次数是1,没有系数 C .单项式z xy 2-的系数是1-,次数是4 D .多项式322++xy x 是三次三项式6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x xC .13413=+--x xD .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元-1 0 18、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( )A .)2(21-=+x xB .)1(23-=+x xC .)3(21-=+x xD .1211++=-x x 9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
苏教版七年级数学上册期末试卷及答案【完美版】
苏教版七年级数学上册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 42.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A.、1个B.2个C.3个D.4个4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣16.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠=二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若x2+kx+25是一个完全平方式,则k的值是__________.5.若一个数的平方等于5,则这个数等于________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y-)+3xy]+5xy2的值.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、D6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、150°3、135°4、±10.5、6、48三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、2.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2) 50°5、(1)150,(2)36°,(3)240.6、略。
最新苏教版七年级数学上册期末考试卷(完整版)
最新苏教版七年级数学上册期末考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .405.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、D7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、-4π3、15°4、50°5、-1或-46、2或-8三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、(x﹣y)2;1.3、(1)①7;②12a;(2)略.4、20°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、略。
苏教版七年级上册数学期末测试卷及答案
苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。
下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。
苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解. 【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.。
苏教版七年级上册数学 期末试卷测试卷(含答案解析)
苏教版七年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5 B .﹣5 C .7 D .﹣7 2.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.2-的相反数是( ) A .2-B .2C .12D .12-5.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b -- 6.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=7.方程1502x --=的解为( ) A .4- B .6- C .8- D .10- 8.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数9.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或410.一5的绝对值是( )A .5B .15C .15- D .-511.画如图所示物体的主视图,正确的是( )A .B .C .D .12.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯13.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( )A .-1B .-2C .1D .215.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.17.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______. 19.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.20.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.21.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示) 22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.已知∠α=28°,则∠α的余角等于___.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.解下列方程:(1)2(2)6x --= . (2)121123x x -+=-. 28.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系. (3)比较大小:线段BH 线段BA ,理由为 .29.线段AB=20cm,M是线段AB的中点,C是线段AB的延长线上的点,AC=3BC,D是线段BA的延长线上的点,且DB=AC.(1)求线段BC,DC的长;(2)试说明M是线段DC的中点.30.解方程:(1)5(x+8)=6(2x-7)+5(2)2x13-=2x16+-131.先化简,再求值:已知a2+2(a2﹣4b)﹣(a2﹣5b),其中a=﹣3,b=13.32.如图所示是一个几何体的表面展开图.(1)该几何体的名称是.(2)根据图中所给信息,求该几何体的体积(结果保留π)33.化简:(1)-3x+2y+5x-7y;(2)2(x2-2x)-(2x2+3x).四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。
最新苏教版七年级数学上册期末试卷(共4套)(含答案)
最新苏教版七年级数学上册期末试卷(共4套)(含答案)最新苏教版七年级数学上册期末试卷(Ⅰ)一、选择题(每小题3分,共36分)1、在下图的四个图形中,不能由左边的图形经过旋转或平移得到的是()。
2、在-(-8),(-1)/4,22π,-3,-53/2中,负有理数共有()个。
3、a、b两数在数轴上位置如图所示,将a、b、-a、-b用“<”连接,其中正确的是()。
4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为亿元,亿元用科学记数法表示为(保留三个有效数字)()。
5、下列结论中,正确的是()。
6、在解方程x-1/2x+3/23=1时,去分母正确的是()。
7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()。
8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x只羊,则下列方程正确的是()。
9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长()。
10、下列图形中,不是正方体的展开图的是()。
11、自行车的轮胎安装在前轮上行驶6000公里后报废,安装在后轮上,只能行驶4000公里。
为了行驶尽可能多的路程,采取轮胎调换的方法,行驶一定路程后,用前后轮调换使用。
问安装在自行车上的这对轮胎最多可行驶多少公里?答案:4800公里12、已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB中点的个数有:①AP=BP;②BP=1/2AB;③AB=2AP;④AP+PB=AB。
答案:2个(②和③)13、当x=1时,代数式ax^3+bx+1的值为2012.则当x=-1时,代数式ax^3+bx+1的值为_______。
最新苏教版七年级数学上册期末考试卷及答案【完美版】
最新苏教版七年级数学上册期末考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4381524,…,其中第6个数为()A 37B3535D235.如图所示,点P到直线l的距离是()A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)116________.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2.求不等式213x +≤325x -+1的非负整数解.3.如图1,点E 在直线AB 上,点F 在直线CD 上,EG ⊥FG .(1)若∠BEG+∠DFG =90°,请判断AB 与CD 的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG ⊥FG 保持不变,EG 上有一点M ,使∠MFG =2∠DFG ,则∠BEG 与∠MFD 存在怎样的数量关系?并说明理由.(3)如图2,若移动点M ,使∠MFG =n ∠DFG ,请直接写出∠BEG 与∠MFD 的数量关系.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、B6、D7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、62°3、2或2-34、3x =.5、40°6、1800°三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)27x =.2、不等式的非负整数解为0、1、2、3、4.3、(1)AB //CD ,理由略;(2)∠BEG 13+∠MFD =90°,理由略;(3)∠BEG +11n +∠MFD =90°.4、略.5、(1)50;72;(2)详见解析;(3)330.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。
最新苏教版七年级数学上册期末考试卷及答案【完美版】
最新苏教版七年级数学上册期末考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.94的值等于()A.32B.32-C.32±D.81165.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________. 6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,在单位正方形网格中,建立了平面直角坐标系,xOy 试解答下列问题:(1)写出ABC 三个顶点的坐标;(2)画出ABC 向右平移6个单位,再向下平移2个单位后的图形111A B C △;(3)求ABC 的面积.4.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、A5、B6、D7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、40°3、-74、±10.5、316、200°三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)A (-1,8),B (-4,3),C (0,6);(2)答案略;(3)112. 4、(1)证明略;(2)∠AED +∠D =180°,略;(3)110° 5、()117、20;()22次、2次;()372;()4120人.6、(1)驾驶员在公司的南边10千米处;(2)在这个过程中共耗油4.8升;(3)驾驶员共收到车费68元。
苏教版七年级数学上册期末考试试题(含答案)
七年级上数学期末试卷一、选择题(共15个小题,每小题2分,共30分)1.如果向东走80m 记为80m ,那么向西走60m 记为 ( )A .60m -B .|60|m -C .(60)m --D .60m +2.某市2010年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃3.-6的绝对值等于 ( )A .6B .16C .16- D .6 4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .40.8510⨯亿元B .38.510⨯亿元C .48.510⨯亿元D .28510⨯亿元5.当2x =-时,代数式1x +的值是 ( )A .1-B .3-C .1D .36.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a +=D .2222a b a b a b -+=7.将线段AB 延长至C ,再将线段AB 反向延长至D ,则图中共有线段 ( )A .8条B .7条C .6条D .5条8.下列语句正确的是 ( )A .在所有联结两点的线中,直线最短B .线段A 曰是点A 与点B 的距离C .三条直线两两相交,必定有三个交点D .在同一平面内,两条不重合的直线,不平行必相交9.已知线段AB 和点P ,如果PA PB AB +=,那么 ( )A .点P 为AB 中点 B .点P 在线段AB 上C .点P 在线段AB AB 外D .点P 在线段AB 的延长线上10.一个多项式减去222x y -等于222x y -,则这个多项式是A .222x y -+B .222x y -C .222x y -D .222x y -+11.若x y >,则下列式子错误的是A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 12.下列哪个不等式组的解集在数轴上的表示如图所示 A .21x x ≥⎧⎨<-⎩ B .21x x <⎧⎨≥-⎩C .21x x >⎧⎨≤-⎩ D .21x x ≤⎧⎨>-⎩13.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=55︒A .35︒B .55︒C .70︒D .110︒14.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是( ) A .0.10.20.7134x x ---= B .12710134x x ---= C .127134x x ---= D .127101034x x ---= 15.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是 A .1m ≤ B .1m ≥ C .2m ≤ D .2m ≥二、填空题(共10个小题,每小题2分,共20分)16.比较大小:6-_________8-(填“<”、“=”或“>”)17.计算:|3|2--=_________18.如果a 与5互为相反数,那么a=_________19.甲数x 的23与乙数y 的14差可以表示为_________ 20.定义a ※b =2a b -,则(1※2)※3=_________21.如图,要使输出值Y 大于100,则输入的最小正整数x 是___________22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=___________ 度.23.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=140︒,则∠EOD=___________度.24.已知2|312|102n m ⎛⎫-++= ⎪⎝⎭,则2m n -=___________. 25.观察下面的一列单项式:2342,4,8,16x x x x --,…根据你发现的规律,第7个单项式为___________;第n 个单项式为___________.三、计算或化简(共4个小题,每小题4分,共16分)26.计算:1241123723⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.计算:2( 6.5)(2)(5)5⎛⎫-+-÷-÷- ⎪⎝⎭28.计算:1820`32``3015`22``︒+︒29.化简:22(521)4(382)a a a a +---+四、解方程或不等式(共2个小题,每小题5分。
苏教版七年级上册数学 期末试卷测试卷附答案
苏教版七年级上册数学期末试卷测试卷附答案一、选择题1.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.2.如图,AB∥CD,∠BAP=60°-α,∠APC=50°+2α,∠PCD=30°-α.则α为()A.10°B.15°C.20°D.30°3.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是()A.球B.三棱锥C.圆锥D.圆柱4.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.35.图中几何体的主视图是()A.B.C.D.6.如图,几何体的名称是()A.长方体B.三角形C.棱锥D.棱柱7.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种8.-5的相反数是( ) A .-5B .±5C .15D .59.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( ) A .25.8×105 B .2.58×105C .2.58×106D .0.258×10710.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个 11.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,712.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .13.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .14.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .15.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是( ).A .-1B .0C .3D .4二、填空题16.计算:82-+-=___________. 17.方程2x+1=0的解是_______________.18.一个角的的余角为30°15′,则这个角的补角的度数为________. 19.若221x x -+的值是4,则2245x x --的值是_________.20.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.21.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.22.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.23.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.24.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 25.已知∠α=28°,则∠α的余角等于___.三、解答题26.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线CB 交直线l 于点F ;(2)连接BA;(3)在直线l上确定点E,使得AE+CE最小.27.线段AB=20cm,M是线段AB的中点,C是线段AB的延长线上的点,AC=3BC,D是线段BA的延长线上的点,且DB=AC.(1)求线段BC,DC的长;(2)试说明M是线段DC的中点.28.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).29.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加个小正方体.30.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n ,则这四个数的和为 (用n 的代数式表示); (2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.31.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++= 探索以上等式的规律,解决下列问题: (1) 13549++++=…( 2); (2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 . 32.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm 秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm 秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点, 求点Q 的运动速度;(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB APEF-的值.33.如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥,. (1)图中∠BOE 的补角是(2)若∠COF =2∠COE ,求∠BOE 的度数;(3) 试判断OF 是否平分∠AOC ,并说明理由;请说明理由.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.36.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.37.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?38.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.41.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.42.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= . 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.A解析:A【解析】【分析】根据平行的性质将角度对应起来列出式子解出即可.【详解】作如图辅助线平行于AB且平行于CD.根据两直线平行内错角相等可得:∠BAP+∠PCD=∠APC;60°-α+30°-α=50°+2α;α=10°.【点睛】本题考查平行的性质,关键在于作出辅助线将题目简化.3.C解析:C【解析】【分析】根据每个几何体的特点可得答案.【详解】解:A. 球,只有曲面,不符合题意;B. 三棱锥,面是4个平面,还有4个顶点,不符合题意;C. 圆锥,是一个曲面,一个顶点,符合题意;D. 圆柱,是一个曲面,两个平面,没有顶点,不符合题意.故选:C.【点睛】本题考查认识立体图形,解题关键是熟记常见几何体的特征.4.C解析:C【解析】【分析】分两种情况讨论,①甲乙没有相遇过;②甲乙相遇过后,根据题意结合这两种情况分别列出关于t 的一元一次方程求解即可.【详解】解:甲车行驶的路程为110t 千米,乙车行驶的路程为90t 千米①当甲乙没有相遇过时,根据题意得550(11090)50t t -+=解得 2.5t =②当甲乙相遇过时,根据题意得(11090)55050t t +-=解得3t =综合上述,t 的值为2.5或3.故选:C【点睛】本题主要考查了一元一次方程的应用,正确理解题意是解题的关键,难点在于要从相遇前和相遇后两方面去考虑,涉及到了分类讨论的数学思想.5.B解析:B【解析】【分析】根据主视图是从物体的正面去观察所得到的,根据看到的图形进行选择即可.【详解】因为球在长方体的中间,从正面看上去看到的是一个长方形和圆形,且圆在正方形的中间部位,故答案选B.【点睛】本题考查的是物体的三视图,知道主视图是从正面去观察物体是解题的关键.6.C【解析】【分析】根据简单几何体的特点即可判断.【详解】图中的几何体为三棱锥故选C.【点睛】此题主要考查几何体的命名,解题的关键是熟知棱锥的特点.7.C解析:C【解析】【分析】利用立方体展开图的性质即可得出作图求解.【详解】如图,再添加1个小正方形拼接后就能使得整个图形能折叠成正方体纸盒故有4种,故选C.【点睛】此题主要考查了几何展开图的应用以及基本作图,解题的关键是熟知正方体的展开图特点. 8.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.本题考查相反的定义,熟练掌握基础知识是解题关键.9.B解析:B【解析】【分析】科学计数法是指a×10n ,且1≤a <10,n 为原数的整数位数减一.【详解】解:由科学计数法可得258000=2.58×105故应选B10.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个. 故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数. 11.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.12.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A ,B ,D 折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C 是一个正方体的表面展开图.故选C.13.A解析:A【解析】试题解析:A、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β不互余,故本选项错误;D、∠α和∠β互补,故本选项错误.故选A.14.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.15.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.二、填空题16.【解析】【分析】根据有理数的运算法则即可求解.【详解】故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则. 解析:6-【解析】【分析】根据有理数的运算法则即可求解.【详解】82-+-=-8+2=-6故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.17.x=-【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-.故答案为:-.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同解析:x=-1 2【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-12.故答案为:-12.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.18.120°15′【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.19.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】【分析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题.20.59°【解析】【分析】根据折叠的性质,得到,再根据平行线的性质得到,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠则故答案是59°. 【点睛】本题考查了折叠的性质解析:59°【解析】【分析】根据折叠的性质,得到DEF FEM ∠=∠,再根据平行线的性质得到62EGF ︒∠=,求出118,DEG ︒∠=解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠62AEG ︒∠=62,EGF DEF FEM ︒∴∠=∠=∠118,DEG ︒∴∠=则59DEF FEM ︒∠=∠=故答案是59°.【点睛】本题考查了折叠的性质以及平行线的性质,解决本题的关键是熟练掌握折叠与平行线的性质,找到相等的角.21.5或4.5【解析】【分析】分两种情况得到C 点所表示的数,再根据中点坐标公式可求AC 的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷解析:5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.22.两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB,则线段AB与l的交点P即为抽水站的位置.其理由是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛解析:两点之间,线段最短【解析】【分析】根据线段的性质,可得答案.【详解】连接AB,则线段AB与l的交点P即为抽水站的位置.其理由是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质,利用线段的性质是解题关键.23.2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要解析:2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故填2或6.考点:两点间的距离;数轴.24.两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案解析:两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,熟记直线的性质是解题的关键.25.62°.【解析】【分析】互为余角的两角和为,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为而解得.解析:62°.【解析】【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.三、解答题26.答案见解析【解析】【分析】根据射线的定义、线段的定义进行作图,E点即AC与直线l的交点.【详解】【点睛】本题考查的知识点是射线的定义和线段的定义,以及两点之间线段最短的基本事实. 27.(1)DC =40cm;(2)证明见解析.【解析】【分析】(1)根据已知得出BC=12AB,将AB=20cm代入求出线段BC的长度;根据已知得出DA=BC=10cm,那么DC=DA+AB+BC,代入数值求出线段DC的长度;(2)根据线段中点的定义证明DM=CM即可.【详解】(1)∵AC=AB+BC=3BC,AB=20cm,∴BC=12AB=10cm,∵DB=AC,∴DB-AB=AC-AB,∴DA=BC=10cm,∴DC=DA+AB+BC=40cm;(2)M是线段DC的中点,理由如下:∵M是线段AB的中点,∴MA=MB,又∵DA=BC,∴DA+AM=BC+BM,即DM=CM,∴M是线段DC的中点.【点睛】本题考查了求两点之间的距离的应用,线段的和差,线段的中点的定义,弄清线段之间的数量关系是解题的关键.28.(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB 的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.29.(1)见解析;(2)38;(3)4.【解析】【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1)该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3)要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.30.(1)4n+32;(2)49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508.【解析】【分析】(1)设框住四个数中左上角的数为n ,则右上角的数为n+2,左下角的数为n+14,右下角的数为n+2+14,求它们的和即可;(2)框住四个数的和为228列方程求解即可;(3)假设能使框住四个数的和为508,则可得n =119,这样左上角的数119在第10行第6列,所以不能框住.【详解】(1) n +n+2+n+14+n+2+14=4n +32;(2) 根据题意可得,4n +32=228 ,解得,n =49,∴这四个数分别是49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508,理由:假设能框住这样的四个数,则4n +32=508,解得n =119而119=9×12+11=(10-1) ×12+11,这样左上角的数119在第10行第6列,所以不能框住这样的四个数,使四个数的和为508.【点睛】本题主要考查的是一元一次方程的应用,找出图中四个数的规律是解题的关键. 31.(1)25;(2)2n -1;(3)2400.【解析】【分析】(1)根据题目中的规律,写出答案即可.(2)根据题目中的规律,反推答案即可.(3)利用规律通式,代入计算即可.【详解】(1) 由题意规律可以得,连续奇数的和为中间相的平方,所以13549++++=…22149252+⎛⎫= ⎪⎝⎭. (2)设最后一项为x ,由题意可推出: 12x n +=,x =2n-1. (3)根据上述结论, 51+53+55+…+109=(1+3+5+···+109)-( 1+3+5+···+49)=552-252=2400.【点睛】本题为找规律题型,关键在于通过题意找到规律.32.(1)30秒;(2)1/2cm s 或5/6cm s ;(3)2. 【解析】【详解】(1)设经过ts ,PQ 两点相遇,则t+2t=90,解得t=30s ,所以经过30s 后两点相遇 (2)因为AB=60,PA=2PB,所以PA=40,PB=20,OP=60所以点P,Q的运动时间为60s因为AB=60,13AB=20,所以QB=20或40所以Q的运动速度为10201602+=cm/s或10405606+=cm/s(3)设运动时间为ts,所以OE=12OP=12tOF=OA+12AB=20+30=50所以()80201502tOB APEF t---=-=233.(1)∠AOE和∠DOE;(2)30°;(3)OF平分∠AOC,理由见解析.【解析】【分析】(1)根据补角的定义可以得出结果,另外注意∠BOE=∠COE,不要漏解;(2)根据∠COE与∠COF互余,以及∠COF=2∠COE,可以求出∠COE的度数,又OE为∠BOC的平分线可以得出结果;(3)根据邻补角的性质、角平分线的定义解答.【详解】解:(1)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠COE+∠DOE=180°,∴∠BOE+∠DOE=180°.又∵∠AOE+∠BOE=180°,所以∠BOE的补角为∠AOE和∠DOE;(2)∵OE OF⊥,∴∠COE+∠COF=90°,又∠COF=2∠COE,∴∠COE=30°.∴∠BOE=∠COE=30°;(3)∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-∠COE.又∵∠AOF=180°-∠EOF-∠BOE=90°-∠BOE,又∠BOE=∠COE,∴∠COF=∠AOF,∴OF平分∠AOC.【点睛】本题主要考查角度的相关计算,关键是要掌握余角、补角的定义与性质,以及角平分线的定义.四、压轴题34.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y-=+⎧⎨-=-⎩ , 解得:1264x y =⎧⎨=⎩ , 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.36.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.。
苏教版数学七年级上册 期末试卷测试卷(含答案解析)
苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( ) A .c >0,a <0 B .c <0,b >0 C .c >0,b <0 D .b =05.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .3 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元8.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .9.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×10610.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .11.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3 B .3 C .-2 D .2 12.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4C .﹣8D .813.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-14.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m15.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -二、填空题16.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.17.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.18.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.19.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)20.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同. 年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数 七年级 17 6 8 八年级 14.5 57九年级12.5则九年级科技小组活动的次数是_____.21.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.若单项式42m a b 与22n ab -是同类项,则m n -=_______.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.给出定义如下:若一对实数(,)a b 满足4a b ab -=+,则称它们为 一对“相关数”,如:3377488-=⨯+,故3(7,)8是一对“相关数”. (1)数对(1,1),(2,6),(0,4)---中是“相关数”的是___________;(2)若数对(,3)x -是“相关数”,求x 的值;(3)是否存在有理数数,m n ,使数对(,)m n 和(,)n m 都是“相关数”,若存在,求出一对,m n 的值,若不存在,说明理由.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来; (2)该几何体的表面积(含下底面)为________.28.画出如图所示物体的主视图、左视图、俯视图.29.已知:点A 、B 在数轴上表示的数分别是a 、b ,线段AB 的中点P 表示的数为m .请你结合所给数轴,解答下列各题:(1)填表:a 1- 1-2.5▲b13▲2-m▲▲4 4-(2)用含a 、b 的代数式表示m ,则m =___________. (3)当2021a =,2020m =时,求b 的值.30.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数.31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯32.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯600以上 1.5a+5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?33.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
最新苏教版七年级数学上册期末试卷及答案【完整版】
最新苏教版七年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a ,小数部分是b ,则3a b -=________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知关于x 的方程9x 3kx 14-=+有整数解,求满足条件的所有整数k 的值.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、C6、B7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、1.2、203、0.4、±10.5、40°6、1三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、k=26,10,8,-8.3、略4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)120件;(2)150元.。
苏教版七年级数学上册期末考试题及答案
苏教版七年级数学上册期末考试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <62.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.计算22222100-9998-972-1++⋅⋅⋅+的值为( )A .5048B .50C .4950D .50506.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .27.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是( )A .95︒B .100︒C .105︒D .110︒二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.已知1a -+5b -=0,则(a ﹣b )2的平方根是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=444-+-+.a a(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、D6、B7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3、135°4、2 35、±4.6、48三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、0<m<3.3、(1)见解析(2)成立(3)△DEF为等边三角形4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;②签字笔的单价可能为2元或6元.。
苏教版七年级数学上册期末考试卷【带答案】
苏教版七年级数学上册期末考试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,在OAB和OCD中,AC BD交于点M,连OA OB OC OD OA OC AOB COD,连接,,,,40AMB;③OM平分BOC;④MO 接OM.下列结论:①AC BD;②40平分BMC.其中正确的个数为().A.4 B.3 C.2 D.13.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.满足方程组35223x y m x ym的x ,y 的值的和等于2,则m 的值为().A .2B .3C .4D .59.已知23a b (a ≠0,b ≠0),下列变形错误的是()A .23abB .2a=3bC .32b aD .3a=2b10.已知正多边形的一个外角为36°,则该正多边形的边数为().A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.式子3x在实数范围内有意义,则 x 的取值范围是________.3.已知80AOB,40BOC,射线OM 是AOB 平分线,射线ON 是BOC 平分线,则MON________ .4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C ,的位置.若65EFB,则AED 等于________.5.64的立方根是___________.6.若关于x,y的二元一次方程组59x y kx y k的解也是二元一次方程236x y的解,则k的值为____________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y2.已知关于x,y的方程组54522x yax by与2180x yax by有相同的解,求a,b的值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x≥33、60°或20°4、50°5、26、3 4三、解答题(本大题共6小题,共72分)1、21 xy2、12 ab.3、(1)证明见解析(2)2-14、36平方米5、(1)40;(2)72;(3)280.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:(本大题共12题,每空2分,共28分;只需填写结果,不必填写过程) 1.-3的相反数是________.
2.单项式-2xy 的系数是________,次数为________.
3.若-23
x m +4y 3与4xy 5+n
是同类项,则n +m =________.
4.已知x =2是关于x 的方程2x -k =1的解,则k 的值是________. 5. 某校共有m 名学生,其中男生人数占51%,则该校有 名女生. 6.写出一个小于-3.14的整数为 . 7.若∠α的余角是38°52′,则∠α的补角为 . 8.若x -3y =-2,那么3-x +3y 的值是 . 9.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE=35°则∠DBC 为 度.
10.如图,若添上一个正方形,使之能折叠成一个正方体,且使相对面上的两个数字之和相等,则添上的正方形上的数字应为 ,共有 种不同添加的方法.
11.元旦期间,商业大厦推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 折优惠.
12. 在迎新春活动中,甲、乙、丙、丁围成一圈依序报数,规定:①甲、乙、丙、丁首次报的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在这个活动中,甲同学需要拍手的次数为 .
二、选择题:(本大题共8题,每小题3分,共24分)
13.下列算式中,运算结果为负数的是……………………………………………( )
A. -32
B.||-3
C. -(-3)
D.(-3)2
14.无锡地铁2号线已开工,全长约33200
m ,将33200
用科学记数法表示应为( )
A .0.332×105
B .3.32×104
C .33.2×103
D .332×102
15.下列各式中,运算正确的是…………………………………………………… ( )
A. 3a 2
+2a 2
=5a 4
B.a 2
+a 2
=a 4
C. 6a -5a =1
D.3a 2
b -4ba 2
=-a 2
b
16.关于x 的方程2x -3=1的解为…………………………………………… ( ) A .-1 B .1 C .2 D .-2
17. 下列结论中,不正确...
的是……………………………………………………… ( ) A .两点确定一条直线 B .两点之间,直线最短
C .等角的余角相等
D .两直线和第三条直线都平行,则这两直线也平行 18. 实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为……………( ) A. b B. b - C. b a --2 D. b a -2
19. 如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中: ①90°-∠β;②∠α-90°;③180°-∠α;④
1
2
(∠α-∠β).正确的是:…………( ) A.①②③④ B. ①②④ C. .①②③ D. ①②
20. 钟面角是指时钟的时针与分针所成的角,如果时间从下午1点整到下午4点整,钟面角为90°的情况有…………………………………………………………………( ) A .有一种 B .有四种 C . 有五种 D .有六种 三、解答题:(本大题共8题,共48分) 21.计算 (每题3分,共6分) (1) 45)5
33291
(⨯+-; (2)[]
24)3(361
1-+-⨯--
22.解关于x 的方程: (每题3分,共6分) (1)()x x -=-234 (2)
13
3221=--+x x
23.(本题5分)先化简,再求值:
2x 2+(-x 2-2xy +2y 2)-3(x 2-xy +2y 2
),其中x =2,y =-12.
24.(本题7分)如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写作法,下同); (2)过点A 画直线BC 的垂线,并注明垂足为G ; 过点A 画直线AB 的垂线,交BC 于点H. (3)线段 的长度是点A 到直线BC 的距离,
线段AH 的长度是点 到直线 的距离.
(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段AG 、AH 的大小关系为AG
AH.
25. (本题6分)
(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图
.
(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.
26.(本题5分)如图,已知线段AB =12cm,点C 是AB 的中点,点D 在直线AB 上,
且AB =4BD . 求线段CD 的长.
27.(本题7分)如图,直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD . (1)图中与∠AOF 互余的角是 ;
与∠COE 互补的角是 .
(把符合条件的角都写出来)
(2)如果∠AOC =1
4
∠EOF ,求∠AOC 的度数.
28.(本题6分) 我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样. (1)这列队伍一共有多少名战士?
(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?
初一数学试卷答案
22.解关于x 的方程: (每题3分,共6分)
(1)()x x -=-234 (2)
13
3221=--+x
x . 解:4-x =6-3x ……………1分 解:3(x +1)-2(2-3x )=6………1分
3x -x =6-4 ………………2分 3x +3-4+6x =6
2x =2 9x =7…………………2分
x =1………………………3分 x =
9
7
…………………3分
23.(本题5分)先化简,再求值:
2x 2+(-x 2-2xy +2y 2)-3(x 2-xy +2y 2
),其中x =2,y =-12.
解:2x 2
+(-x 2
-2xy +2y 2
)-3(x 2
-xy +2y 2
)
=—2x 2
+xy -4y 2
………………………………………………3分
当x =2,y =-1
2时,原式=—10 ………………………………5分
24.(1)画对……1分 (2)画对……3分 (3)AG ,H 、AB ,……6分 (4) <……7分
25. (1)
……………………4分
(2)5,7……………………………………………………6分
26.∵
AB =12cm ,AB =4BD ∴BD =3 cm ……………………1分 当点D 在线段AB 上时,CD =3cm……………………3分
当点D 在线段AB 的延长线上时,CD =9cm……………………5分 (两种情况均需画出点,写出求解过程)
27. (1) 图中与∠AOF 互余的角是∠ AOC 、∠BOD . ………1分
图中与∠COE 互补的角是∠ EOD 、∠BOF ; ………3分
(2)∵OE ⊥AB ,OF ⊥CD
∴∠EOB =90° ∠FOD =90°
∵∠AOC =1
4
∠EOF ………………………………5分
∴设∠AOC =x ,则∠BOD =x ,∠EOF =4x 4x +x +90+90=360 x =36
∴∠AOC =36°……………………………………7分
28. (1)解:设这支队伍有x 人,根据题意得
11
62(6)22
x x --+=-……………………………………2分 解得x =37………………………………………………3分 (2)解:设相邻两个战士间距离为y 米…………………4分
D
O
F
E
C
B
A
队伍全部通过所经过的路程为(320+36y )米
∴ (320+36y)/5=100
解得:y=5…………6分
答:(1)这列队伍一共有37名战士(2)相邻两个战士间距离为5米.。