信息论与编码理论习题(三)
信息论与编码理论-第3章信道容量-习题解答
信息论与编码理论-第3章信道容量-习题解答-071102(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
信息论与编码习题与答案第三章
由于 ,每个二元符号的信息量为1bit,14000个符号14000bit的信息,传输14000bit的信息需要时间
不能无失真的传输
=
bit/symbol
(3)当接收为 ,发为 时正确,如果发的是 则为错误,各自的概率为:
则错误概率为:
(4)
从接收端看平均错误概率为
(5)从发送端看的平均错误概率为:
(6)能看出此信道不好。原因是信源等概率分布,从转移信道来看正确发送的概率x1→y1的概率0.5有一半失真;x2→y2的概率0.3有严重失真;x3→y3的概率0完全失真。
(1)接收端收到一个符号后得到的信息量H(Y);
(2)计算噪声熵 ;
(3)计算接收端收到一个符号 的错误概率;
(4)计算从接收端看的平均错误概率;
(5)计算从发送端看的平均错误概率;
(6)从转移矩阵中能看出该新到的好坏吗?
(7)计算发送端的H(X)和 。
解:(1)
(2)联合概率 ,后验概率
H(Y/X)=
解:由题意可知该二元信道的转移概率矩阵为: 为一个BSC信道所以由BSC信道的信道容量计算公式得到:
3-6设有扰离散信道的传输情况分别如图3-17所示。求出该信道的信道容量。
解:信道转移概率矩阵为P= 该信道为离散对称信道DMC
3-7发送端有三种等概率符号 , ,接收端收到三种符号 ,信道转移概率矩阵为
3.1设二元对称信道的传递矩阵为
(1)若P(0)= 3/4,P(1)= 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2)求该信道的信道容
其最佳输入分布为
3.3在有扰离散信道上传输符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。
《信息论与编码》习题解答-第三章
第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=εεεε-10-10001ij p2/1)()(0)(321===a p a p a p 0)(1=b p2/12/1)1(2/100)|()(),()(222=⨯+-⨯+⨯===∑∑εεi ii ii a b p a p b a p b p2/1-12/12/100)|()(),()(333=⨯+⨯+⨯===∑∑)(εεi ii ii a b p a p b a p b p)()|(log)|();(j i j ji j i b p a b p a b p Y a I ∑=0);(1=Y a Iεεεε2log )1(2log )1(0)()|(log)|();(222+--+==∑j j jj b p a b p a b p Y a I )1(2log )1(2log 0)()|(log)|();(333εεεε--++==∑j j jj b p a b p a b p Y a I当0=ε,1=C 当2/1=ε,0=C 3.5两个信道均为准对称DMC 信道设输入符号概率αα-==1)(,)(21a p a p , (1) 对于第一种信道的联合概率的矩阵为:⎥⎦⎤⎢⎣⎡---------)1(2)1)(1()1)((2)()1(αεαεαεεααεαεp p p p⎥⎦⎤⎢⎣⎡---)()1(εαεp p 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7解:(1)从已知条件可知:3,2,1,3/1)(==i x p i ,且转移概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0109101103103525110321)|(i j x y p ,则联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==010330110110115215110161)()|(i i j ij x p x y p p ,因为:),()(∑=ij i j y x p y p ,可计算得到31)(1=y p ,21)(2=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 10310log 301310log 101310log10125log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑iji j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p 它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)从接收端看到的平均错误概率为:===∑∑≠≠ji ij ji j i j e p y x p y p p )|()(收733.010/115/110/310/130/115/2=+++++(5)从发送端看到的平均错误概率为:===∑∑≠≠ji ij ji i j i e p x y p x p p )|()(发733.010/115/110/310/130/115/2=+++++(6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。
信息论与编码理论课后答案
信息论与编码理论课后答案【篇一:《信息论与编码》课后习题答案】式、含义和效用三个方面的因素。
2、 1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
3、按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
4、按照信息的地位,可以把信息分成客观信息和主观信息。
5、人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
6、信息的是建立信息论的基础。
7、8、是香农信息论最基本最重要的概念。
9、事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是。
14、不可能事件的自信息量是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。
limh(xn/x1x2?xn?1)h?n???18、离散平稳有记忆信源的极限熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。
20、一维连续随即变量x在[a,b] 。
1log22?ep21、平均功率为p的高斯分布的连续信源,其信源熵,hc(x)=2。
22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。
23、对于限平均功率的一维连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一离散无记忆信源的信源熵h(x)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为。
2728、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 ?mn?ki?11?mp(x)?em29、若一维随即变量x的取值区间是[0,∞],其概率密度函数为,其中:x?0,m是x的数学2期望,则x的信源熵c。
信息论与编码技术第三章课后习题答案
Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。
它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。
(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。
(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。
解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。
所以这信源是平稳信源。
(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。
求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。
《信息论与编码》第三章部分习题参考答案
第三章习题参考答案第三章习题参考答案3-1解:(1)判断唯一可译码的方法:①先用克劳夫特不等式判定是否满足该不等式;②若满足再利用码树,看码字是否都位于叶子结点上。
如果在叶节点上则一定是唯一可译码,如果不在叶节点上则只能用唯一可译码的定义来判断是不是。
可译码的定义来判断是不是。
其中C1,C2,C3,C6都是唯一可译码。
都是唯一可译码。
对于码C2和C4都满足craft 不等式。
但是不满足码树的条件。
但是不满足码树的条件。
就只能就只能举例来判断。
举例来判断。
对C5:61319225218ki i ---==+´=>å,不满足该不等式。
所以C5不是唯一可译码。
译码。
(2)判断即时码方法:定义:即时码接收端收到一个完整的码字后,就能立即译码。
特点:码集任何一个码不能是其他码的前缀,即时码必定是唯一可译码, 唯一可译码不一定是即时码。
唯一可译码不一定是即时码。
其中C1,C3,C6都是即时码。
都是即时码。
对C2:“0”是“01”的前缀,……,所以C2不是即时码。
不是即时码。
(1) 由平均码长61()i i i K p x k ==å得1236 3 1111712(3456) 241681111712(3456) 2416811152334 24162K bitK bit K bitK bit==´+´+´+++==´+´+´+++==´+´+´´=62111223366()()log () 2 /()266.7%3()294.1%178()294.1%178()280.0%52i i i H U p u p u H U K H U K H U K H U K h h h h ==-=============å比特符号3-7解:(1)信源消息的概率分布呈等比级数,按香农编码方法,其码长集合为自然数数列1, 2, 3, ···, i, ·, i, ····;对应的编码分别为:0, 10, 110, ···, 111…110 ( i 110 ( i –– 1个1), ·1), ····。
《信息论与编码》习题解答-第三章
第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4 3.5 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7(1)联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010330110110115215110161ij p ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0103101535152525121)|(j i y x p 31)(0=y p ,21)(1=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 30310log 301310log 101310log10152log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑ij i j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)平均错误概率为:733.010/115/110/310/130/115/2=+++++ (5)同样为0.733 (6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。
信息论与编码理论-第3章信道容量-习题解答-071102
第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{0.5,0.5} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。
1b 2b 3b 3a 2a 1a Y X 1b 2b 3a 2a 1a Y X 1b 2b 2a 1a Y X 3b 11111110.70.3第一种:无噪无损信道,其概率转移矩阵为: 1 0 0P=0 1 00 0 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦信道容量:()max (;)P X C I X Y @ bit/符号()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==离散无记忆信道(DMC)只有输入为等概率分布时才能达到信道容量,C=log3=1.5850 bit/符号输入最佳概率分布如下:111,,333⎧⎫⎨⎬⎩⎭第二种:无噪有损信道,其概率转移矩阵为: 1 0P=0 10 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,离散输入信道, ()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H Y H Y X H Y X C I X Y H Y ==-∴=∴==H(Y)输出为等概率分布时可达到最大值,此值就是信道容量 此时最佳输入概率:123p(a )+p(a )=0.5,p(a )=0.5 信道容量:C=log(2)=1 bit/符号 第三种:有噪无损信道,由图可知:()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==输入为等概率分布时可达到信道容量,此时信道容量p(x)C=max{H(X)}=log(2)=1 bit/符号 输入最佳概率分布:11,22⎧⎫⎨⎬⎩⎭3-3 设4元删除信道的输入量{1,2,3,4}X ∈,输出量{1,2,3,4,}Y E ∈,转移概率为(|)1(|)1-ε 0 0 0 ε0 1-ε 0 0 ε P=0 0 1-ε 0 ε0 0 0 1-ε ε1-ε 0 0 0 ε0 1-ε 0 0 ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε εP Y i X i P Y E X i εε===-===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中1,2,3,4i = 1)该信道是对称DMC 信道吗? 2)计算该信道的信道容量;3)比较该信道与两个独立并联的二元删除信道的信道容量。
《信息论与编码》第三章习题解答
其 中 (i, k1 ) , (k1 + 1, k 2 ) , (k 2 + 1, j ) 是 由 内 节 点 (i, j ) 分 岔 出 去 的 三 个 节 点 , 所 以
p (i, k1 ) + p(k1 + 1, k 2 ) + p (k 2 + 1, j ) = p(i, j ) 。由于码 D 的平均码长 L =
(c) {01,10}
[解] (a){0,10,11}可能为 Huffman 码,因为它构成满树; (b){00,01,10,110}不可能为 Huffman 码, 因为码字“110”可以用更短的“11”代替,而保持前缀码条件; (c){01,10}不可能成为 Huffman 码,因为显然{0,1}是平均码长更短的前缀码; 3.8 一个随机变量 X 的取值范围为 X = { x1 , x2 " , xm } ,它的熵为 H(X), 若对这个源能找到 一个平均码长为 L =
I 表示全体内节点 (i, j ) , (i < j ) 的集合。 内节点 (i, j ) 上的累计概率定义为:
(1,13) (4,8) (6,8)
i
P (i, j ) =
于是
∑
k =i
j
(1, 3)
pk
a1 a2 a3
(9,13) (10,12)
L=
∑l ⋅ p = ∑ p(i, j )
i i =1
0.16 (1) 0.14 (1) 0.13 (0) 0.12 (1) 0.1 (1) 0.09 (0) 0.08 (1) 0.07 (0) 0.06 (1) 0.05 (0)
0.27 (0) 0.31 (1) 0.19 (0) 0.23 (1) 0.15 (0) 0.42 (0) 0.58 (1) 1
信息论基础与编码课后题答案(第三章)
3-1 设有一离散无记忆信源,其概率空间为12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,信源发出符号通过一干扰信道,接收符号为12{,}Y y y =,信道传递矩阵为51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求: (1) 信源X 中事件1x 和2x 分别含有的自信息量;(2) 收到消息j y (j =1,2)后,获得的关于i x (i =1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度(/)H X Y 和噪声熵(/)H Y X ; (5) 接收到消息Y 后获得的平均互信息量(;)I X Y 。
解:(1)12()0.737,() 1.322I x bit I x bit ==(2)11(;)0.474I x y bit =,12(;) 1.263I x y bit =-,21(;) 1.263I x y bit =-,22(;)0.907I x y bit =(3)()(0.6,0.4)0.971/H X H bit symbol ==()(0.6,0.4)0.971/H Y H bit symbol ==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol ==(/) 1.6850.9710.714/H X Y bit symbol =-= (/)0.714/H Y X bit symbol =(5)(;)0.9710.7140.257/I X Y bit symbol =-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。
该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。
验证在该信道上每个字母传输的平均信息量为0.21比特。
证明:信道传输矩阵为:11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,信源信宿概率分布为:1111()(){,,,}4444P X P Y ==, H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源X 包含两种消息:12,x x ,且12()() 1/2P x P x ==,信道是有扰的,信宿收到的消息集合Y 包含12,y y 。
信息论与编码理论—第三章习题解答
2013-8-4
0.020
15
111 112 121 211 113 131 311 122 212 221 123 132 213 312 231 321 222 133 313 331 223 232 322 233 323 332 333
0.125 0.075 0.075 0.075 0.050 0.050 0.050 0.045 0.045 0.045 0.030 0.030 0.030 0.030 0.030 0.030 0.027 0.020 0.020 0.020 0.018 0.018 0.018 0.012 0.012 0.012 0.008 0 1 0 1 0 1 0.036
2013-8-4
7
(c) “当收到1时得到多少关于信源的平均信息”,这是求信 源随机变量U与事件“收到1”的(半平均)互信息量。 以码A为例。
I(收到1;U)=
P ( a1 , 且收到1) P ( a1 | 收到1) log P ( a1 ) P (收到1) P ( a2 , 且收到1) P ( a2 | 收到1) log P ( a2 ) P (收到1) P ( a3 , 且收到1) P ( a3 | 收到1) log P ( a3 ) P (收到1) P ( a4 , 且收到1) P ( a4 | 收到1) log P ( a4 ) P (收到1)
0.036
0.024
2013-8-4
0.020
17
111 112 121 211 113 131 311 122 212 221 123 132 213 312 231 321 222 133 313 331 223 232 322 233 323 332 333
信息论与编码试卷及答案
信息论与编码试卷及答案一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X 的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关二、(9')判断题(1)信息就是一种消息。
(?)(2)信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(√)(3)概率大的事件自信息量大。
(?)(4)互信息量可正、可负亦可为零。
(√)(5)信源剩余度用来衡量信源的相关性程度,信源剩余度大说明信源符号间的依赖关系较小。
(?)(6)对于固定的信源分布,平均互信息量是信道传递概率的下凸函数。
(√ )(7)非奇异码一定是唯一可译码,唯一可译码不一定是非奇异码。
( ? )(8)信源变长编码的核心问题是寻找紧致码(或最佳码),霍夫曼编码方法构造的是最佳码。
(√ )(9)信息率失真函数R(D)是关于平均失真度D 的上凸函数. ( ? )三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
信息论与编码考试题(附答案版)
1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码第二版答案 (3)
信息论与编码第二版答案第一章:信息论基础1.问题:信息论的基本概念是什么?答案:信息论是一种数学理论,研究的是信息的表示、传输和处理。
它的基本概念包括:信息、信息的熵和信息的编码。
2.问题:什么是信息熵?答案:信息熵是信息的度量单位,表示信息的不确定度。
它的计算公式为H(X) = -ΣP(x) * log2(P(x)),其中P(x)表示事件x发生的概率。
3.问题:信息熵有什么特性?答案:信息熵具有以下特性:•信息熵的值越大,表示信息的不确定度越高;•信息熵的值越小,表示信息的不确定度越低;•信息熵的最小值为0,表示信息是确定的。
4.问题:信息熵与概率分布有什么关系?答案:信息熵与概率分布之间存在着直接的关系。
当概率分布均匀时,信息熵达到最大值;而当概率分布不均匀时,信息熵会减小。
第二章:数据压缩1.问题:数据压缩的目的是什么?答案:数据压缩的目的是通过消除冗余和重复信息,使数据占用更少的存储空间或传输更快。
2.问题:数据压缩的两种基本方法是什么?答案:数据压缩可以通过无损压缩和有损压缩两种方法来实现。
无损压缩是指压缩后的数据可以完全还原为原始数据;而有损压缩则是指压缩后的数据不完全还原为原始数据。
3.问题:信息压缩的度量单位是什么?答案:信息压缩的度量单位是比特(bit),表示信息的数量。
4.问题:哪些方法可以用于数据压缩?答案:数据压缩可以通过以下方法来实现:•无结构压缩方法:如霍夫曼编码、算术编码等;•有结构压缩方法:如词典编码、RLE编码等;•字典方法:如LZW、LZ77等。
第三章:信道容量1.问题:什么是信道容量?答案:信道容量是指在给定信噪比的条件下,信道传输的最大数据速率。
2.问题:信道容量的计算公式是什么?答案:信道容量的计算公式为C = W * log2(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号的平均功率,N表示噪声的平均功率。
3.问题:信道容量与信噪比有什么关系?答案:信道容量与信噪比成正比,信噪比越高,信道容量越大;反之,信噪比越低,信道容量越小。
信息论与编码理论课后答案
信息论与编码理论课后答案【篇一:《信息论与编码》课后习题答案】式、含义和效用三个方面的因素。
2、 1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
3、按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
4、按照信息的地位,可以把信息分成客观信息和主观信息。
5、人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
6、信息的是建立信息论的基础。
7、8、是香农信息论最基本最重要的概念。
9、事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有比特、奈特和哈特。
13、必然事件的自信息是。
14、不可能事件的自信息量是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。
17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。
limh(xn/x1x2?xn?1)h?n???18、离散平稳有记忆信源的极限熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。
20、一维连续随即变量x在[a,b] 。
1log22?ep21、平均功率为p的高斯分布的连续信源,其信源熵,hc(x)=2。
22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。
23、对于限平均功率的一维连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一离散无记忆信源的信源熵h(x)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为。
2728、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 ?mn?ki?11?mp(x)?em29、若一维随即变量x的取值区间是[0,∞],其概率密度函数为,其中:x?0,m是x的数学2期望,则x的信源熵c。
信息论与编码习题答案
信息论与编码习题答案信息论与编码习题答案信息论与编码是一门研究信息传输、存储和处理的学科,它的基本原理和方法被广泛应用于通信、数据压缩、密码学等领域。
在学习信息论与编码的过程中,习题是不可或缺的一部分。
下面将为大家提供一些信息论与编码习题的答案,希望能对大家的学习有所帮助。
习题一:请解释信息熵的概念。
答案:信息熵是信息论中的一个重要概念,用来衡量一个随机变量的不确定性。
对于一个离散型随机变量X,其信息熵H(X)定义为:H(X) = -Σ P(x)log2P(x)其中,P(x)表示随机变量X取值为x的概率。
信息熵的单位是比特(bit),表示信息的平均不确定性。
信息熵越大,表示随机变量的不确定性越高,反之亦然。
习题二:请计算以下离散型随机变量的信息熵。
1. 对于一个均匀分布的随机变量,其取值范围为{1, 2, 3, 4},请计算其信息熵。
答案:由于均匀分布,每个取值的概率相等,即P(1) = P(2) = P(3) = P(4) = 1/4。
代入信息熵的计算公式可得:H(X) = - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4) - (1/4)log2(1/4)= - (1/4)(-2) - (1/4)(-2) - (1/4)(-2) - (1/4)(-2)= 22. 对于一个二值随机变量,其取值为{0, 1},且P(0) = 0.8,P(1) = 0.2,请计算其信息熵。
答案:代入信息熵的计算公式可得:H(X) = - 0.8log2(0.8) - 0.2log2(0.2)≈ 0.7219习题三:请解释信道容量的概念。
答案:信道容量是指在给定的信道条件下,能够传输的最大信息速率。
在信息论中,信道容量是衡量信道传输效率的重要指标。
对于一个离散无记忆信道,其信道容量C定义为:C = max{I(X;Y)}其中,X表示输入信号集合,Y表示输出信号集合,I(X;Y)表示输入信号X和输出信号Y之间的互信息。
信息论与编码(第3版)第3章部分习题答案
3.1设信源()12345670.20.190.180.170.150.10.01X a a a a a a a P X ⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭ (1) 求信源熵()H X (2) 编二进制香农码(3) 计算平均码长及编码效率。
答:(1)根据信源熵公式()()()()21log 2.6087bit/symbol i i i H X p a p a ==−=∑(2)利用到3个关键公式:①根据()()()100,0i a i k k p a p a p a −===∑计算累加概率;②根据()()*22log 1log ,i i i i p a k p a k N −≤<−∈计算码长;③根据()a i p a 不断地乘m 取整(m 表示编码的进制),依次得到的i k 个整数就是i a 对应的码字根据①②③可得香农编码为(3)平均码长公式为()13.14i i i K p a k ===∑单符号信源L =1,以及二进制m =2, 根据信息率公式()2log bit/symbol m KR K L==编码效率()83.08%H X Rη==3.2对习题3.1的信源编二进制费诺码,计算其编码效率答:将概率从大到小排列,且进制m=2,因此,分成2组(每一组概率必须满足最接近相等)。
根据平均码长公式为()12.74i iiK p a k===∑单符号信源L=1,以及二进制m=2, 根据信息率公式()2log bit/symbolmKR KL==编码效率(信源熵看题3.1)()95.21%H XRη==3.3对习题3.1的信源编二进制赫夫曼码,计算平均码长和编码效率答:将n个信源符号的概率从大到小排列,且进制m=2。
从m个最小概率的“0”各自分配一个“0”和“1”,将其合成1个新的符号,与其余剩余的符号组成具有n-1个符号的新信源。
排列规则和继续分配码元的规则如上,直到分配完所有信源符号。
必须保证两点:(1)当合成后的信源符号与剩余的信源符号概率相等时,将合并后的新符号放在靠前的位置来分配码元【注:“0”位表示在前,“1”表示在后】,这样码长方差更小;(2)读取码字时是从后向前读取,确保码字是即时码。
信息论与编码试题集与答案(新)
1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。
2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。
3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。
4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。
5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。
6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。
输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。
7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。
若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。
二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。
(√ )2. 线性码一定包含全零码。
(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。
信息论与编码理论(最全试题集+带答案+各种题型)
答:抗干扰能力强,中继时可再生,可消除噪声累计;差错可控制,可改善通信质量;便于加密和使用DSP处理技术;可综合传输各种信息,传送模拟系统时,只要在发送端增加莫属转换器,在接收端增加数模转换器即可。
7.简述信息的性质。
答:存在普遍性;有序性;相对性;可度量性;可扩充性;可存储、传输与携带性;可压缩性;可替代性;可扩散性;可共享性;时效性;
A.形式、含义和安全性
B.形式、载体和安全性
C.形式、含义和效用
D.内容、载体和可靠性
20.(D)是香农信息论最基本最重要的概念
A.信源B.信息C.消息D.熵
三.简答(
1.通信系统模型如下:
2.信息和消息的概念有何区别?
答:消息有两个特点:一是能被通信双方所理解,二是能够互相传递。相对于消息而言,信息是指包含在消息中的对通信者有意义的那部分内容,所以消息是信息的载体,消息中可能包含信息。
31.简单通信系统的模型包含的四部分分别为信源、有扰信道、信宿、干扰源。
32. 的后验概率与先念概率的比值的对数为 对 的互信息量。
33.在信息论中,互信息量等于自信息量减去条件自信息量。
34.当X和Y相互独立时,互信息为0。
35.信源各个离散消息的自信息量的数学期望为信源的平均信息量,也称信息熵。
第一章
一、填空(
1.1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
2.按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
3.按照信息的地位,可以把信息分成客观信息和主观信息。
4.人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码理论习题(三)
一、填空题(每空2分,共32分)。
1.在现代通信系统中,信源编码主要用于解决信息传输中的 ,信道编码主要用于解决信息传输中的 ,加密编码主要用于解决信息传输中的
2.离散信源⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡8/18/14/12/1)(4321x x x x x p X ,则信源的熵为 。
3.采用m 进制编码的码字长度为K i ,码字个数为n ,则克劳夫特不等式为 ,它是判断 的充要条件。
4.如果所有码字都配置在二进制码树的叶节点,则该码字为 。
5.齐次马尔可夫信源的一步转移概率矩阵为P ,稳态分布为W ,则W 和P 满足的方程为 。
6.设某信道输入端的熵为H(X),输出端的熵为H(Y),该信道为无噪有损信道,则该信道的容量为 。
7.某离散无记忆信源X ,其符号个数为n ,则当信源符号呈 分布情况下,信源熵取最大值 。
8.在信息处理中,随着处理级数的增加,输入消息和输出消息之间的平均互信息量趋于 。
二.选择题(共10分,每小题2分)
1、有一离散无记忆信源X ,其概率空间为⎥
⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡125.0125.025.05.04321x x x x
P X ,则其无记忆二次扩展信源的熵H(X 2)=( )
A 、1.75比特/符号;
B 、3.5比特/符号;
C 、9比特/符号;
D 、18比特/符号。
2、信道转移矩阵为112132425363(/)(/)
000000(/)(/)000000(/)(/)P y x P y x P y x P y x P y x P y x ⎡⎤⎢⎥⎢⎥
⎢⎥⎣⎦
,其中(/)j i P y x 两两不相等,则该信道为
A 、一一对应的无噪信道
B 、具有并归性能的无噪信道
C 、对称信道
D 、具有扩展性能的无噪信道
3、设信道容量为C ,下列说法正确的是:( )
A 、互信息量一定不大于C
B 、交互熵一定不小于C
C 、有效信息量一定不大于C
D 、条件熵一定不大于C
4、在串联系统中,有效信息量的值( )
A 、趋于变大
B 、趋于变小
C 、不变
D 、不确定
5、若BSC 信道的差错率为P ,则其信道容量为:( ) A 、
()
H p C 、
()
1H p -
B 、 ()12
log 1p
p p p -⎡⎤
-⎢⎥⎢⎥⎣
⎦ D 、log()P P -
三.综合题
1.已知信源
1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤
=⎢⎥⎢⎥⎣⎦⎣⎦
(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L ;(4分)
(3)计算编码信息率R ';(2分)
(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。
(2分)
2.一个一阶马尔可夫信源,转移概率为
()()()()1121122221
|,|,|1,|033
P S S P S S P S S P S S ====。
(1) 画出状态转移图。
(4分)
(2) 计算稳态概率。
(4分)
(3) 计算马尔可夫信源的极限熵。
(4分)
(4) 计算稳态下1H ,2H 及其对应的剩余度。
(4分)
3.设离散无记忆信源的概率空间为120.80.2X x x P ⎡⎤⎡⎤
=⎢
⎥⎢⎥⎣⎦⎣⎦
,通过干扰信道,信道输出端的接收符号集为[]12,Y y y =,信道传输概率如下图所示。
56
14
16
34
1
x 2
x 1
y 2
y
(1) 计算信源X 中事件1x 包含的自信息量; (2) 计算信源X 的信息熵; (3) 计算信道疑义度()|H X Y ; (4) 计算噪声熵()|H Y X ;
(5) 计算收到消息Y 后获得的平均互信息量。
参考答案: 一.填空
(1)有效性,可靠性,安全性 (2)1.75bit/符号(3)11≤∑=-n
i K i m ,唯一可译码存在(4)唯一可译码(5) W=WP (6)MAX H (Y )(7)等概_ __log (n )(8)减少
三.综合题 1.(1)
010
10
1
1
1
1.00.20.20.20.20.10.1
1S 2S 3S 4S 5S 6
S
(2)
6
10.420.63 2.6i i i L P ρ===⨯+⨯=∑码元
符号
(3)
bit
log r=2.6R L '=符号
(4) () 2.53
bit
0.9732.6
H S R L
=
=
=码元 ()()bit
0.2,0.2,0.2,0.2,0.1,0.1 2.53H S H ==符号
(5)
()()0.973log H S H S L r
L
η=
=
=
2.
解:(1)
1
S
2
S 13
1
(2)由公式()()()2
1
|i i
j j j P S P S
S P S ==
∑
有()()()()()()()()()()()2
111212
2211122|31
|31i i i i i i P S P S S P S P S P S P S P S S P S P S P S P S ==⎧
==+⎪⎪
⎪==⎨⎪
⎪+=⎪⎩
∑∑
得()()12
341
4
P S P S ⎧
=⎪⎪⎨⎪=⎪⎩ (3)该马尔可夫信源的极限熵为:
()()()
22
11
|log |322311
log log
43343311
0.578 1.599240.6810.4720.205i j i j i i j H P S P S S P S S bit nat hart ∞===-=-⨯⨯-⨯⨯=⨯+⨯===∑∑符号符号符号
(4)在稳态下:
()()2
1
3
311log log log 0.8114444i i i P x P x bit =⎛⎫=-=-⨯+⨯= ⎪⎝⎭∑符号
20.2050.4720.681H H hart nat bit ∞====符号符号符号
对应的剩余度为
1100.811110.1891111log log 2222H H η=-
=-=⎛⎫
⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
2200.681110.3191111log log 2222H H η=-
=-=⎛⎫
⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
3.
(1) ()1log 0.80.3220.09690.223I x bit hart nat =-=== (2) ()()0.8,0.20.7220.50.217H X H bit nat hart ====符号符号符号
(3)转移概率:
x y y 1
y 2
x 1 5/6 1/6 x 2
3/4
1/4
联合分布:
x y y 1
y 2
x 1 2/3 12/15 4/5 x 1
3/20 1/20 1/5
49/60
11/60
1/5
()2231,,,31520201.4040.9730.423H XY H bit nat hart ⎛⎫
= ⎪
⎝⎭===符号符号符号
()()49/60,11/600.6870.4760.207H Y H bit nat hart ====符号符号符号
()()()|0.7170.4970.216H X Y H XY H Y bit nat hart =-===符号符号符号
(4)
()()()|0.6820.4730.205H Y X H XY H X bit nat hart =-===符号符号符号
(5)
()()();|0.005040.003490.00152I X Y H X H X Y bit nat hart =-===符号符号符号。