数据结构之归并排序

合集下载

5. 5排序算法--快速与归并 课件-2021-2022学年浙教版(2019)高中信息技术选修1

5. 5排序算法--快速与归并  课件-2021-2022学年浙教版(2019)高中信息技术选修1

快速排序算法
·快速排序算法(用栈实现)
代码:
def quick_sort(array, l, r): if l >= r: return stack = [] stack.append(l) stack.append(r) while stack: low = stack.pop(0) hight = stack.pop(0) if hight - low <= 0: continue k = array[hight] i = low - 1 for j in range(low, hight):
选修1《数据与数据结构》
第五章 数据结构与算法
5.5 排序算法 --快速与归并
学习目标
快速排序算法 归并排序算法
排序算法
快速排序算法
排序算法
·快速排序的基本思路
快速排序使用分治法策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1、 在数组中选一个基准数(通常为数组第一个)。 2、将数组中小于基准数的数据移到基准数左边,大于基准数的移到右边。 3、对于基准数左、右两边的数组,不断重复以上两个过程,直到每个子集只 有一个元素,即为全部有序。
排序算法
k = l #归并子数组的索引 while i < n1 and j < n2:
if L[i] <= R[ j]: arr[k] = L[i] i += 1
else: arr[k] = R[ j] j += 1
k += 1 while i < n1:
arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[ j] j += 1 k += 1

数据结构第9章 排序

数据结构第9章 排序

R[3] 10
R[4] 60
R[5] 25
R[6] 30
R[7] 18 18 18 18
18 36 20

10 10 36
60 60 60
25 25 25
30 30 30
【算法】直接插入排序 void D_InsertSort(datatype R[ ], int n) { /*对排序表R[1]..R[n]进行直接插入排序,n是记录的 个数*/ for(i=2; i<=n; i++) if (R[i].key<R[i-1].key) {R[0]=R[i]; /*将R[i]插入R[1].. R[i-1]中, R[0]为监测哨*/ for(j=i-1; R[0].key<R[j].key; j--) R[j+1]=R[j]; /*后移记录*/ R[j+1]=R[0]; /*插入到合适位置*/ } }
空间性能:除排序表以外的内存占用情况。 时间性能:比较关键码的次数,数据移动的次数。 它们往往是排序表规模(n)的函数
6. 记录和排序表的数据结构
一般采用顺序结构存储排序表。 记录和排序表的类型定义如下: #define MAXNUM … /* MAXNUM 为足够大的数 typedef struct { keytype key; …… } datatype; datatype R[MAXNUM]; /*关键码字段*/ /*其它信息*/ /*记录类型*/ /*定义排序表的存储
第一趟排序结果,使得间隔为5的字表有序: P=3
29 7 41 30 11 39 50 76 41 13 10 0 80 78 86
子序列分别为:{29,30,50,13,78},{7,11,76,100,86}, {41,39,41,80}。第二趟排序结果: P=1

数据结构答案 第10章 排序学习与指导

数据结构答案 第10章 排序学习与指导

第10章排序10.1 知识点分析1.排序基本概念:(1)排序将数据元素的任意序列,重新排列成一个按关键字有序(递增或递减)的序列的过程称为排序。

(2)排序方法的稳定和不稳定若对任意的数据元素序列,使用某个排序方法,对它按关键字进行排序,若对原先具有相同键值元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;反之,则称为不稳定的。

(3)内排序整个排序过程都在内存进行的排序称为内排序,本书仅讨论内排序。

(4)外排序待排序的数据元素量大,以致内存一次不能容纳全部记录,在排序过程中需要对外存进行访问的排序称为外排序。

2.直接插入排序直接插入排序法是将一个记录插到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。

3.二分插入排序二分插入排序法是用二分查找法在有序表中找到正确的插入位置,然后移动记录,空出插入位置,再进行插入的排序方法。

4.希尔排序希尔排序的基本思想是:先选取一个小于n的整数d1作为第一个增量,把待排序的数据分成d1个组,所有距离为d1的倍数的记录放在同一个组内,在各组内进行直接插入排序,每一趟排序会使数据更接近于有序。

然后,取第二个增量d2,d2< d1,重复进行上述分组和排序,直至所取的增量d i=1(其中d i< d i-1 < ……< d2< d1),即所有记录在同一组进行直接插入排序后为止。

5.冒泡排序冒泡法是指每相邻两个记录关键字比大小,大的记录往下沉(也可以小的往上浮)。

每一遍把最后一个下沉的位置记下,下一遍只需检查比较到此为止;到所有记录都不发生下沉时,整个过程结束。

6.快速排序快速排序法是通过一趟排序,将待排序的记录组分割成独立的两部分,其中前一部分记录的关键字均比枢轴记录的关键字小;后一部分记录的关键字均比枢轴记录的关键字大,枢轴记录得到了它在整个序列中的最终位置并被存放好。

第二趟再分别对分割成两部分子序列,再进行快速排序,这两部分子序列中的枢轴记录也得到了最终在序列中的位置而被存放好,并且它们又分别分割出独立的两个子序列……。

数据结构第八章_排序

数据结构第八章_排序

49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价

38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构实验报告-排序

数据结构实验报告-排序

数据结构实验报告-排序一、实验目的本实验旨在探究不同的排序算法在处理大数据量时的效率和性能表现,并对比它们的优缺点。

二、实验内容本次实验共选择了三种常见的排序算法:冒泡排序、快速排序和归并排序。

三个算法将在同一组随机生成的数据集上进行排序,并记录其性能指标,包括排序时间和所占用的内存空间。

三、实验步骤1. 数据的生成在实验开始前,首先生成一组随机数据作为排序的输入。

定义一个具有大数据量的数组,并随机生成一组在指定范围内的整数,用于后续排序算法的比较。

2. 冒泡排序冒泡排序是一种简单直观的排序算法。

其基本思想是从待排序的数据序列中逐个比较相邻元素的大小,并依次交换,从而将最大(或最小)的元素冒泡到序列的末尾。

重复该过程直到所有数据排序完成。

3. 快速排序快速排序是一种分治策略的排序算法,效率较高。

它将待排序的序列划分成两个子序列,其中一个子序列的所有元素都小于等于另一个子序列的所有元素。

然后对两个子序列分别递归地进行快速排序。

4. 归并排序归并排序是一种稳定的排序算法,使用分治策略将序列拆分成较小的子序列,然后递归地对子序列进行排序,最后再将子序列合并成有序的输出序列。

归并排序相对于其他算法的优势在于其稳定性和对大数据量的高效处理。

四、实验结果经过多次实验,我们得到了以下结果:1. 冒泡排序在数据量较小时,冒泡排序表现良好,但随着数据规模的增大,其性能明显下降。

排序时间随数据量的增长呈平方级别增加。

2. 快速排序相比冒泡排序,快速排序在大数据量下的表现更佳。

它的排序时间线性增长,且具有较低的内存占用。

3. 归并排序归并排序在各种数据规模下都有较好的表现。

它的排序时间与数据量呈对数级别增长,且对内存的使用相对较高。

五、实验分析根据实验结果,我们可以得出以下结论:1. 冒泡排序适用于数据较小的排序任务,但面对大数据量时表现较差,不推荐用于处理大规模数据。

2. 快速排序是一种高效的排序算法,适用于各种数据规模。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

数据结构-排序

数据结构-排序

实现“一趟插入排序”可分三步进行: 实现“一趟插入排序”可分三步进行: 三步进行 1.在 有序区 中查找 R[i] 的插入位置, . 的插入位置, 2.记录后移一个位置; .记录后移一个位置; 3.将 R[i] 插入(复制)到 相应 的位置上。 . 插入(复制) 的位置上。
第8页
直接插入排序
R0 初始状态 i =2 i =3 i =4 i =5 76 38
49 } // InsertSort 7趟 i =6 13 13 38 49 65 76 97 27 49 排序 排序过程: 个记录看成是一个有序子序列, 排序过程:先将序列中第 1 个记录看成是一个有序子序列, i =7 27 13 27 38 49 65 76 97 49 个记录开始,逐个进行插入,直至整个序列有序。 然后从第 2 个记录开始,逐个进行插入,直至整个序列有序。 i =8 49 13 27 38 49 49 65 76 97
数据结构(C++语言版)
第1页
目 录
1 2 3 3 4 3 5 3 6 3
第2页
排序的基本概念 插入类排序 交换类排序 选择类排序 归并排序 小结
概念
排序:将数据元素的一个任意序列,重新排列成一个按关键 排序:将数据元素的一个任意序列,重新排列成一个按关键 字有序的序列 的序列。 字有序的序列。 R1, R2, R3, R4, R5, R6, R7, R8 例:将关键字序列:52, 49, 80, 36, 14, 58, 61, 23 将关键字序列: K1, K2, K3, K4, K5, K6, K7, K8 Kp1 ≤Kp2 ≤Kp3 ≤Kp4 ≤Kp5 ≤ Kp6 ≤Kp7 ≤Kp8 调整为:14, 23, 36, 49, 调整为: Rp1, Rp2, Rp3, Rp4, 52, 58, Rp5, Rp6, 61 , 80 Rp7, Rp8

数据结构加强之排序算法讲解

数据结构加强之排序算法讲解
操作细节: 当插入第i(i≥1)个对象时, 前面的r[0], r[1], …, r[i-1]已 经排好序。 用r[i]的关键字与r[i-1], r[i-2], …的关键字顺序进行比 较(和顺序查找类似),如果小于,则将r[x]向后移动(插入 位置后的记录向后顺移);找到插入位置即将r[i]插入。
3.1 直接插入排序
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }
排序算法
常见的经典排序算法
冒泡排序 选择排序 插入排序 希尔排序 快速排序 归并排序
1 冒泡排序
算法描述 设待排序记录序列中的记录个数为n
一般地,第i趟起泡排序从1到n-i+1
依次比较相邻两个记录的关键字,如果发生逆序, 则交换之。 其结果是这n-i+1个记录中,关键字最大的记录被 交换到第n-i+1的位置上,最多作n-1趟。

数据结构与算法(12):排序

数据结构与算法(12):排序

int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;

知识点归并排序和基数排序

知识点归并排序和基数排序
3. 简单选择排序、堆排序和归并排序的时间性 能不随记录序列中关键字的分布而改变。
数据结构
二、空间性能 指的是排序过程中所需的辅助空间大小
1. 所有的简单排序方法(包括:直接插入、
起泡和简单选择) 和堆排序的空间复杂度为O(1);
2. 快速排序为O(logn),为递归程序执行过程中,
栈所需的辅助空间;
数据结构
容易看出,对 n 个记录进行归并排序的时间 复杂度为Ο(nlogn)。即:
每一趟归并的时间复杂度为 O(n), 总共需进行 log2n 趟。
数据结构
10.6 基 数 排 序
数据结构
基数排序是一种借助“多关键字排序” 的思想来实现“单关键字排序”的内部 排序算法。
多关键字的排序
链式基数排序
一、多关键字的排序 n 个记录的序列 { R1, R2, …,Rn} 对关键字 (Ki0, Ki1,…,Kid-1) 有序是指:
对于序列中任意两个记录 Ri 和 Rj (1≤i<j≤n) 都满足下列(词典)有序关系: (Ki0, Ki1, …,Kid-1) < (Kj0, Kj1, …,Kjd-1) 其中: K0 被称为 “最主”位关键字
数据结构
10.5 归 并 排 序(知识点三)
数据结构
归并的含义是将两个或两个以上的有序表组 合成一个新的有序表。
归并排序可分为两路归并排序,或多路归并 排序,既可用于内排序,也可用于外排序。这 里仅对内排序的两路归并方法进行讨论。
数据结构
两路归并排序算法思路:
假设初始序列含有n个记录,首先把n个记录 看成n个长度为1的有序序列,进行两两归并, 得到 n/2个长度为2的关键字有序序列, 再两两归并直到所有记录归并成一个长度为n 的有序序列为止。

数据结构二路归并排序代码

数据结构二路归并排序代码

数据结构二路归并排序代码下面是一个使用 C++ 实现的二路归并排序的代码示例:```cpp#include <iostream>#include <vector>using namespace std;// 合并两个已排序的子数组为一个已排序的数组void merge(vector<int>& arr, vector<int>& temp, int l, int m, int r) { int n1 = m - l + 1;int n2 = r - m;// 复制数据到 temp 数组for (int i = 0; i < n1; i++)temp[i] = arr[l + i];for (int j = 0; j < n2; j++)temp[n1 + j] = arr[m + 1 + j];int i = 0, j = n1, k = l;// 合并 temp 中的两个子数组回到 arrwhile (i < n1 && j < n1 + n2) {if (temp[i] <= temp[j]) {arr[k++] = temp[i++];} else {arr[k++] = temp[j++];}}while (i < n1) {arr[k++] = temp[i++];}while (j < n1 + n2) {arr[k++] = temp[j++];}}// 二路归并排序函数void mergeSort(vector<int>& arr, vector<int>& temp, int l, int r) {if (l < r) {int m = l + (r - l) / 2;mergeSort(arr, temp, l, m);mergeSort(arr, temp, m + 1, r);merge(arr, temp, l, m, r);}}// 测试案例int main() {vector<int> arr = {12, 11, 13, 5, 6};int arr_size = arr.size();vector<int> temp(arr_size);std::cout << "排序前的数组为:\n";for (int i = 0; i < arr_size; i++)std::cout << arr[i] << " ";std::cout << "\n 执行二路归并排序...\n";mergeSort(arr, temp, 0, arr_size - 1);std::cout << "\n 排序后的数组为:\n";for (int i = 0; i < arr_size; i++)std::cout << arr[i] << " ";return 0;}```这段代码实现了二路归并排序的程序,其平均时间复杂度为 $O(nlogn)$ ,空间复杂度为 $O(n)$ 。

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法导言在计算机科学中,排序算法是一类常见且重要的算法。

通过对一组元素进行排序,我们可以提高数据的组织性和检索效率。

本文将介绍头歌数据结构十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。

冒泡排序冒泡排序是一种简单直观的排序算法。

它通过多次比较和交换相邻元素的方式,将较大(或较小)的元素逐渐交换至数组的一端,从而达到排序的目的。

选择排序选择排序是一种简单且高效的排序算法。

它通过每次选择未排序部分的最小元素,并将其交换至已排序部分的末尾,从而逐步构建有序序列。

插入排序插入排序是一种自然而然的排序算法。

它通过将待排序元素逐个插入已排序序列的正确位置,不断扩大已排序部分的范围,从而完成排序。

希尔排序希尔排序是一种高效的插入式排序算法。

它通过将待排序元素分组,分组内进行插入排序,然后逐步减小分组的大小,以达到整体有序的目的。

归并排序归并排序是一种高效且稳定的排序算法。

它将已排序的子序列合并,不断递归地执行该操作,直到合并整个序列,从而实现排序。

快速排序快速排序是一种高效的分治排序算法。

它通过选择一个基准元素,将序列分割成两部分,并分别对这两部分进行排序,最终将序列有序地整合起来。

堆排序堆排序是一种高效且稳定的排序算法。

它利用堆这种特殊的数据结构,在每次构建堆过程中,获取最大(或最小)元素,并将其放入已排序部分的末尾,从而完成排序。

计数排序计数排序是一种非比较性的排序算法。

它通过统计每个元素出现的次数,计算每个元素应该在有序序列中的位置,从而完成排序。

桶排序桶排序是一种高效的排序算法。

它通过将元素分配到不同的桶中,并对每个桶进行排序,从而得到排序结果。

基数排序基数排序是一种高效的排序算法。

它通过将待排序元素按照个位、十位、百位等进行排序,最终得到有序序列。

结语头歌数据结构十大经典排序算法是计算机科学中不可或缺的内容。

归 并 排 序

归 并 排 序
数据结构
归并排序
归并是指将若干个已排序好的有序表合并成 一个有序表。两个有序表的归并称为二路归 并。
归并排序就是利用归并过程,开始时先将n 个数据看成n个长度为1的已排好序的表,将 相邻的表成对合并,得到长度为2的(n/2) 个有序表,每个表含有2个数据;进一步再 将相邻表成对合并,得到长度为4的(n/4) 个有序表;……;如此重复做下去,直至所 有数据均合并到一个长度为n的有序表为止, 就完成了排序。
for (t=i; t=n; t++) r2[t]=r[t];
}
二路归并排序函数
void mergesort (sqlist r, int n) {
sqlist r2; int s=1; while (s<n) {
mergepass (r, r2,n,s); s=2*s; mergepass (r2, r,n,s); s=2*s; } }
图8.9 二路归并排序
下面是将两个有序表归并的函数Merge, 设待归并的两个表存于数组r中,其中一 个的数据安排在下标从m到n单元中,另 一个安排在下标从(n+1)到h单元中, 归并后得到的一个有序表,存入辅助数 组r2中。归并过程是依次比较这两个有 序表中相应的数据,按照“取小”原则 复制到r2之中即可。
void merge (sqlist r, r2, int m, n, h)
{

int i, j, k; k=m;
并 i=m;

j=n+1; /* k为r2的指示器,i,j分别为两个有序 表的指示器*/

while ( i<=n && j<=h)

{ if (r[i].key <= r[j].key)

大数据数据结构和算法_排序_归并排序(外部排序)

大数据数据结构和算法_排序_归并排序(外部排序)
重复上述过程,直到大文件处理完毕,这样我们就得到了很多有序的小文件.
2.利用多路归并排序对这些小文件排序,按行写入最终的有序大 文件.

最终结果, 大文件(有序)
排序
2
6
1
3
7
5
4
7
13
5
8
14
6
20
15
文件1 文件2 文件3
3个小文件,每个文件内的数 据都有序
6 6 13
将最小值写入
6
6 13
将最小值写入
6
7 13
将最小值写入
7
7 13
将最小值写入
7
8 13
将最小值写入
8
13 20
将最小值写入
13
14 20
将最小值写入
14
15 20
排序
外部排序合并策略 维护n个小文件的输入input[n]. 维护1个内存中的小对象或者小数组mem_array[n],用于排序. 1.每次从小对象mem_array中取最小least的元素,写入最终文件, 一次写入一个数据. 2.若选取的最小元素属于第 i 个小文件,那么从input[i]读取下一 个数据放入mem_array[i]中,进行排序. 3.重复1、2步,直到所有的input[n]中数据都已处理完毕.
排序
最小值属于哪个文件,就从哪个文件取下一个值 并加入mem进行排序
2
6
1
1
2
6
将最小值写入
1
3
7
5
4
7
13
5
8
14
6
20
15
文件1 文件2 文件3
2
5

数据结构排序实验报告

数据结构排序实验报告

引言概述:数据结构排序实验是计算机科学与技术专业中一项重要的实践课程。

通过实验,可以深入理解和掌握不同排序算法的原理、特点和性能表现。

本文将针对数据结构排序实验进行详细的阐述和总结,包括实验目的、实验内容、实验结果分析和总结。

一、实验目的1. 加深对数据结构排序算法的理解:通过实验,掌握不同排序算法的工作原理和实现方式。

2. 分析和比较不同排序算法的性能:对比不同排序算法在不同数据规模下的时间复杂度和空间复杂度,理解它们的优劣势。

3. 提高编程和算法设计能力:通过实验的编写,提升对排序算法的实现能力和代码质量。

二、实验内容1. 选择排序算法:选择排序是一种简单直观的排序算法,将序列分为有序和无序两部分,每次从无序部分选择最小(最大)元素,放到有序部分的末尾(开头)。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析2. 插入排序算法:插入排序逐步构建有序序列,对于未排序的元素,在已排序序列中从后向前扫描,找到对应位置插入。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析3. 快速排序算法:快速排序利用分治的思想,将序列分为左右两部分,选取基准元素,将小于基准的放在左边,大于基准的放在右边,递归地对左右部分进行排序。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析4. 归并排序算法:归并排序是一种稳定的排序算法,通过将序列分为若干子序列,分别进行排序,然后再将排好序的子序列合并成整体有序序列。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析5. 堆排序算法:堆是一种特殊的树状数据结构,堆排序利用堆的性质进行排序,通过构建大顶堆或小顶堆,并逐个将堆顶元素移出形成有序序列。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析三、实验结果分析1. 比较不同排序算法的执行时间:根据实验数据和分析,对比不同排序算法在不同数据规模下的执行时间,并针对其时间复杂度进行验证和分析。

数据结构第十章 排序

数据结构第十章 排序
7
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].

数据结构之——八大排序算法

数据结构之——八大排序算法

数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。

这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。

所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。

(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。

快速排序由C. A. R. Hoare在1960年提出。

数据结构课程设计排序算法总结

数据结构课程设计排序算法总结

排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。

(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。

折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。

(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。

(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。

(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。

数据结构课程设计--二路归并排序说明书

数据结构课程设计--二路归并排序说明书

前言1.1排序的重要性生活中,无时不刻不充满这排序,比如:班级同学的成绩排名问题,公司产值高低的问题等等,解决这些问题的过程中,都涉及到了一个数据结构的构造思想过程。

数据结构中的排序,也有很多种,如:插入排序、交换排序、选择排序等等,此时我们就要注意选择具有优解的算法,将一个数据元素(或记录)的任意序列,重新排列成一个有序的排列,便于我们查找。

假设含有n个记录的序列为{R1,R2,Rn},其相应的关键字序列为{K1,K2,…,Kn}需确定1,2…n的一种排序P1,P2…Pn,使其相应的关键字满足如下的非递减的关系:Kp1≤Kp2≤…≤Kpn,即按关键字{Rp1,Rp2,…,Rpn}有序的排列,这样的一种操作称为排序。

一般情况下,排序又分为内部排序和外部排序。

而在内部排序中又含有很多排序方法,就其全面性能而言,很难提出一种被认为是最好的方法,因为每一种方法都有它的优缺点,适合在不同的环境下使用。

我们学习的排序有:直接插入排序、折半插入排序、希尔排序、快速排序、基数排序、归并排序等。

本次课题研究中,我主要进行了二路归并排序的研究和学习。

1.2设计的背景和意义排序是计算机领域的一类非常重要的问题,计算机在出来数据的过程中,有25%的时间花在了排序上,有许多的计算机设备,排序用去计算机处理数据时间的一半以上,这对于提高计算机的运行速度有一定的影响。

此时排序算法的高效率显得尤为重要。

在排序算法汇中,归并排序(Merging sort)是与插入排序、交换排序、选择排序不同的另一类排序方法。

归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

归并排序可分为多路归并排序,两路归并排序,既可用于内排序,也可以用于外排序。

这里仅对内排序的两路归并排序进行讨论。

而我们这里所探究学习的二路归并排序,设计思路更加清晰、明了,程序本身也不像堆结构那样复杂,同时时间复杂度仅为0(N),同时在处理大规模归并排序的时候,排序速度也明显优于冒泡法等一些排序算法,提高排序算法的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法与数据结构实验报告
实验六
实验名称:归并排序问题
姓名:XXX
学号:xxxxxxxxxx
专业:软件工程
班级:x班
指导教师:xxx
日期: 2013年X月X日
一、实验目的
了解归并排序的排序思想,对于给定的关键字序列进行归并排序输出。

二、实验内容与实验步骤
内容:设计二路归并算法。

问题描述如下:输入数据第1行有1整数k,表示需要排序的序列个数。

以下k行,每行第一个整数m,表示待排序序列的长度,后面的m个整数表示待排序序列。

将k个待排序序列的归并排序结果分k行输出。

步骤:
1将一维数组中前后相邻的两个有序序列归并为一个有序序列;
其算法为:void merge(dataList& L, dataList& L1,int left, int mid, int right){}; 2 对顺序表L作归并排序;
其算法为:void MergePass (dataList& L, dataList& L1, int len){};
3 将SR[s..t]归并为排序为TR1[s..t];
其算法为:void MergeSort (dataList& L){};
4 调试数据,程序结束;
三、实验环境
操作系统winXP、开发平台:Microsoft Visual C++6.0
四、实验过程与分析
归并排序算法大大缩短了排序的时间复杂度,虽然程序代码复杂,但实现的基理相当简单。

从运行结果可知,该程序达到了预期效果。

五、实验结论
测试数据:测试结果:
3
7 49 38 65 97 76 13 27 13 27 38 49 65 76 97
10 36 25 48 12 65 25 43 58 76 32 12 25 25 32 36 43 48 58 65 76 6 12 32 49 58 65 79 12 32 49 58 65 79
运行结果:
六、附录
#include<stdio.h>
#include<iostream>
using namespace std;
const int DefaultSize = 100;
typedef int DataType;
typedef struct { //表元素定义
DataType key; //关键字
DataType otherdata;
} Element;
typedef struct dataList{ //数据表定义
Element V[DefaultSize]; //存储数组
int n; //当前元素个数
}dataList;
void merge(dataList& L, dataList& L1,int left, int mid, int right)
{
int i = left, j = mid+1, k = left;
while (i <= mid && j <= right) //两两比较
if (L.V[i].key <= L.V[j].key)
{
L1.V[k] = L.V[i]; i++; k++;
}
else
{
L1.V[k] = L.V[j]; j++; k++;
}
while (i <= mid)
{
L1.V[k] = L.V[i]; i++; k++;
}
while (j <= right)
{
L1.V[k] = L.V[j]; j++; k++;
}
}
void MergePass (dataList& L, dataList& L1, int len)
{
int i = 0;
while (i+2*len-1 <= L.n-1)
{ //批量处理
merge(L, L1, i, i+len-1, i+2*len-1);
i = i+2*len; //循环两两归并
}
if (i+len <= L.n-1) //后一归并项长度不足len merge(L, L1, i, i+len-1, L.n-1);
else //只剩一个归并项,复制for (int j = i; j <= L.n-1; j++)
L1.V[j] = L.V[j];
L1.n = L.n;
}
void MergeSort (dataList& L) //按记录关键字值非递减的顺序对表中记录排序{
dataList L1; //设置辅助表
int len = 1;
while (len < L.n)
{
MergePass (L, L1, len); len = 2*len;
MergePass (L1, L, len); len = 2*len;
}
}
void main()
{
dataList a1,a2; int i,j,t;
cout<<"请输入待排序的数组个数: ";
cin>>t;
for(j=0;j<t;j++)
{
cout<<"请输入要排序的数据的个数和数据: ";
cin>>a1.n;
for(i=0;i<a1.n;i++)
{
cin>>a1.V[i].key;
}
MergeSort (a1);
cout<<"归并排序后的结果为: \n";
MergePass ( a1, a2, a1.n);
for(i=0;i<a2.n;i++)
cout<<a2.V[i].key<<" ";
cout<<endl;
}
}。

相关文档
最新文档