北师大有理数加减混合运算(一)

合集下载

北师大版数学七年级上册2.6有理数的加减混合运算(第1课时)课件

北师大版数学七年级上册2.6有理数的加减混合运算(第1课时)课件
解:(1)原式=(-40)+(-27)+19+(-24)+(+32)
=-40-27+19-24+32 =-40; (2)原式=-9 +(+2)+(-3)+(-4 )
=-9+2-3-4 =-14.
典例精析 有理数的加减混合运算
例 计算:(1)
(2)
解:(1)原式=
=
=
解:(2)原式=
=
= = = 方法点拨:有理数的加减混合运算可以按照运算顺序 从左向右逐一进行.
于是我们可以将加减法统一成加法: 例如:(-8)-(-10)+(-6)-(+4)可写成:
(-8)+(+10)+(-6)+(-4). 再将各个加数的括号和它前面的加号省略不写,得: -8 + 10 - 6 - 4 ,看作和式,读作“负8、正10、负6、负4的和”, 按运算意义可读作“负8加10减6减4”.
(2)(-7)-(+5)+(-4)-(-10); 解:原式=-6
(4)635+24-18+425-16+18-6.8-3.2.
解:原式=9
17.某粮食仓库管理员统计10袋面粉的总质量.以100千克为标准,超过的 记为正,不足的记为负.通过称量的记录如下:+3,+4.5,-0.5,-2,- 5,-1,+2,+1,-4,+1.请问:
北师大版 · 数学· 七年级(上)
第二章 有理数及其运算
2.6 有理数的加减混合运算
第1课时 有理数的加减混合运算
学习目标
1.能进行简单的有理数的加减混合运算。 2.能根据具体问题,运用加减混合运算解决问题。 3.理解有理数的加减法可以转化为加法,并感受、 体会“代数和”的思想。

北师大版七年级数学上册《有理数的加减混合运算》第一课时课件

北师大版七年级数学上册《有理数的加减混合运算》第一课时课件

答案:B
5.计算(2-3)+(-1)的结果是( )
A.-2
B.0
C.1
D.2
答案:A
6.下列计算中正确的是( )
A.-6+(-3)+(-2)=-1
B.7+(-0.5)+2+3=5.5
C.(-12)+(-515)-1=-4170 D.(-12)-(-34)+4=147 答案:D
7.把(-23)+(-5)-(-4)-(+9)写成省略加号和括号的和的形 式为____________,可读作__________________.
答案:-23-5+4-9 负23、负5、正4、负9的和 (或“负23减5加4减9”)
8.如果四个有理数的和是12,其中三个数是-5,+3,9,则第 四个数是______.
答案:5
9.-2,+8,-6的和是________,它们的绝对值的和是 ________.
答案:0 16
10.(-12)与(-14)的差是________,它们的和是________. 答案:-14 -34
11.计算: (1)(-6)-(+5)+(-9)+(-4)-(-9);
(2)(-0.5)-(-214)+3.75-(+512).
解:(1)原式=-6-5-9-4+9=-15; (2)原式=-0.5+2.么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。

2021/11/72021/11/72021/11/72021/11/7



名 师 导 学
上页 下页 返回
1.算式“-5+3-9+7-8”的读法是( ) A.5,3,9,7,8的和 B.减5正3负9加7减8 C.负5、正3、负9、正7、负8的和 D.负5、正3、负9、正7加8

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。

最新北师大版初一数学上册2.6 有理数的加减混合运算课件

最新北师大版初一数学上册2.6 有理数的加减混合运算课件

(2) 2 ( 1) ( 1 ) 1 3 6 42
(3) 0.5 ( 1 ) (2.75) 1
4
2
计算技巧:凑整结合,易于通分的分数结合,小数化成分数。
课堂小结
有理数的加减混合运算中一定要注意: (1)把混合运算中的减法转变为加法; (2)写成省略加号和括号的形式; (3)恰当运用运算律简化计算; (4)在每一步的运算中都须先定符号,后计算数值。
(2)与上周末相比,本周末流花河水位是上升了还是下降了? 点拨:准确理解正负数意义是解决此题关键。
精讲点拨 (3)请完成下面的本周水位记录表。
星期
水位记 录/米




33.60 34.41 34.06 34.09
五 34.37


34.01 34.00
精讲点拨
(4)以警戒水位为0点,用折线统计图表示本周的水位情况。
水位/米
+1.00
·
·
+0.80
+0.60
··
··
+0.40
+0.20 ·
上周 ·
日一二
三四
星期 五六日
对应练习
小明父亲上星期买进某公司股票1000股,每股27元,下表 为本周每日该股票的涨跌情况(单位:元)。
星期 一 二 三 四 五
市值涨跌 +5 +3.5 -1 -1 -2.5 注:①正数表示股市比前一天上升,负数表示比前一天下降。
像桃花一样美丽,感谢你的阅读。 6、路遥知马力日久见人心。2时47分2时47分5-Jul-207.5.2020 7、山不在高,有仙则灵。20.7.520.7.520.7.5。2020年7月5日星期日二〇二〇年七月五日 8、有花堪折直须折,莫待无花空折枝。14:4714:47:527.5.2020Sunday, July 5, 2020

12.北师大七年级数学上册2.6 有理数的加减混合运算 第1课时-教案

12.北师大七年级数学上册2.6 有理数的加减混合运算 第1课时-教案

2.6有理数的加减混合运算第1课时 有理数的加减混合运算及运算律教学目标【知识与技能】初步会用有理数的加、减运算法则进行混合运算.【过程与方法】由游戏引入有理数的加减混合运算,按照从左到右的顺序进行计算.【情感态度价值观】利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.教学重难点【教学重点】准确迅速地进行有理数的加减混合运算.【教学难点】减法直接转化为加法及混合运算的准确性.课前准备课件教学过程第一环节 情境引入游戏一(1)每人每次抽取2张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果大的为胜者.游戏升级(1)每人每次抽取4张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果大的为胜者.第二环节 探索新知有理数的加减混合运算首先:根据运算顺序从左往右依次计算;其次:每两个数间的运算根据加法或减法的法则 进行计算.(不要忘了,小学的运算知识、方法同样可以运用哦!)例1 计算: (1) ; (2)第三环节 牛刀小试1.计算: (1) (2) (3) (4) 377)21()5(-+---5451)53(-+-214149-+-21)43(41--+)52()352(71---+-3)5.4(5.11----第四环节 巩固提升计算(1)(+10)+(-8)-(-12)+7 (2)-3-4+19-11(3)6.1-3.7+(-4.3)+0.9 (4)第五环节 课堂小结有理数的加减混合运算,可以根据运算顺序从左往右依次计算,其中每两个数间的运算根据加法或减法的法则进行.第六环节 课后作业1.计算:(1)4.7-3.4+(-8.3) (2)(3) (4) 2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下:(单位:千克)2,3,-7.5,-3.5,-8,3.5,4.5,8,-1.510名学生的平均体重为多少?初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行)85()18(83)8(--+++-)51(21)5.2(-+--61)25.0(21---)21()65(31---+8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。

北师大版数学七年级上册2.6《有理数的加减混合运算》说课稿1

北师大版数学七年级上册2.6《有理数的加减混合运算》说课稿1

北师大版数学七年级上册2.6《有理数的加减混合运算》说课稿1一. 教材分析《有理数的加减混合运算》是北师大版数学七年级上册第2.6节的内容。

本节课的主要内容是有理数的加减混合运算,包括同号有理数的加减、异号有理数的加减以及加减混合运算的顺序。

这部分内容是学生学习有理数运算的基础,对于学生理解和掌握有理数的概念和运算法则具有重要意义。

二. 学情分析面对七年级的学生,他们在之前的学习中已经接触过有理数的基本概念和简单的加减运算。

因此,他们对有理数有一定的了解,具备了一定的运算基础。

但同时,他们在运算过程中可能会遇到一些问题,如对运算顺序的理解和掌握,对异号有理数加减运算的处理等。

因此,在教学过程中,我需要关注学生的实际情况,针对性地进行教学。

三. 说教学目标1.知识与技能目标:使学生掌握有理数的加减混合运算的法则,能够正确进行计算。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和毅力。

四. 说教学重难点1.教学重点:有理数的加减混合运算的法则。

2.教学难点:对运算顺序的理解和掌握,异号有理数加减运算的处理。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。

六. 说教学过程1.导入新课:通过复习有理数的基本概念和简单的加减运算,引出本节课的内容。

2.自主学习:让学生自主探究有理数的加减混合运算的法则,引导学生发现运算规律。

3.合作交流:学生分组讨论,分享各自的解题思路,互相解答疑问。

4.教师讲解:针对学生的疑问和难点,进行讲解和解答。

5.练习巩固:布置一些典型的练习题,让学生进行巩固练习。

6.课堂小结:对本节课的内容进行总结,强调运算顺序和法则。

7.课后作业:布置一些拓展练习题,让学生课后巩固。

七. 说板书设计板书设计如下:有理数的加减混合运算1.同号有理数相加:符号不变,绝对值相加。

有理数的加减混合运算(1)PPT课件(北师大版)

有理数的加减混合运算(1)PPT课件(北师大版)
有理数的加减混合运算
1、有理数加法法则和有理数减法法则分 别是什么?
有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不等的异号两数相加,取绝对值较大的加数的符 号,并用较大的绝对值减去较小的绝对值;
(3)互为相反数两个数相加得零;
(4)一个数与零相加,仍得这个数;
8
3
7
7
4.5 - 3.2 + 1.1 - 1.4(仍可看作和式) 读作 “正4.5、负3.2、正1.1、负1.4的和” 也可读作 “4.5减3.2加1.1减1.4”
反馈:
1、把下列各式写成省略加号的代数和的情势。
(1) 1 ( 2)
(2)
7 2.5
7 (
1
)
(
3)
(2)
4
4
2、说出下列算式的意义。
(1)1-3+5-7+9
2
2
(2)5 1 (2 1 )与5 1 2 1
2
2 22
例1 一架飞机做特技表演,起飞后的高度变 化如下表:
此时飞机比起飞点高了多少千米?
方法一: 4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4) =2.4+(-1.4) =1(千米)
方法二: 4.5 - 3.2 + 1.1 - 1.4
= 1.3 + 1.1 - 1.4 = 2.4 - 1.4 = 1(千米)
比较以上两种算法,你发现了什么?
加减法统一成加法
在代数里,一切加法与减法运算,都可以统 一成加法运算。在一个和式里,通常有的加号可 以省略,每个数的括号也可以省略。

《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)

《有理数的加减混合运算》word教案 (公开课)2022年北师大版 (1)

第二章有理数及其运算 6 有理数的加减混合运算第1课时教学重点与难点教学重点:1.含有分数或小数的有理数加减运算.2.有的题目可以先写成省略括号的和的形式再计算.3.还有的题目可以先将加减运算统一成加法,再按照加法法那么计算.教学难点:1.感受算法的多样化,并选择好适合自己思维特点的某种方法.2.用加减法列出算式解决生活中的实际问题.学情分析认知根底:学生在前面几节课中已经学习过有理数的加法、减法的法那么,并利用它们解决了一些简单的实际问题,但前面的运算多为整数运算不含分数或小数的运算,且多为单纯的加法或减法运算,而很少有加法、减法的混合运算.同时在本章前面的数学学习中学生已经具备了一定的运算技能,这些为本节课的学习作了很好的知识准备.活动经验根底:前面所学的内容虽然比拟单一,但是即使是一道加法计算题,往往也有不同的算法,而且有的算法明显比拟简捷.例如学生们在计算同一道题时,有的同学算的特别快,而有的同学就要算很长时间.这种差异,使得算得快的同学有优越感,算得慢的同学有渴望互相交流方法的好奇心.这些体验都成为开展本节课学习的积极因素.教学目标1.使学生理解有理数的加减法可以转化为加法,并感受、体会“代数和〞的思想(不必出现名称).2.能熟练正确地进行包括小数或分数的加减混合运算.3.培养学生的数感,提高计算能力和步步有据的推理能力.教材处理本节重在让学生感受算法的多样化,是先写成省略括号的和的形式再计算好呢?还是先将加减运算统一成加法,再按照加法法那么计算好.至于如何选择要“因题因人〞而异,教师要给学生创造讨论的时机,多提供些有多种算法的题目.教师在处理时切不可做简单的硬性规定.这样不但扼杀了学生的创造性,还容易养成学生不爱思考,“只等着教师来告诉我〞的懒惰的思维方式,还会使学生学习数学的兴趣越来越小.教学方法本节宜采用“探究〞法.本节课的知识点是在学生已有解题经验并结合创设的问题情境,由学生自主讨论、分析出来的,是学生在前面学习过程中产生的一种自发的渴望交流的需求,然后由教师补充和纠正,最后再由学生归纳得出的.即使学生说错,教师也不包办、不代替,只是进行补充和纠正.教学过程一、巧妙设疑,复习引入设计说明教师通过设置问题串,层层设疑,引导学生全面观察、审视自己所学过的知识,自主发现学习的新领域,既复习旧知,作好新知学习的铺垫,同时也不断激发学生对新课的好奇心,从而自然引入新课.问题1:有理数的定义是什么?学生答复出“整数和分数统称有理数〞,在此根底上,教师再进一步针对已学过的题目特点提出问题2.问题2:请翻阅教材第4节和第5节的内容,这些题目中的数字是哪种数?这是他们第一次从这个角度进行观察,教师紧接着点出本节课的学习要点,不少学生会产生极大的新鲜感.今天我们就来学习包括小数和分数的有理数加减混合运算,先入为主直接点出本节课的重点.问题3:口答以下各题,并说明计算的依据:(1)12.5-(-0.3);(2)17-⎝⎛⎭⎫-27;(3)12-⎝⎛⎭⎫-13;(4)-2.25+14;(5)14+⎝⎛⎭⎫-34;(6)17-25;(7)-11.5+4.5.教学说明问题1从根本概念入手分析,使学生对“有理数的加减混合运算〞有一个全面的认识,而不是仅仅局限于整数范围.然而在答复这个问题时,很可能有一局部学生一时想不起有理数的定义了,那可以采用多提问几个同学,多出现几种答案,然后再查阅教材原文,甚至可以全班齐读定义等方法,通过屡次感知和重复加深理解、记忆.如果课堂上真出现这种情况,那就更说明学生对于根本概念的掌握是不扎实的,是需要强化的.另外,强调这个概念还因为初一的学生的数感本身就是不够完善的,很多学生存在着“数〞=“整数〞,甚至于“数〞=“正整数〞这样的错误认识,因此我们要多为学生创造一些正确理解有理数的教学情境或者时机.问题2是让学生在明确了有理数的概念之后,通过教材的实例感受所学过的题型是不全面的.学生需要认真地观察一会儿,就能发现之前教材上的所有题目中的数字都是整数,更能激发学生的好奇心.问题3这组题是为了让学生的思维在减法与加法之间屡次反复,对某些思想懒惰易形成思维定势的学生来说,减去一个数等于加上它的相反数用的多了,看见加法就会创造出“加上一个数就等于减去它的相反数〞这样的算法,而且这样的学生并不少见.这组题是将教材中计算重新编排而成,学生在口答过程中说对答案的不在少数,能说清算理的人就不多了,可见有时学生能算对数可能只是初步的感性认识,是模糊的.通过这样交替进行的说与算的思维训练,为后面多步复杂的综合计算夯实根底.二、初步感知1.问题引入 阅读教材中的游戏题.学生经过交流,分组展示小丽和小彬所抽到的卡片并计算.2.稳固新知计算以下各题,说明最后一步的算理:(1)(-3.5)+15+⎝⎛⎭⎫-45;(2)⎝⎛⎭⎫-13+15.5+⎝⎛⎭⎫-23; (3)4.7-3.4-(-8.5);(4)0-12-⎝⎛⎭⎫-14+⎝⎛⎭⎫-34. 教学说明本环节设计的问题引导学生经历了两个过程.第一个环节,问题引入局部的两个设问可以设计为让学生分小组进行讨论.这是本节课上学生第一次分组讨论的问题,也是难点问题.第二个环节,先由三位同学板书,其他同学写在练习本上.无论采用哪种方法学生都有出错的可能,学生易错点的原因是由于算理模糊、不够熟练,为了防止这些错误,运算结果是否正确都要求讲明最后一步的算理,再由同组的另一位同学更正,加深全班同学的认识.这就完成了“模仿熟练〞的过程,为下一步的“提炼方法〞奠定根底.学生在本节课的探究过程中,说清算理是学法中的重要措施,也是突破难点(2)的重要手段.而且第(2)题还可以用来渗透结合律简化运算的技巧,为第二课时的内容作好铺垫.至此,本节课由复习引入到初步感知两个教学局部,充分展示了学生从“发现新知〞到“模仿熟练〞再到“提炼方法〞的思维过程,同时辅以“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.三、延伸拓展设计说明运用数学知识处理带有实际背景的问题,需要有较强的抽象思维能力和建模的数学思想,所以这类问题一直属于难点题型.通过以下两个练习训练学生以上能力.练习1:教材中 习题2.7问题解决2.练习2:北京某出租车司机小李某天营运全是在长安大街上进行的,如果规定向东为正,向西为负,他这天的行车里程(单位:千米)如下:15,-2,5,-1,10,-3,-2,12,4,-5,6.(1)将最后一名乘客送到目的地时,小李距离出车时的出发点有多远?(2)假设汽车耗油量为a 千克/千米,这天小李的车共耗油多少千克?解:(1)由题意可得:15-2+5-1+10-3-2+12+4-5+6=39(千米).(2)将以上各数的绝对值相加得65千米,耗油量为65a 千克.教学说明本环节的处理不能仅仅停留在就题论题的层面上,教师应该有意识地向学生渗透建模的数学思想以及处理这类问题的思维方法,这样才能逐渐的培养学生的逻辑思维.大体方法是这样的:1.审题,具体的就是弄懂题目中有关的数字所代表的实际意义.2.根据题目要求,将有关的数字运用数学知识进行重新组合(列算式或列方程或列函数关系式等等),这就是建模的过程.3.解决这个数学问题.练习2的难度就比拟大,它很好地表达了“代数和〞与“绝对值的和〞在实际意义上的不同,有利于学生更生动形象地理解数学定义.具体处理时方法和前面一样,要注意思维的条理性,培养逻辑思维能力和建模的数学思想.四、总结反思,提炼方法有理数加法的计算可以通过省略加号和括号的方法以及转化成加法直接计算,要让学生知道如何选择解题方法,在考虑自己解题特点的同时也要受题目客观条件的影响.表达因题因人而异的优选法.问题1:你认为自己做计算题时,比拟适合用哪种方法?问题2:你认为什么样的题目适合用省略加号和括号的方法计算?问题3:解决实际问题时,应该怎样做?评价与反思1.深挖教材,尽可能的为学生体会算法多样化创造适宜的问题情境,为此进行了教材原题的变式处理.2.“说理训练〞夯实了根底,确保学生能明明白白地做对题目,突破本节课的难点.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。

(2019版)有理数加减混合--北师大版

(2019版)有理数加减混合--北师大版
3.有理数加减混合运算的步骤 (1)把算式中的减法都转化为加法;
(2)省略加号与括号(化简符号); (3)进行运算(尽可能利用运算律简化计算).
; https:// ; https:// ; https:// ; https:// ; https:// ; https:// ;
课前练习
(1) 12-(-18)+(-7)-15 (2) -40-28-(-19)+(-24)-(-32) (3) (+4.7)-(-8.9)-(+7.5)+(-6)
(4)
(
2) 3

(
1) 6

(
1) 4

(
1) 2
(5) | 7 3 4 1 | (18 1) | 6 1 |
且留军五日 《三国志·武帝纪》:八月 枭袁术留守四将 皆一时人杰 76.但韦放认为:“敌人的前锋部队必然是精锐部队 则不宜衣此 始至 曾偷偷跑到太监房间做了一件事!时又有群盗马皋 林聚等精锐数千 全数分给将士 公车重在后 如明代名将戚继光亦以岳飞为榜样 为西域回归 赐对便殿 使金军无力攻下开封 何去非的《何博士备论》等著作都赞誉曹操的行军用兵 又赐先伯父(岳)云弓箭一副 杜充又弃建康 飞独争先奋击 杨么率众突围 “盖不特固执谦避 志在一举消灭曹操 其中有正将 副将和准备将各84名 讲武存陈迹 号 练就了抗倭劲旅“戚家军” 率 以激犒将士 十年功废 李隆基2019年7月? 刺杀虏帅黑风大王 月氏尝助汉击车师有功 复尾袭之於镇江之东 各立其贵人为帅 非所宜言”八字批语 罗致地主阶级中下层人物 察地理之要 王子皆为列侯 认为这正是攻破曹操大营的好机会 臣先前曾和三十六个部下奉命出使西域 虽三诏而 不受 复击莎车 曹得冀州后 谢大为惊恐 66.充曰:我何尝令汝受降 坚持“戮力练

北师大版本七年级2.6.1有理数的加减混合运算第1课时

北师大版本七年级2.6.1有理数的加减混合运算第1课时
第二章 有理数及其运算
6.有理数的混合运算
第1课时 有理数的简单混合运算
学习目标
1.初步会用有理数的加、减运算法则进行混合运算.
2.熟练运用运算律进行简便计算.
温故知新
1.有理数加法法则是什么?
2.加法的交换律、结合律怎么表示?
3.有理数减法法则是什么?
导入新课
小丽和小彬做游戏:每人抽取4张卡片,如果抽

=(
+
=(−)+ +
=2+
=7
+
总结
有理数的加减混合运算,怎么算呢?
首先:根据运算顺序从左往右依次计算;
其次:每两个数间的运算根据加法或减法的法则
进行计算.
典例讲解
例1.计算:
3
1
4

(1)
;
5
5
5

解:原式 =



=



=-


.

-
+
.
7
1
(2) (- 5)- - 7
到黄色就加上卡片上的数字,如果抽到的是红色,
就减去卡片上的数字.最后分别计算各自四个数字
结果,结果大的获胜,谁获胜了?
小丽
-3
7
0
5
小丽抽到的卡片的计算结果为:
(-3)+7-0+5
=4-0+5
=4+5
=9
小彬




4
-5
小彬抽到的卡片的计算结果为:

- - +4-(−)

北师大版-数学-七年级上册-《有理数的加减混合运算》第一课时名校教案

北师大版-数学-七年级上册-《有理数的加减混合运算》第一课时名校教案

2.6有理数的加减混合运算(1)教学目标:1、能进行包括小数或分数的有理数的加减混合运算;2、能根据具体问题,适当运用运算律简化运算;3、能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.教学重点:省略括号和加号会正确地进行有理数加减混合运算.教学难点:小数或分数的加减混合运算.教学方法引导、探索相结合教具准备投影片三张第一张:第二张:第三张:教学过程:一、通过复习回顾,课前小活动引入课题[师]上节课,我们探讨了有理数的减法,现在来共同回顾一下:在有理数减法中,重点研究了什么呢?[生]研究了有理数减法的法则及其运用.[师]好,那有理数减法的法则是什么呢?共同背一下.[生齐声背]减去一个数,等于加上这个数的相反数.[师]很好,这节课我们首先做一个小活动,请同学们拿出准备好的卡片[生](拿出事先准备好的红绿卡片各10张,上面写着不同的数字,有分数、整数)[师](板书要求:收到红卡片“+”,抽到绿卡片“—”)现在同桌两个一组,每人各抽一轮,一轮抽四张,并把卡片上的数字按要求记录下来[生]小组活动,记录数据[师]同学们都做得很认真,现在我们抽几组交流一下答案。

教师拿几组同学的结论投影,师生共同交流做法。

如果有其他问题及时纠正。

结论:同级运算按从左到右的顺序计算同样适用于有理数运算二、新授*有理数运算:按从左到右的顺序计算[师]下面我们来看一个例题(多媒体展示)例1、(1)545153-+⎪⎭⎫ ⎝⎛- (2)()377215-+⎪⎭⎫ ⎝⎛--- 板书第(1)题:(1)545153-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-5452 =56- 同学练习第(2)题,并找同学板书:(2)()377215-+⎪⎭⎫ ⎝⎛--- =377215-++- =⎪⎭⎫ ⎝⎛-+-37729 =3725- =614615-=61 交流结论注:在一个式子中,如果第一个数带有负号,通常不必把这个数括起来。

有理数的加减混合运算课件北师大版数学七年级上册

有理数的加减混合运算课件北师大版数学七年级上册

(2)本周内该股票的最高价格是多少?最低价格是多少?
星期





股票价格/(元/股)
28
30
29.5
28.5
26.5
根据表格可知,本周内该股票的最高价格是30元/股,最低价格是26.5元/股.
3.小张上星期五买进某公司股票1000股,每股27元.下表为本周内
每日股票的涨跌情况(“+”为涨,“-”为跌),回答下面的问题:
该水库一周内的水位变化情况如图所示.
水位/m
1.4
1.2
1
0.8
0.6
0.4
0.2
0








星期
巩固练习
1.某银行储蓄所办理了7件储蓄业务:取出9.5万元,存进5万元,
取出8万元,存进12万元,存进25万元,取出10.25万元,
取出2万元,这时银行现款增加了( A )
A.12.25万元
B.-12.25万元
警戒水位为15m(上周末的水位到达警戒水位).
星期







水位变化/m
+0.38
+0.25
+0.54
+0.13
5
+0.36
-0.19
注:正号表示比前一天水位上升,负号表示比前一天水位降落.
(2)根据给出的数据,请利用折线统计图分析本周内该水库的水
位变化情况(在不放水的情况下).
星期

(2)求哪一天仓库内的食粮最多,最多是多少;
(2) 9月9日仓库内的食粮最多,

有理数的加减及混合运算(8种题型)-2023年新七年级数学常见题型(北师大版)(解析版)

有理数的加减及混合运算(8种题型)-2023年新七年级数学常见题型(北师大版)(解析版)

有理数的加减及混合运算(8种题型)【知识梳理】一、有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.)二、相关运算律交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).三.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.四.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.五、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】 题型一:有理数的加法法则 例1.计算:(1)(-0.9)+(-0.87); (2)(+456)+(-312);(3)(-5.25)+514; (4)(-89)+0.解:(1)(-0.9)+(-0.87)=-1.77; (2)(+456)+(-312)=113; (3)(-5.25)+514=0;(4)(-89)+0=-89. 【变式】计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0. (1)(+20)+(+12)=+(20+12)=+32=;(2)(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【答案】(1) 4.62−; (2)0.25−.1223⎛⎫⎛⎫−+− ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫−+−=−+=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【详解】(1)解:()()33 2.71 1.695⎛⎫−+−++ ⎪⎝⎭()()3.6 2.71 1.69=−+−+()3.6 2.71 1.69=−++6.31 1.69=−+()6.31 1.69=−−4.62=−;(2)115 4.257522⎛⎫−++−+ ⎪⎝⎭ ()5.5 4.257 5.5=−++−+()1.25 1.5=−+−()1.25 1.5=+− ()1.5 1.25=−−0.25=−.例2.已知|a |=5,b 的相反数为4,则a +b =________.解析:因为|a |=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1. 【变式】若,且,那么的值是( ) A .5或1 B .1或C .5或D .或【答案】D【详解】解:∵|a|=3,|b|=2, ∴a=±3,b=±2, ∵,∴a=-3,b=2或a=-3,b=-2, ∴a+b=-3+2=-1或a+b=-3+(-2)=-5. 故选:D .3,2a b ==a b <+a b 1−5−5−1−a b <题型三:有理数加法在实际生活中的应用例3.股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.【变式1】温州市实验中学于10月30日开展了“行走的力量”之七都环岛毅行活动,其中九年级同学的行程要经过四个打卡点.在活动中,安全负责人王老师骑着电动车在2,3,4号打卡点之间来回巡查(2,3,4号打卡点可近似看作在一条直线上),并接送途中身体不适的同学到4号打卡点.若记队伍行进方向为“+”,王老师在2号打卡点出发,当天的6次行驶记录如下:(单位:km)(1)王老师最终停留的位置离2号打卡点的距离是多少km?(2)若电动车一次充电可以骑行30km,王老师的电动车充满电后骑8km到2号打卡点,做以上6次往返后,还需要骑行5.8km到学校车辆集中点,请问王老师的电动车能否顺利骑到学校车辆集中点?【答案】(1)1km;(2)不能++−+++−+++−【详解】解:(1)( 2.5)(2)( 4.5)(3)(2)(3)=+−0.5 1.51=1km,∴王老师最终停留位置距2号点1km.+++++++=km,(2)8 2.52 4.5323 5.830.8>,∵30.830∴王老师不能顺利骑到车辆集中点.【变式2】国内汽油价格每月会有两次调整,如果以今年6月底的油价为基准,涨价记为正方向,7月至10月的油价调整情况记录如下(单位:元/吨):(1)7月至10月之间,今年_______(填时间)的调价令油价与基准价格相差最大. (2)到10月底,油价能否回到基准价格?请说明理由. 【答案】(1)8月下旬;(2)不能,理由见解析 【详解】解:(1)7月上旬与基准价格相差:+100, 7月下旬与基准价格相差:+100, 8月上旬与基准价格相差:+100, 8月下旬与基准价格相差:+100+85=185, 9月上旬与基准价格相差:185,9月下旬与基准价格相差:185-315=-130, 10月上旬与基准价格相差:-130, 10月下旬与基准价格相差:-130+70=-60, ∴8月下旬的调价令油价与基准价格相差最大; (2)由题意可得:100+0+0+85+0-315+0+70=-60,∴到10月底,油价不能回到基准价格. 题型四:加法运算律及其应用 例4.计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35); (3)(+635)+(-523)+(425)+(1+123).解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20; (3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.【答案】(1)12 (2)3【详解】(1)解:()()25.77.313.77.3+−+−+()()25.713.77.37.3=+−+−+⎡⎤⎡⎤⎣⎦⎣⎦120=+12=(2)()()112.12535 3.258⎛⎫⎛⎫−+++++− ⎪ ⎪⎝⎭⎝⎭()()112.12553 3.285⎡⎤⎡⎤=−+++−⎢⎥⎢⎥⎣⎦⎣⎦30=+ 3=【变式2】计算(1)()()2317622+−++−; (2)()()6.35 1.47.6 5.35−+−+−+. 【答案】(1)-10 (2)-10【详解】(1)解:()()2317622+−++−2317622=−+−()()2361722=+−+2939=−10=−;(2)解:()()6.35 1.47.6 5.35−+−+−+()()()6.35 5.35 1.47.6=−++−+−⎡⎤⎣⎦()1 1.47.6=−+−+⎡⎤⎣⎦19=−−10=−. 【变式3】某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km) +18,-9,+7,-14,+13,-6,-8. (1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km) 故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a(L). 答:该天耗油75aL.题型五:有理数减法法则的直接运用例5、 计算:(1)(-32)-(+5); (2)(+2)-(-25). 【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27 【变式1】计算:(1)7.2-(-4.8); (2)-312-514.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.【变式2】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+− ⎪⎝⎭. (1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)273321+−=−−=− 题型六:有理数减法的实际应用例6.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( ) A .5℃ B .6℃ C .7℃ D .8℃ 解析:由题意得6-(-1)=6+1=7(℃),故选C.【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是( ) A .18℃B .﹣26℃C .﹣22℃D .﹣18℃【解答】解:根据题意得:4﹣22=﹣18(℃), 则这台电冰箱冷冻室的温度为﹣18℃. 故选:D .题型七:有理数的加减混合运算例7.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38). 解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) (4) (5)(6) 【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭132.2532 1.87584+−+1355354624618−++−⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432→同分母的数先加(4) →统一成加法→整数、小数、分数分别加(5)→统一同一形式(小数或分数),把可凑整的放一起(6)→整数,分数分别加【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.4643.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++−= ⎪⎝⎭132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++0.55 4.5=−+=1355354624618−++−1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组; 4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组. 解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.76395684.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+= (4)3.46和1.54的和为整数, 3.87与3.37的和为-0.5,把它们分为一组;546与13−易于通分,把它们分为一组;124−与34同分母,把它们分为一组.解:51133.464 3.872 1.54 3.376344+−−−+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解:1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−182********−++−=+2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++ 0.55 4.5=−+=题型八:利用有理数加减运算解决实际问题例8.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米. 【变式1】小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻? 【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10) =(5+10+12)+(-3-8-6-10)=27-27=0 0表示最后小虫又回到了出发点O 答:小虫最后回到了出发地O. (2) (+5)+(-3)=+2; (+5)+(-3)+(+10)=+12; (+5)+(-3)+(+10)+(-8)=+4; (+5)+(-3)+(+10)+(-8)+(-6)=-2; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O 点最远时是向右12cm; (3)(cm ), 所以小虫爬行的总路程是54 cm ,由 (粒) 答:小虫一共可以得到54粒芝麻.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5. (1)问收工时距A 地多远?(2)若每千米路程耗油0.2升,问从A 地出发到收工时共耗油多少升?【答案与解析】(1)求收工时距A 地多远,应求出已知10个有理数的和,若和为正数,则在A 地前面,若和为负数,则在A 地后面;距A 地的路程均为和的绝对值. 解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5) =[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3) =0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可. (|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升.531086121054++−+++−+−+++−=15454⨯=【过关检测】一.选择题(共10小题)1.(2023•晋中模拟)计算﹣2+6的结果是()A.﹣8B.8C.﹣4D.4【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(6﹣2)=4.故选:D.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.(2023•洞头区二模)计算:2+(﹣3)的结果是()A.1B.﹣1C.﹣5D.5【分析】依据有理数的加法法则进行计算即可.【解答】解:2+(﹣3)=﹣(3﹣2)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟记法则是解题的关键.3.(2023•顺庆区三模)比﹣1大2的数是()A.3B.1C.﹣1D.﹣3【解答】解:﹣1+2=(2﹣1)=1,故选:B.【点评】本题考查了有理数的加法,异号两数相加取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值.4.(2023•哈尔滨一模)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8),=2+8,=10℃.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.5.(2023•建平县模拟)计算﹣3﹣2的结果是()A.﹣1B.﹣5C.1D.5【分析】根据有理数的减法法则计算即可求解.【解答】解:﹣3﹣2=﹣5.故选:B.【点评】本题考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).6.(2023•旺苍县模拟)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【分析】利用有理数的减法法则计算即可.【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.【点评】本题考查了有理数的减法,解题的关键是熟练掌握有理数的减法法则.7.(2022秋•裕华区期末)能与﹣(﹣)相加得0的是()A.﹣B.﹣+C.﹣﹣D.﹣(﹣)【分析】利用有理数的加减混合运算与相反数的定义判断.【解答】解:∵﹣(﹣)的相反数是﹣,∴能与﹣(﹣)相加得0的是﹣.故选:A.【点评】本题考查了有理数的加减混合运算与相反数的定义,解题的关键是掌握有理数的加减混合运算与相反数的定义.8.(2023•孟村县校级模拟)不改变原式的值,把7﹣(+6)﹣(﹣3)+(﹣5)写成省略加号的和的形式为()A.7﹣6+3﹣5B.7﹣6﹣3+5C.﹣7﹣6+3﹣5D.﹣7+6+3﹣5【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式【解答】解:原式=7﹣6+3﹣5,【点评】本题考查有理数加减混合运算的方法,掌握有理数加减法统一成加法是解题关键.9.(2023•温州二模)计算﹣8+2的结果是()A.﹣6B.6C.﹣10D.10【分析】根据正负数的加减法运算即可.【解答】解:﹣8+2=﹣6,故答案为:A.【点评】本题考查了有理数的加法运算,熟练掌握正负数的加减法运算是解本题的关键,难度不大,仔细审题即可.10.(2023•青龙县模拟)将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是()A.﹣3+6﹣5﹣2B.﹣3﹣6+5﹣2C.﹣3﹣6﹣5﹣2D.﹣3﹣6+5+2【分析】原式利用减法法则变形即可得到结果.【解答】解:﹣3﹣(+6)﹣(﹣5)+(﹣2)=﹣3﹣6+5﹣2.故选:B.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)11.(2022秋•郸城县期末)把5+(﹣3)﹣(﹣7)﹣(+2)写成省略括号的形式是.【解答】解:原式=5+(﹣3)+7+(﹣2)=5﹣3+7﹣2,故答案为:5﹣3+7﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是熟练掌握运算法则.12.(2023•黔东南州一模)计算:﹣3+4=.【分析】根据有理数的加法法则计算即可.【解答】解:原式=+(4﹣3)=1.故答案为:1.【点评】本题考查了有理数的加法,掌握绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.13.(2022秋•秦淮区期末)有理数的减法法则是“减去一个数等于加上这个数的相反数.”在学过用字母表示数后,请借助符号描述这句话,.【分析】根据有理数的减法法则即可解决问题.【解答】解:依题意得:减去一个数,等于加上这个数的相反数,用字母表示这一法则,可写成:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b).【点评】此题主要考查了有理数的减法法则,同时也考查了利用字母表示数或公式,正确记忆代数式的概念是解题关键.14.(2023•德兴市一模)绝对值小于3的所有整数的和是.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.【点评】此题考查了绝对值的意义,并能熟练运用到实际当中.15.(2023•抚松县一模)23﹣|﹣6|﹣(+23)=.【分析】先计算绝对值,再根据有理数减法法则计算即可.【解答】解:23﹣|﹣6|﹣(+23)=23﹣6﹣23=﹣6.16.(2023•杨浦区三模)计算:﹣3﹣2=.【分析】根据有理数减法的法则,减去2等于加上﹣2,即可得解.【解答】解:﹣3﹣2=﹣3+(﹣2)=﹣5.故填﹣5.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.有理数的加法法则:两个负数相加,符号不变,把绝对值相加.17.(2022秋•辛集市期末)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号和括号的和的形式为.【分析】将有理数的加减混合运算统一成加法后,利用有理数的加法法则解答即可.【解答】解:原式=(+5)+(﹣2)+(+3)+(﹣9)=5﹣2+3﹣9,故答案为:5﹣2+3﹣9.【点评】本题主要考查了有理数的加减混合运算,将有理数的加减混合运算统一成加法是解题的关键.18.(2023•贾汪区一模)已知甲地的海拔高度是200m,乙地的海拔高度是﹣80m,那么甲地比乙地高m.【分析】根据有理数减法的运算方法,用甲地的海拔高度减去乙地的海拔高度,求出甲地比乙地高多少即可.【解答】解:200﹣(﹣80)=280(m)答:甲地比乙地高280m.故答案为:280.【点评】此题主要考查了有理数减法的运算方法,要熟练掌握.三.解答题(共10小题)19.(2022秋•德惠市期中)列式并计算:(1)求4与﹣的差;(2)求﹣15的绝对值与12的相反数的和.【分析】(1)根据题意列出算式:4,再根据有理数减法法则进行计算便可;(2)根据题意列出算式:|﹣15|+(﹣12),再根据绝对值的定义,加法法则计算便可.【解答】解:(1)4=4=5;(2)|﹣15|+(﹣12)=15﹣12=3.【点评】本题考查了有理数的加减法,绝对值和相反数的概念,关键是正确列出算式和熟记运算法则.20.(20220.5)﹣(﹣3.2)+(+2.8)﹣(+6.5).【分析】根据有理数的加减法法则以及加法交换律和结合律计算即可.【解答】解:原式=﹣0.5+3.2+2.8﹣6.5=(3.2+2.8)﹣(0.5+6.5)=6﹣7=﹣1.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.21.(2022秋•北京期末)计算:10﹣(﹣6)+8﹣(+2).【分析】先化简,再计算加减法即可求解.【解答】解:10﹣(﹣6)+8﹣(+2)=10+6+8﹣2=24﹣2=22.【点评】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.22.(2022秋•松原期末)计算:20﹣11+(﹣10)﹣(﹣12).【分析】根据同号结合的原理,求解.【解答】解:20﹣11+(﹣10)﹣(﹣12)=20﹣11﹣10+12=32﹣21=11.【点评】本题考查了有理数的加减混合运算,掌握加法结合律是解题的关键.23.(2023春•黄浦区期中)计算:.【分析】根据有理数的加减混合运算计算即可.【解答】解:原式=3﹣2.4+1﹣1.6=(3+1)﹣(2.4+1.6)=5﹣4=1.【点评】本题考查了有理数的混合运算,根据加法的交换律结合律计算是关键.24.(2022秋•锡山区期末)在数学活动课上,王老师介绍说有人建议向火星发射如图1的图案.它叫幻方,幻方最早源于我国,古人称之为纵横图.其中9个格中的点数分别是1,2,3,4,5,6,7,8,9.每一横行、每一竖列以及两条对角线上的点数的和都相等.如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).(1)将﹣10,﹣8,﹣6,﹣4,﹣2,0,2,4,6这9个数分别填入图2的幻方的空格中,使得每一横﹣6,并请同学们补全其余的空格.(2)在图3的幻方中,每一横行、每一竖列以及两条对角线上的数的和都相等.根据所给信息求出x的值,并根据x的值补全图4的幻方的空格.【分析】(1)求出所给数的和为﹣18,即可求每行、每列、两条对角线上的数的和为﹣6;(2)由题意可知3x+2+=x﹣1﹣4,求出x的值,填表即可.【解答】解:(1)∵﹣10+(﹣8)+(﹣6)+(﹣4)+(﹣2)+0+2+4+6=﹣18,∴﹣18÷3=﹣6,∴每行、每列、两条对角线上的数的和为﹣6,如图,故答案为:﹣6;(2)∵每一横行、每一竖列以及两条对角线上的数的和都相等,∴3x+2+=x﹣1﹣4,∴x=﹣5,所填表如图.【点评】本题考查有理数的加法,理解题意,能够根据所给的数,列出代数式并求解是解题的关键.25.(2022秋•衡阳县期中)学习了绝对值的概念后,我们可以认为:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,也即当a<0时,|a|=﹣a,根据以上阅读完成下面的问题:(1)|2﹣3|=;(2)|3.14﹣π|=;(3)如果有理数a<b,则|a﹣b|=;(4)请利用你探究的结论计算下面式子:|﹣1|+|﹣|+|﹣|+…+||+||.【分析】(1)原式利用绝对值的代数意义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值;(3)判断a﹣b的正负,利用绝对值的代数意义计算即可求出值;(4)原式利用绝对值的代数意义化简,计算即可求出值.【解答】解:(1)|2﹣3|=3﹣2=1;(2)|3.14﹣π|=π﹣3.14;(3)∵a<b,即a﹣b<0,∴|a﹣b|=b﹣a;(4)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:(1)1;(2)π﹣3.14;(3)b﹣a.【点评】此题考查了有理数减法,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.26.(2022秋•邻水县期末)数学张老师在多媒体.上列出了如下的材料:计算:.解:原式==.上述这种方法叫做拆项法.请仿照上面的方式计算:.【分析】根据题目所提供的计算方法,写成几个整数的和以及几个分数的和即可.【解答】解:原式=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+=(﹣2021﹣2022+4044)+(﹣﹣+)=1+(﹣)=.【点评】本题考查有理数的加法,掌握有理数加法的计算方法是正确解答的关键.27.(2023•龙川县校级开学)一批货品每箱重量标准为2千克,质量检验员抽查其中5箱的重超过标准的记为“+”,不足的记为“﹣”,分别记为﹣0.1、﹣0.2、+0.3、+0.1、+0.5,问这5箱货品的平均重量为多少千克?【分析】超过标准的记为量,“+”,不足的记为“﹣”,所以﹣0.1、﹣0.2、+0.3、+0.1、+0.5相加就是这五箱的总情况.要注意标准为2千克.【解答】解:+2=2.12千克【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.28.(2022秋•新河县校级月考)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,,,所以1,﹣2,3的“分差”为﹣.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,求这些不同“分差”中的最大值.【分析】(1)根据题中意思分别求出三个数,然后比较大小即可得出答案;(2)先给这三个数进行排序,分别求出其中的分差,然后比大小即可得出答案.【解答】解:(1)根据题意可得:﹣2﹣(﹣4)=2,,=﹣,∵﹣<<2,∴﹣2,﹣4,1的“分差”为﹣,故答案为:﹣;(2)①这三个数的位置为:﹣2,﹣4,﹣1时,根据(1)中所求“分差”为﹣;②这三个数的位置为:﹣2,1,﹣4时,则﹣2﹣1=﹣3,,=,∵﹣3<1<,∴﹣2,1,﹣4的“分差”为﹣3;③这三个数的位置为:1,﹣2,﹣4时,则1﹣(﹣2)=3,,=,∵<<3,∴1,﹣2,﹣4的“分差”为;④这三个数的位置为:1,﹣4,﹣2时,则1﹣(﹣4)=5,,=﹣,∵﹣<<5,∴1,﹣4,﹣2的“分差”为﹣;⑤这三个数的位置为:﹣4,1,﹣2时,则﹣4﹣1=﹣5,,=1,∵﹣5<﹣1<1,∴﹣4,1,﹣2的“分差”为﹣5;’⑥这三个数的位置为:﹣4,﹣2,1时,则﹣4﹣(﹣2)=﹣2,,=﹣1,∵<﹣2<1,∴﹣4,﹣2,1的“分差”为;∵>﹣>﹣>﹣>﹣3>﹣5,∴这些不同“分差”中的最大值为.【点评】本题考查了新定义以及有理数的运算,解题关键:理解什么叫做“分差”.。

有理数的加减混合运算北师大版七年级数学上册

有理数的加减混合运算北师大版七年级数学上册

(2)按以上的支出水平,估计小李一个月(按30天计 算)至少有多少收入才能维持正常开支?
(2) ×(-|60|+|-64|+|-63|+|-58|+|-60|+ |-64|+|-65|)=62(元),
62×30=1 860(元). 答:小李一个月(按30天计算)至少要有1 860元 的收入才能维持正常开支.

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
(2)第一次:+5,第二次:+5-3=+2, 第三次:+2+10=+12,第四次:+12-8=+4, 第五次:+4-6=-2,第六次:-2+12=+10, 第七次:+10-10=0. 答:离开球门的位置最远是12米.
(3)守门员一共走了多少路程?
(3)总路程=|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|10|=54(米).
(2)升降机共运行了多少米? (2)6+4+5+7=22(m). 答:升降机共运行了22 m.
三级拓展延伸练 14.计算
A. 54 B. 27 C.
的值( C ) D. 0

北师大版七年级数学上册《有理数的加减混合运算》典型例题(含答案)

北师大版七年级数学上册《有理数的加减混合运算》典型例题(含答案)

《有理数的加减混合运算》典型例题例1 计算下列各式:(1)()()4357+-++-;(2)()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++-322213224; (3)3696+--;(4)()()()()8.45.22.35.5-------.解:(1)原式()()[]()4537++-+-=()910+-=1-=.(2)原式()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+-=322322214 ()0214+⎪⎭⎫ ⎝⎛-+-= 214-=. (3)原式()6936--+=699--=60-=6-=.(4)原式()8.45.22.35.5+++-=()[]()8.42.35.25.5+++-=83+-=5=.说明:对于有理数的加法或有理数的减法的题目,要先进行全面分析,找出特点,采用适当的步骤,才能计算正确、简便和迅速,如多个有理数相加、一般按从左到右的顺序,逐个进行计算而得出结果.但根据题目特点,若能应用加法交换律或结合律的一定要先用这些运算律,不但可以简便运算,而且还能防止出错.另外,加数中若有相反数,也应先把相反数相加.例2 计算:2111)10()9()217()8(7+-++------. 分析 在进行加减混合运算时运算的顺序是由左向右,所以该题我们可以由左向右依次进行;也可以先利用减法法则把式子中的减法运算都变成加法运算,再考虑运用运算定律进行简算.解 方法一:2111)10()9()217()8(7+-++------ 2111)10()9()217(87+-++---+-= 2111)10()9()217(1+-++---= 2111)10()9(2171+-++-+= .12111)10()9(218=+-++-= 方法二:2111)10()9()217()8(7+-++------ 2111)10()9(21787+-+-+++-= )21112178()]10()9(7[+++-+-+-= .12726=+-=说明:(1)在运用结合律和交换律时,我们首先要根据减法运算法则把式子中的减法都变成加法;(2)在交换数的前后位置时应连同符号一起交换;(3)在我们运算熟练之后,负数相加可以省略“+”号,但我们可以仍然认为是加法.如2111)10()9(21787+-+-+++-可以写成: 211110921787+--++-.其中的…-9-10+…可以看成是…+(-9)+(-10)+….例3 计算下列各题:(1)()()⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-76.892583450114776.89;(2)()5.14328412435313--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-;(3)3135.4514121516+-+---. 解:(1)原式()76.892583450114776.89++⎪⎭⎫ ⎝⎛-+-= ()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++-=2583450114776.8976.89 109125045120-=⎪⎭⎫ ⎝⎛-+=. (2)原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=328412435313()5.14++ 5.14328412435313+-+--= ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--=5.14412435328313 ⎪⎭⎫ ⎝⎛+-+-=5.1421312 11112-=+-=(3)原式⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛----=3135145.4151621 15113561+-= 1511315183+-= 314-=. 说明:计算有理数加减混合运算的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个数同零相加,仍得这个数
(5)9-(-5)=14)-3-1 =-4
学习目标
1、能熟练地进行有理数的加减混合运算。 2、在将加减混合运算统一成加法运算并 省略加号及括号的过程中,理解省略加 号后的写法和读法。 3、在进行有理数的加减混合运算的过程 中体会“转化”的数学思想。
3 4 1 (2)原式= ( 5 )+ 5 5
7 1 = + 5 5 6 = 5
课堂练习
1 0-1+2-3+4-5 2 -4.2+5.7-8.4+10.2
3 -30-11- -10 + -12 +18
1 1 1 1 1 4 3 - -2 + - - 2 4 3 4 6
(1)(-1.2)+(-2.1)+(+0.2)+(-0.5) (2) (-40)+(+27)+19+(-24)+(-32)
小窍门:“同号得正,异号得负”

随堂练习
1.把下列各式写成省略括号的和的形式 (1)(-5)+(+7)-(-3)-(+1); (2)10+(-8)-(+18)-(-5)
(3)4.5+(-3.2)+1.1+(-1.4) (4)4.5-3.2+1.1-1.4
高度变化
下降33.1米 下降22.9米 上升10.5米 下降12.5米
记作
-33.1米 -22.9米 10.5米 -12.5米
求潜水艇最后的高度.
解法一: -33.1+(-22.9)+10.5+(-12.5) = -56+(-2) = -58(千米) 解法二: -33.1 - 22.9 + 10.5 - 12.5 = -56+ 10.5 - 12.5 = -45.5-12.5 = -58(千米) 比较以上两种算法,你发现了什么?
-33.1-22.9 + 10.5-12.5= -33.1+(22.9)+10.5 +(-12.5)
①加减混合运算可以统一成加法
-33.1+(-22.9)+10.5 +(-12.5)= -33.122.9 + 10.5-12.5
②加法运算可以写成省略括号和 括号前加号的形式
例1:把下列各算式写成和的形式. (1)(-15)+(-3)-(+7)-(-8)+(-11) (2)(-40)-(+5)-(-3)-(+6) 例2:把下列各算式写成省略括号的形式.
2.6 有理数的加减混合运算(一)
复习回顾:
(1)-10+(-1)=-11
同号两数相加,取相同的符号,并把绝对值相加
(2)5+(-5)=0
互为相反数的两个数相加得零
(3)180+(-10) =170 绝对值不等的异号两数相加,取绝对值较大的数的符号, 并用较大的绝对值减去较小的绝对值 =-2 (4)0+(-2)
说说这节课你的收获是什么?
1.加减混合运算可以统一成加法 2.加法运算可以写成省略括号和括号前加号的 形式
知识要点
有理数加减混合运算:将有理数加减统一成加法 再运用加法法则和运算律进行计算;
方法技能
转化思想:将减法转化为加法
易错提示
减法转化为加法时,
运算符号和性质符号需同时改变
作业:
课本第68页:习题2.7
2.说出式子-3+5-6+1的两种读法.
例3:计算下列各题
1 2 (1) ( ) 7 7 3 1 4 ( 2) ( ) ( ) ( 3) 4.7 3.4 ( 8.5) 5 5 5 1 2 (3)原式= 4 . 7 3 . 4 8 . 5 解:(1)原式= 7 7 = 9 .8 1 = 7
练习:1.计算 (1) (-2.4)-(-1.6)+(-7.6)-(-9.4)
1
(2) (+3.7)-(-2.1)-1.8+(-2.6)
1+ -3 - -1 (3) ( ) ( ) 4 4 4 (4) (-4)-|-7| -11
1.4
1 4
2.下列各式中与a-b-c的值不相等的是( A ) A.a-(+b)-(-c) B.a-(+b)-(+c) C.a+(-b)+(-c) D.a-(+b)+(-c)
4.5 - 3.2 + 1.1 - 1.4 = 4.5+(-3.2)+ 1.1 +(-1.4)
①加减混合运算可以统一成加法
4.5+(-3.2)+ 1.1 +(-1.4)= 4.5 - 3.2 + 1.1 - 1.4
②加法运算可以写成省略括号和 括号前加号的形式
再议一议: 一艘潜水艇开始水下作业,水下高度变化如下:
议一议: 一架飞机做特技表演,起飞后的高 度变化如下表:
此时飞机比起飞点高了多少千米?
解法一: 4.5+(-3.2)+1.1+(-1.4) = 1.3+1.1+(-1.4) = 2.4+(-1.4) = 1(千米) 解法二: 4.5 - 3.2 + 1.1 - 1.4 = 1.3 + 1.1 - 1.4 = 2.4 - 1.4 = 1(千米) 比较以上两种算法,你发现了什么?
相关文档
最新文档