2019-2020学年高二上学期期末考试数学试题
江苏省连云港市2019-2020学年度高二上学期期末考试试题 数学【含解析】
2.双曲线 的渐近线方程是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据双曲线的渐近线的定义求得。
【详解】双曲线 的渐近线方程是 ,故选:B.
【点睛】此题是容易题,考查双曲线的基本定义。
3.“M<N”是“ ” ( )
A. 充要条件B. 充分不必要条件
C. 必要不充分条件D. 既不充分也不必要条件
【详解】因为 , , ,故 , ,故选:BD。
【点睛】此题考查充分条件和必要条件的概念,属于基础题。
12.设P是椭圆C: 上任意一点,F1,F2是椭圆C的左、右焦点,则( )
A.PF1+PF2= B. ﹣2<PF1﹣PF2<2
C. 1≤PF1·PF2≤2D. 0≤ ≤1
【答案】ACD
【解析】
【分析】
15.已知椭圆C: (a>b>0)的焦距为2.准线方程为x=3,则该椭圆的标准方程是_______;直线 与该椭圆交于A,B两点,则AB=_______.
【答案】 (1). (2).
【解析】
分析】
根据椭圆的定义和准线方程可求得第一问,联立椭圆和直线方程再通过韦达定理计算可求得第二问。
【详解】 ,解得 ,再解出 ,所以椭圆的标准方程是 。设A坐标为 ,B坐标为 ,直线AB的斜率为k。则
13.准线方程为 的抛物线的标准方程是.
【答案】
【解析】
抛物线的准线方程为 ,说明抛物线开口向左,且 ,所以抛物线的标准方程是 .
14.中国古代数学某名著中有类似问题:“四百四十一里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,毎天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了_______里.
浙江省金华市十校2022-2023学年高二上学期期末调研考试数学试题 Word版含解析
浙江省金华十校2018-2019学年第一学期期末调研考试高二数学试题一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.在空间直角坐标系中,点与点()A. 有关平面对称B. 有关平面对称C. 有关平面对称D. 有关轴对称【结果】C【思路】【思路】利用“有关哪个对称,哪个坐标就相同”,得出正确选项.【详解】两个点和,两个坐标相同,坐标相反,故有关平面对称,故选C.【点睛】本小题主要考查空间点对称关系,考查理解和记忆能力,属于基础题.2.圆与圆地位置关系是()A. 相交B. 内切C. 外切D. 相离【结果】A【思路】【思路】计算两个圆地圆心距以及,比较大小后得出正确选项.【详解】两个圆地圆心分别为,圆心距,两个圆半径均为,故,所以两个圆相交.故选A.【点睛】本小题主要考查圆与圆地位置关系,考查圆地圆心和半径以及圆心距地计算,属于基础题.3.“”是“”地()A. 充分不必要款件B. 必要不充分款件C. 充要款件D. 既不充分也不必要款件【结果】B【思路】【思路】将两个款件相互推导,依据能否推导地情况选出正确选项.【详解】当“”时,如,,故不能推出“” .当“”时,必然有“”.故“”是“”地必要不充分款件.【点睛】本小题主要考查充分,必要款件地判断,考查含有绝对值地不等式,属于基础题.4.给定①②两个命题:①为“若,则”地逆否命题。
②为“若,则”地否命题,则以下判断正确地是()A. ①为真命题,②为真命题B. ①为假命题,②为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题【结果】C【思路】【思路】判断①原命题地真假性,得出其逆否命题地真假性.写出②地否命题,并判断真假性.由此得出正确选项.【详解】对于①原命题显然为真命题,故其逆否命题也为真命题.对②其否命题是“若,则”,由于时,,故否命题是假命题.所以①为真命题,②为假命题,故选C.【点睛】本小题主要考查四种命题及其相互关系,考查命题真假性地判断,属于基础题.5.设是两款异面直线,下面命题中正确地是()A. 存在与都垂直地直线,存在与都平行地平面B. 存在与都垂直地直线,不存在与都平行地平面C. 不存在与都垂直地直线,存在与都平行地平面D. 不存在与都垂直地直线,不存在与都平行地平面【结果】A【思路】【思路】画出一个正方体,依据正方体地结构特征,结合线,面平行和垂直地定理,判断出正确选项.【详解】画出一个正方体如下图所示,分别是地中点.由图可知,,平面,平面.由此判断A选项正确,本题选A.【点睛】本小题主要考查空间异面直线地位置关系,考查线面平行等知识,属于基础题.6.已知,则()A. B. C. D.【结果】D【思路】【思路】先求得函数地导数,然后令求出正确选项.【详解】依题意有,故,所以选D.【点睛】本小题主要考查基本初等函数地导数,考查复合函数地导数计算,考查函数除法地导数计算,属于中档题.7.如图,在空间四边形中,,,,,则异面直线与所成角地大小是()A. B. C. D.【结果】B【思路】【思路】通过计算出地数量积,然后利用夹角公式计算出与所成角地余弦值,进而得出所成角地大小.【详解】依题意可知,.设直线与所成角为,则,故.所以本小题选B.【点睛】本小题主要考查利用空间向量地数量积,计算空间两款异面直线所成角地大小,考查化归与转化地数学思想方式,考查数形结合地数学思想方式,属于中档题.要求两款异面直线所成地角,可以通过向量地方式,通过向量地夹角公式先计算出夹角地余弦值,再由此得出所成角地大小.8.经过坐标原点地直线与曲线相切于点.若,则A. B. C. D.【结果】D【思路】【思路】先求得函数在上地表达式,利用导数求得切线地斜率,写出切线方程,利用切线方程过原点求出切点地坐标满足地等式,由此得出正确选项.【详解】当时,故,.所以切点为,切线地斜率为,由点斜式得,将原点坐标代入得,即,故选D.【点睛】本小题主要考查经过某点地曲线切线方程地求解方式,考查含有绝对值地函数地思路式,考查利用导数求曲线地切线方程,考查同角三角函数地基本关系式,属于中档题.本题地关键点有两个:一个是函数在上地表达式,另一个是设出切点,求出切线方程后,将原点坐标代入化简.9.已知椭圆地右焦点是,为坐标原点,若椭圆上存在一点,使是等腰直角三角形,则椭圆地离心率不可能为()A. B. C. D.【结果】C【思路】【思路】分别依据为直角时,椭圆地离心率,由此得出正确地选项.【详解】当时,代入椭圆方程并化简得,解得.当时,,,故.当时,,即,,,解得.综上所述,C选项不可能,故选C.【点睛】本小题主要考查等腰直角三角形地性质,考查椭圆离心率地求解方式,属于中档题.10.在正方体中,分别为线段,上地动点,设直线与平面,平面所成角分别是,则()A. B.C. D.【结果】B【思路】【思路】在图中分别作出直线与平面,平面所成地角,依据边长判断出,求出地表达式,并依据表达式求得地最小值,也即是地最大值.【详解】设正方体边长为.过作,而,故平面,故.同理过作,得到.由于,故,所以,即.而,当得到最小值时,得到最小值为,即得到最大值为.故选B.【点睛】本小题主要考查直线和平面所成地角,考查三角函数最值地判断与求解,属于中档题.二,填空题(每题4分,满分20分,将结果填在答题纸上)11.已知直线:,若地倾斜角为,则实数_______。
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
广东省华南师范大学附属中学2022-2023学年高二上学期1月期末考试数学试题(含答案)
华南师大附中2022-2023学年第一学期期末考试高二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号等填写在答题卡上,并用铅笔在答题卡上的相应位置填涂.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答第Ⅱ卷时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷各题目指定区域内,不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷一、 单选题:本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只有一项符合题目要求. 1.过点()1,2-和点()0,3的直线在x 轴上的截距为( )A .3B .1C .3-D .1-2.设数列{}n a 的前n 项和21n S n =+,则6a 的值为( )A .11B .10C .9D .83.若直线l 的方向向量是()3,2,1a =,平面α的法向量是()1,2,1u =--,则l 与α的位置关系是( )A .l α⊥B .//l αC .l 与α相交但不垂直D .//l α或l α⊂4.若直线220x y +-=为圆22()1x a y -+=的一条对称轴,则=a ( )A .12B .12-C .1D .1-5.已知等比数列{}n a 的前n 项和为n S ,若232a a +=-,344a a +=,则8S =( )A .80B .85C .90D .956.已知正项等差数列{}n a 的前n 项和为n S ,若28793a a a --=,则158S a -的值为( ) A .3 B .14 C .28 D .427.已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 的准线l 上,线段MF 与y 轴交于点A ,与抛物线C 交于点B ,若||1||3AB MA ==,,则p =( ) A .1 B .2 C .3 D .48.已知O 为坐标原点,P 是椭圆()2222:10x y E a b a b+=>>上位于x 轴上方的点,F 为右焦点. 延长PO ,PF 交椭圆E 于Q ,R 两点,QF FR ⊥,3QF FR =,则椭圆E 的离心率为( )A .3B .2C .3D .4A 1二、多选题:本大题共4小题,每小题3分,满分12分. 在每小题给出的四个选项中,有多项符合要求,全部选对得3分,选对但不全的得2分,有选错的得0分.9.已知数列{}n a 的前n 项和29n S n n =-+,则下列结论正确的是( )A .{}n a 是等差数列B .460a a +=C .910a a <D .n S 有最大值81410.已知曲线22:1C mx ny +=,则( )A .若4m n ==,则曲线C 是圆,其半径为2B .若0m n >>,则曲线C 是椭圆,其焦点在y轴上 C .若曲线C过点(,(,则C 是双曲线 D .若0mn =,则曲线C 不表示任何图形11.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .12144a = B .2022a 是偶数C .20221232020a a a a a =++++ D .2020202420223a a a +=12.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O =为坐标原点.一束平行于x 轴的光线1l 从点()(),11P m m >射入,经过C 上的点()11,A x y 反射后,再经C 上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( )A .121y y =-B .延长AO 交直线14x =-于点D ,则,,D B Q 三点共线 C .2516AB =D .若PB 平分ABQ ∠,则4116m =第Ⅱ卷三、填空题:本大题共4小题,每小题3分,满分12分.13.若双曲线221y x m-=的一条渐近线方程为3y x =,则实数m =___________.14.如图,直三棱柱111ABC A B C 中,90BCA ∠=︒,M N ,分别是11A B ,11A C 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为______.全科试题免费下载公众号高中僧课堂15.已知正项数列{}n a 前n 项和n S 满足()()12n n n a a S m m +=+∈R ,,且3510a a +=,则m =__________. 16.如图,已知椭圆()222210x y a b a b+=>>的右顶点和上顶点分别为,A B ,左焦点为F ,以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于,M N 两点.若四边形FAMN 是平行四边形,且平行四边形面积为96,则椭圆的长轴长为___________.四、解答题:本大题共6小题,满分52分. 解答应写出文字说明、证明过程或演算过程. 17.(本题满分8分)在ABC 中,7cos 8A =,3c =,sin 2sinB A =且b c ≠. (1)求b 的值; (2)求ABC 的面积.18.(本题满分8分)已知数列{}n a 满足194a =-且134n n a a +=. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足30n n b na +=,求{}n b 的前n 项和为n T .19.(本题满分8分)如图,正三棱柱111ABC A B C 的所有棱长都为2,D 为1CC 中点. (1)求证:1AB ⊥平面1A BD ;(2)求二面角1A A D B --的正弦值.C 1120.(本题满分8分)如图,已知抛物线2:2(0)C y px p =>的焦点为F ,且经过点(2A p ,)(0)m m >,||5AF =. (1)求p 和m 的值;(2)若点M ,N 在C 上,且AM AN ⊥,证明:直线MN 过定点.21.(本题满分10分)某高科技企业研制出一种型号为A 的精密数控车床,A 型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A 型车床所创造价值的第一年).若第1年A 型车床创造的价值是250万元,且第1年至第6年,每年A 型车床创造的价值减少30万元;从第7年开始,每年A 型车床创造的价值是上一年价值的50%.现用n a (*N n ∈)表示A 型车床在第n 年创造的价值.(1)求数列{}(N )n a n *∈的通项公式n a ;(2)记n S 为数列{}n a 的前n 项的和,n T =nS n,企业经过成本核算,若100n T >万元,则继续使用A 型车床,否则更换A 型车床,试问该企业须在第几年年初更换A 型车床?22.(本题满分10分)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F 、,右顶点A 在圆22:3O x y +=上,且121AF AF ⋅=-.(1)求双曲线C 的标准方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点. ①求证:点M 与点N 的横坐标之积为定值; ②求MON ∆周长的最小值.,则2021122019a a a a =+++,同理2020122018a a a a =+++,2019122017a a a a =+++,依次类推,可得为原点,1,,CA CB CC 的方向为()1,0,2AN =-,()1,1,2BM =-,因为1430 cos,1056AN BMAN BMAN BM⋅-+<===⨯>,所成角的余弦值为30直线四边形FAMNS=椭圆长轴长故ABC 的面积34n ⎛⎫++⋅ ⎪⎝⎭()41n ⎫++-⎪434n ⎛⎫++- ⎪⎝⎭ABC 为正三角形正三棱柱, 又AO ⊂平面,1BB BC ⊥,1OO ⊂平面1(1,2,3),(2,1,0)AB BD ∴=-=-,1(1,2,3)BA =-. 1110,0AB BD AB BA ⋅=⋅=,1BD BA B ⋂=,且的一个法向量为(,,)n x y z =,(1,1,3)AD =--,1(0,2,0)AA =,则10n AD n AA ⎧⋅=⎪⎨⋅=⎪⎩,即,得(3,0,1)n =-.)得1(1,2,3)AB =-为平面易得2364|c |o ,28s ||n AB n AB n AB ⋅-===-⋅.B 的平面角为θ所以11(4,4)AM x y =--,22(4,4)AN x y =--,又)由题意知126,,,a a a 构成首项故()*280306,N n a n n n =-∈(万元)由题意知()*78,,,7,N n a a a n n ∈构成首顶(7*17,N 2n n n -⎫∈⎪⎭730,1n n n -≤≤⎫所以,当*12,N n n ∈时,恒有则()13,0AF c =--,()23,0AF c =-,因为121AF AF ⋅=-,所以的渐近线方程为33y x , 当直线的斜率不存在时,直线的方程为=3x ,所以3,2OD MN,所以132OM ON .此时OMN 的周长为6OM ON MN,此时3M Nx x . 当直线的斜率存在时,设其方程为(0)y kx m k ,则(,0)mD k,联立2213ykx m x y,得222(13)6330k xkmx m ,由于直线l 与双曲线所以2130k 且0m ,所以22222364(13)(33)130k m k m k,22310k m --=.则22310m k ,得33k或33k . ,由33ykx m yx ,解得3333(,),(,)33333333m mm m M N k k k k ,则222333()()333333m m mOM k k k ,222333()()333333m m m ON kk k ,22222331333()()1333333333m k m m m mMN k k k k k . 又22221331133M Nm k x x k k ,为定值,所以OMN 的周长为2221111333333k OM ON MNm k k k ,当33k时,周长为22222221112212123113333313333k k k kk m mkk k k k .当33k时,周长为 22222221112212123113333313333k k k k k m m kk kk k ,因为222222212122113113121111442kk k k kkkk k k,所以当33k 时,周长大于2336.当33k时,周长大于2336.综上所述,OMN 周长的最小值为。
浙江省浙南名校联盟2022-2023学年高二数学上学期期末联考试题(含解析)
浙江省浙南名校联盟2018-2019学年高二数学上学期期末联考试题(含思路)选择题部分一,选择题:在每小题给出地四个选项中,只有一项是符合题目要求地.1.设集合,,则使成立地地值是()A. -1B. 0C. 1D. -1或1【结果】A【思路】【思路】依据集合A,B,以及B⊆A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B⊆A。
∴∴a=﹣1.故选:A.【点睛】本题考查列举法地定义,集合圆素地互异性,以及子集地定义.2.已知复数,则()A. B. C. D.【结果】A【思路】【思路】把z=﹣2+i代入,再利用复数代数形式地乘除运算化简得结果.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式地乘除运算,是基础题.3.若为实数,则“”是“”地()A. 充分而不必要款件B. 必要而不充分款件C. 充分必要款件D. 既不充分也不必要款件【结果】B【思路】【思路】求出不等式地等价款件,结合充分款件和必要款件地定义进行判断即可.【详解】解:由得0<a<1,则“a<1”是“”地必要不充分款件,故选:B.【点睛】本题主要考查充分款件和必要款件地判断,结合不等式地关系是解决本题地关键.4.若实数,满足约束款件,则地最大值为()A. B. 0 C. D. 1【结果】C【思路】【思路】作出题中不等式组表示地平面区域,得如图地△ABC及其内部,再将目标函数z=x+2y对应地直线进行平移,可得当x,y时,z得到最大值.【详解】解:作出变量x,y满足约束款件表示地平面区域,得到如图地△ABC及其内部,其中A(,),B(,﹣1),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,).故选:C.【点睛】求目标函数最值地一般步骤是“一画,二移,三求”:(1)作出可行域(一定要注意是实线还是虚线)。
青海省西宁市大通回族土族自治县2019-2020学年高二上学期期末考试数学(文)试题(带答案解析)
青海省西宁市大通回族土族自治县2019-2020学年高二上学期期末考试数学(文)试题1.已知命题:p n N *∀∈,2112n n >-,则命题p 的否定p ⌝为( ) A .n N *∃∈,2112n n ≤- B .n N *∀∈,2112n n <-C .n N *∀∈,2112n n ≤-D .n N *∃∈,2112n n <-2.设集合{}2340A x x x =--<,12log B x y x ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭,则A B =I ( ) A .()1,4- B .()0,1 C .()1,4D .()0,43.若直线110l y ++=与直线2l 的斜率互为相反数,则2l 的倾斜角为( ) A .30°B .60°C .120°D .150°4.已知函数()(2017ln )f x x x =+,若0'()2018f x =,则0x 等于( ) A .2eB .1C .eD .ln 25.“22a -≤≤”是“直线y x a =+与圆224x y +=相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.在ABC V 中,π3A =,b 2=,其面积为sin sin A B a b ++等于( )A .14 B .13C D 7.若sin cos 4sin 5cos αααα+=-,则cos2=α( )A .2425- B .725- C .2425D .7258.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=9.若直线:1l ax by +=与圆22:1C x y +=有两个不同的交点,则点(,)P a b 圆C 的位置关系是( )A .点在圆上B .点在圆内C .点在圆外D .不能确定10.已知双曲线C 的对称中心为坐标原点,其中一个焦点坐标为()2,0,且它的一条渐近线与圆()2234x y -+=相切,则双曲线C 的实轴长为( )A B .3C .D .311.若函数()f x 在R 上可导,且()()f x f x x <',则下列正确的是( ) A .()()1f f e = B .()()1ef f e > C .()()1ef f e =D .()()e 1e f f <12.设1F ,2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得123PF PF b +=,1294PF PF ab ⋅=,则该双曲线的离心率为( ) A .43B .53C .94D .313.若命题“[]01,1x ∃∈-,20030x x a ++>”为假命题,则实数a 的取值范围是______.14.若点P (1,﹣1)在圆x 2+y 2+x +y +k =0(k ∈R )外,则实数k 的取值范围为_____.15.函数()1xe f x x =+的图象在点()()1,1f 处的切线方程是_____________.16.已知抛物线()220x py p =>的焦点为F ,其准线与双曲线2212x y -=相交于A ,B 两点.若ABF ∆为直角三角形,则抛物线的准线方程为________.17.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .已知sin 2sin 0c A b C -=,222a b c --=. (1)求cos A 的值;(2)若b =ABC ∆的面积.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为060,BAD PD ∠=⊥平面ABCD ,PD E =是棱PD 上的一个点,DE F =为PC 的中点.(1)证明://BF 平面ACE ; (2)求三棱锥F EAC -的体积.19.在等差数列{}n a 中,3412a a +=,公差2d =,记数列{}21n a -的前n 项和为n S . (1)求n S ; (2)设数列1n n n a S +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若25,,m a a a 成等比数列,求m T .20.已知函数()3213f x x x a =-+. (1)当0a =时,求函数()f x 的极大值与极小值;(2)若函数()f x 在[]1,3上的最大值是最小值的3倍,求a 的值.21.某家电公司销售部门共有200名销售员,每年部门对每名销售员都有1400万元的年度销售任务.已知这200名销售员去年完成的销售额都在区间[2,22](单位:百万元)内,现将其分成5组,第1组、第2组、第3组、第4组、第5组对应的区间分别为[2,6),[6,10),[10,14),[14,18),[18,22],并绘制出如下的频率分布直方图.(1)求a 的值,并计算完成年度任务的人数;(2)用分层抽样的方法从这200名销售员中抽取容量为25的样本,求这5组分别应抽取的人数;(3)现从(2)中完成年度任务的销售员中随机选取2名,奖励海南三亚三日游,求获得此奖励的2名销售员在同一组的概率.22.已知椭圆()2222:10x y C a b a b +=>>C 过点⎛ ⎝⎭.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点(点,P Q 均在第一象限),且直线,,OP l OQ 的斜率成等比数列,证明:直线l 的斜率为定值.参考答案1.A 【解析】 【分析】根据全程命题的否定是特称命题,这一规则书写即可. 【详解】全称命题“n N *∀∈,2112n n >-”的否定为特称命题,故命题的否定为“n N *∃∈,2112n n ≤-”. 故答案为A. 【点睛】这个题目考查了全称命题的否定的写法,换量词否结论,不变条件. 2.D 【解析】 【分析】先解不等式2340x x --<和求12log y x =的定义域,再由交集的定义求解即可.【详解】由题,因为2340x x --<,解得14x -<<,所以{}|14A x x =-<<, 由对数函数可得0x >,所以{}|0B x x =>, 所以()0,4A B =I , 故选:D 【点睛】本题考查集合的交集运算,考查解一元二次不等式,考查对数函数的定义域. 3.B 【解析】12l l k k ==Q 2l 的倾斜角为60° 故选B 4.B 【解析】分析:求出函数的导数,得到关于x 0的方程,求出x 0的值即可. 详解:f′(x )=2017+lnx+1=2018+lnx , 若f′(x 0)=2018, 则2018+lnx 0=2018, 解得:x 0=1, 故选:B .点睛:本题考查了导数的基本公式及运算法则,属于基础题. 5.A 【解析】 【分析】根据直线y x a =+与圆224x y +=相交求出实数a 的取值范围,再利用充分条件和必要条件的定义可得出结论. 【详解】若直线y x a =+与圆224x y +=2<,即a -<<所以“22a -≤≤”是“直线y x a =+与圆224x y +=相交”的充分不必要条件.故选:A. 【点睛】本题考查充分不必要条件的判断,一般转化为集合的包含关系进行判断,考查运算求解能力与推理能力,属于基础题. 6.A 【解析】 【分析】先由三角形面积公式求出c ,再由余弦定理得到a ,再由正弦定理,即可得出结果. 【详解】因为在ABC V 中,π3A =,b 2=,其面积为所以12bcsinA =,因此4c =, 所以22212416224122a b c bccosA =+-=+-⨯⨯⨯=,所以a = 由正弦定理可得:a b sinA sinB=,所以sin sin sin 14A B Aa b a +===+. 故选A 【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型. 7.A 【解析】sin cos tan 14,tan 7.sin 5cos tan 5Qααααααα++==∴=--222222cos sin 1tan 24cos 2.sin cos tan 125ααααααα--∴===-++ 本题选择A 选项.点睛:关于sin α,cos α的齐次式,往往化为关于tan α的式子.8.A 【解析】 【分析】 【详解】若△AF 1B 的周长为,由椭圆的定义可知4a =a ∴=c e a ==Q 1c ∴=, 22b ∴=,所以方程为22132x y +=,故选A.考点:椭圆方程及性质9.C 【解析】 【分析】由直线l 与圆C 相交,转化为圆心到直线的距离小于半径,可得出221a b +>,从而可判断出点P 与圆C 的位置关系. 【详解】直线与圆相交,所以,圆心到直线的距离221d r a b<⇔<+,所以221a b +>,所以点在圆外,故选C. 【点睛】本题考查点与圆的位置关系的判断,同时也考查了直线与圆的位置关系的判断,解题时要熟悉这两类问题的转化,考查分析问题和解决问题的能力,属于中等题. 10.B 【解析】 【分析】由焦点坐标的位置可设双曲线C 的方程为22221x y a b-=,则一条渐近线方程为b y x a =,由与圆相切可得d r =,解得2254b a =,再由2224c a b =+=,即可求解. 【详解】由题,因为焦点为()2,0,设双曲线C 的方程为22221x y a b-=,则一条渐近线方程为b y x a=, 因为渐近线与圆()2234x y -+=相切,所以2d r ===,解得2254b a =,因为2224c a b =+=,所以2209a =,则a =所以实轴长为2a =故选:B 【点睛】本题考查求双曲线的实轴长,考查直线与圆的位置关系的应用. 11.D 【解析】 【分析】由()()f x f x x <'可构造()()()20f x xf x f x x x ''-⎡⎤=>⎢⎥⎣⎦,即()f x x 在()0,∞+上单调递增,由1e <可得()()11f f e e<,整理后即可判断选项. 【详解】由题,因为()()f x f x x <',即()()0xf x f x '->,所以()()()20f x xf x f x x x ''-⎡⎤=>⎢⎥⎣⎦, 即()f x x在()0,∞+上单调递增. 因为1e <, 所以()()11f f e e<,即()()e 1e f f <, 故选:D. 【点睛】本题考查构造函数法利用导函数判断函数单调性,考查单调性的应用. 12.B 【解析】 【分析】根据双曲线的几何意义与题中所给的条件进行化简求解,从而得到43b a =,进而求得离心率即可. 【详解】因为P 是双曲线()2210,0a b a b-=>>上一点,所以122PF PF a -=,又123PF PF b +=,所以()()2222121294PF PF PF PF b a +--=-,所以2212494PF PF b a ⋅=-.又因为1294PF PF ab ⋅=,所以有22994ab b a =-,即29940b b a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,即解得:13b a =-(舍去),或43b a =,所以222222224251139b c a b e a a a ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭+==,所以53e =, 故选:B. 【点睛】本题主要考查了根据双曲线的定义求解基本量之间的关系,进而求得离心率的方法,重点在于根据题中所给的条件列出等式进行化简,属于中等题型. 13.(],4-∞- 【解析】 【分析】由原命题为假命题,则命题的否定为真命题,再根据一元二次不等式恒成立求出参数的取值范围. 【详解】解:由题意,命题“[]01,1x ∃∈-,20030x x a ++>”为假命题,则[]1,1x ∀∈-,230x x a ++≤为真命题,令()23g x x x a ++=,则对[]1,1x ∀∈-,()0g x ≤恒成立,因为()23g x x x a ++=的对称轴为32x =-,则()g x 在[]1,1x ∈-上单调递增, 则只需()10g ≤即可,即40a +≤,解得4a ≤-,即(],4a ∈-∞-. 故答案为:(],4-∞-. 【点睛】本题考查一元二次不等式恒成立问题,属于中档题.14.12,2⎛⎫- ⎪⎝⎭【解析】【分析】 首先把圆的一般方程化为标准方程,点在圆外,则圆心到直线的距离d r >,从而得解.【详解】∵圆的标准方程为22111()()222x y k +++=-,∴圆心坐标(12-,12-),半径r = 若点(1,﹣1)在圆220x y x y k ++++=外, 则满足22111(1)(1)222++-+->k ,且12-k >0, 即﹣2<k 12<, 即实数k 的取值范围是(﹣2,12). 故答案为: (﹣2,12) 【点睛】 本题考查根据直线与圆的位置关系求参数的取值范围,属于基础题.15.e 4e 0x y -+=【解析】【分析】首先求出()f x 在1处的导数,再求出()f x 在1处的函数值()1f ,然后用点斜式求出方程即可.【详解】()()2e 1xx f x x '=+,∴()e 14f '=且()e 12f =,切线方程是()e e 124y x -=-,即e 4e 0x y -+=.【点睛】本题考查利用导数求函数在点处的切线方程,属于基础题.16.1y =-【解析】【分析】 先求出准线方程为2p y =-,代入双曲线方程可得A ,B 的坐标,再由ABF ∆为直角三角形,设AB 中点为C ,则CE AC =,即p =进而求解. 【详解】 由题可知准线方程为2p y =-, 因为与双曲线2212x y -=相交于A ,B , 则A为2p ⎛⎫- ⎪ ⎪⎝⎭,B为2p ⎫-⎪⎪⎭, 因为ABF ∆为直角三角形,由双曲线的对称性可得90AFB ∠=︒,设AB 中点为C ,则CE AC =,即p =解得24p =,即2p =, 所以准线方程为1y =-,故答案为:1y =-【点睛】本题考查抛物线的几何性质,考查双曲线的方程的应用,考查运算能力.17.(1)5-(2)3. 【解析】试题分析:(1)利用正弦定理化简条件,统一为边,再结合余弦定理可求出2225cos 25b c a A bc ac +-===-(2)根据b =c,根据同角三角函数关系求sin A ,利用面积公式1sin 2s bc A =求解.试题解析:(1)因为sin 2sin 0c A b C -=,所以2ac bc =,即2a b =.所以2225cos 25b c a A bc ac +-===-. (2)因为b =1)知2a b =,所以a =由余弦定理可得222?()5c =+--,整理得22150c c +-=,解得3c =,因为cos 5A =-,所以sin 5A =, 所以ABC ∆的面积1332S ==. 18.(1)见解析;(2)2.【解析】试题分析:(1)取PE 的中点,连接,,BG OE FG ,//OE BG ,所以//BG 平面AEC ,//FG 平面AEC ,所以//BF 平面AEC ;(2)123F EAC B EAC E ABC V V V ---====。
北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析 (2)
北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.2.(4分)焦点在x轴上的椭圆的离心率是,则实数m的值是()A.4 B.C.1 D.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.64.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.25.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=.10.(4分)双曲线的两条渐近线方程为.11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷参考答案一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.考点:直线的倾斜角.专题:直线与圆.分析:直线的倾斜角与斜率之间的关系解答:解:设倾斜角为θ,θ∈可得,解得m=4.故选:A.点评:本题考查椭圆的简单性质的应用,基本知识的考查.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.6考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,求出底面面积和高,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,棱锥的底面面积S=2×2=4,棱锥的高h=2,故棱锥的体积V==,故选:B点评:本题考查三视图、三棱柱的体积,本试题考查了简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.4.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.2考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线和圆的位置关系结合弦长公式即可得到结论.解答:解:圆心到直线的距离d=,则直线l被圆O所截的弦长为==,故选:C点评:本题主要考查直线和圆相交的应用,根据圆心到直线的距离结合弦长公式是解决本题的关键.5.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限考点:命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:命题为特称命题,则根据特称命题的否定是全称命题得命题的否定是∀k>0,使得直线y=kx﹣2的图象不经过第一象限,故选:C点评:本题主要考查含有量词的命题的否定,比较基础.6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列;简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选:C.点评:本题主要考查充分条件和必要条件的判断,等差数列的性质是解决本题的关键.7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC考点:棱锥的结构特征.专题:空间位置关系与距离.分析:由题意画出图形,利用线面垂直的判定判定AD⊥面BCE,由此说明A正确;由三垂线定理结合∠BEC为锐角三角形说明B错误;举例说明C错误;由平面的斜线与平面内直线的位置关系说明D错误.解答:解:如图,∵四面体A﹣BCD为正四面体,且E为AD的中点,∴BE⊥AD,CE⊥AD,又BE∩CE=E,∴AD⊥面BCE,则∀F∈BC,EF⊥AD,选项A正确;由AE⊥面BCE,∴AE⊥EF,若AC⊥EF,则CE⊥EF,∵∠BEC为锐角三角形,∴不存在F∈BC,使EF⊥AC,选项B错误;取BC中点F,可求得DF=,又DE=1,得EF=,选项C错误;AC是平面BCE的一条斜线,∴AC与平面BCE内直线的位置关系是相交或异面,选项D错误.故选:A.点评:本题考查了命题的真假判断与应用,考查了空间中直线与平面的位置关系,考查了线线垂直与线面平行的判定,考查了空间想象能力,是中档题.8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.考点:两点间距离公式的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:化简方程+|y|=1,得到x2=1﹣2|y|,作出曲线W的图形,通过图象观察,即可得到到原点距离的最小值.解答:解:+|y|=1即为=1﹣|y|,两边平方,可得x2+y2=1+y2﹣2|y|,即有x2=1﹣2|y|,作出曲线W的图形,如右:则由图象可得,O与点(0,)或(0,﹣)的距离最小,且为.故选A.点评:本题考查曲线方程的化简,考查两点的距离公式的运用,考查数形结合的思想方法,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=1或﹣1.考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由平行关系可得向量相等,排除截距相等即可.解答:解:当a=0时,第二个方程无意义,故a≠0,故直线x﹣ay﹣1=0可化为x﹣,由直线平行可得a=,解得a=±1故答案为:1或﹣1点评:本题考查直线的一般式方程和平行关系,属基础题.10.(4分)双曲线的两条渐近线方程为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解答:解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:点评:本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.考点:椭圆的定义.专题:计算题.分析:椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P到一个焦点的距离为3,即可得到P到另一个焦点的距离.解答:解:椭圆的长轴长为10根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3∴P到另一个焦点的距离为10﹣3=7故答案为:7点评:本题考查椭圆的标准方程,考查椭圆的定义,属于基础题.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意和椭圆的对称性可得:点P是椭圆短轴上的顶点,由椭圆的性质即可求出椭圆C的离心率.解答:解:因为等边△F1F2P的一个顶点P在椭圆C上,如图:所以由椭圆的对称性可得:点P是椭圆短轴上的顶点,因为△F1F2P是等边三角形,所以a=2c,则=,即e=,故答案为:.点评:本题考查椭圆的简单几何性质的应用,解题的关键确定点P的位置,属于中档题.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为13.考点:点、线、面间的距离计算.专题:计算题;空间位置关系与距离.分析:由于本题中的二面角是直角,且两线段都与棱垂直,可根据题意作出相应的长方体,CD恰好是此长方体的体对角线,由长方体的性质求出其长度即可.解答:解:如图,由于此题的二面角是直角,且线段AC,BD分别在α,β内垂直于棱l,AB=4,AC=3,BD=12,作出以线段AB,BD,AC为棱的长方体,CD即为长方体的对角线,由长方体的性质知,CD==13.故答案为:13.点评:本题考查与二面角有关的线段长度计算问题,根据本题的条件选择作出长方体,利用长方体的性质求线段的长度,大大简化了计算,具体解题中要注意此类问题的合理转化.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点F,设P(m2,m),运用两点的距离公式,结合条件|AP|=|PF|,计算可得m,再由两点的距离公式计算即可得到结论.解答:解:抛物线y2=2x的焦点为F(,0),设P(m2,m),由|AP|=|PF|,可得|AP|2=2|PF|2,即有(m2+)2+m2=2,化简得m4﹣2m2+1=0,解得m2=1,即有|OP|===.故答案为:.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点坐标,同时考查两点的距离公式的运用,属于中档题.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.考点:直线和圆的方程的应用.专题:平面向量及应用;直线与圆.分析:(1)由已知中直线过点A我们可以设出直线的点斜式方程,然后化为一般式方程,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线的方程;(2)设出P点的坐标,借助坐标来表示两个向量的数量积,再根据P在圆上的条件,进而得到结论.解答:(本小题满分10分)解:( I)由题意,所求直线的斜率存在.设切线方程为y=kx+2,即kx﹣y+2=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)所以圆心O到直线的距离为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以,解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所求直线方程为或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)( II)设点P(x,y),所以,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)因为点P在圆上,所以x2+y2=1,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又因为x2+y2=1,所以﹣1≤y≤1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识是直线和圆的方程的应用,其中熟练掌握直线与圆不同位置关系时,点到直线的距离与半径的关系是关键,还考查了向量数量积的坐标表示.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出椭圆的标准方程,即可求椭圆C的长轴长和焦点坐标;(Ⅱ)联立直线和椭圆方程转化为一元二次方程,结合弦长公式进行求解即可.解答:解:( I)因为x2+2y2=2,所以,所以,所以c=1,所以长轴为,焦点坐标分别为F1(﹣1,0),F2(1,0).( II)设点A(x1,y1),B(x2,y2).因为,消元化简得3x2+4tx+2t2﹣2=0,所以,所以,又因为,所以,解得t=±1.点评:本题主要考查椭圆方程的应用和性质,以及直线和椭圆相交的弦长公式的应用,转化一元二次方程是解决本题的关键.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(I)由AB∥CD,DE∥AF,且AB∩AF=A,CD∩DE=D,可证平面ABF∥平面DCE即可证明CE∥平面ABF.(II)先证明AC⊥BD,AF⊥BD,即可证明直线BD⊥平面ACF.(Ⅲ)连接 FD,易证明CD⊥AE.又AE⊥CF,可证AE⊥FD.从而可得,即有,即可解得a的值.解答:(本小题满分12分)解:( I)因为ABCD为正方形,所以AB∥CD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DE∥AF,且AB∩AF=A,CD∩DE=D.所以平面ABF∥平面DCE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)而CE⊂平面EDC,所以CE∥平面ABF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)因为ABCD为正方形,所以AC⊥BD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)因为直线AF⊥平面ABCD,所以AF⊥BD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为AF∩AC=A,所以直线BD⊥平面ACF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)连接 FD.因为直线AF⊥平面ABCD,所以AF⊥CD,又CD⊥AD,AD∩AF=A所以CD⊥平面ADEF,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以CD⊥AE.又AE⊥CF,FC∩CD=C,所以AE⊥平面FCD,所以AE⊥FD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)所以,所以==解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分).点评:本题主要考察了直线与平面垂直的判定,直线与平面平行的判定,考察了转化思想,属于中档题.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由|PO|=|PA|,得P在OA的中垂线上,求出中垂线方程,代入椭圆方程进行求解即可求点P 的坐标;(Ⅱ)求出直线方程,联立直线和椭圆方程,转化为一元二次方程,结合三角形面积之间的关系即可得到结论.解答:解:( I)设点P(x1,y1),由题意|PO|=|PA|,所以点P在OA的中垂线上,而OA的中垂线为,所以有.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)把其代入椭圆方程,求得x1=±1.所以或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)设Q(x2,y2).根据题意,直线PQ的斜率存在,设直线PQ的方程为y=kx+3,所以.消元得到(3+4k2)x2+24kx+24=0,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为S△OAP=S△OPQ,所以S△OAQ=2S△OPQ,即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)所以有|x1|=2|x2|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)因为,所以x1,x2同号,所以x1=2x2.所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)解方程组得到,经检验,此时△>0,所以直线PQ的方程为,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)法二:设Q(x2,y2),因为S△OAP=S△OPQ,所以|AP|=|PQ|.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)即点P为线段OQ的中点,所以x2=2x1,y2=2y1﹣3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)把点P,Q的坐标代入椭圆方程得到﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)解方程组得到或者,即,或者.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以直线PQ的斜率为或者,所以直线PQ的方程为,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题主要考查椭圆方程的应用和性质,直线和椭圆相交的性质,利用设而不求的思想是解决本题的关键.考查学生的运算能力.。
应县第一中学校高二数学上学期期末考试试题理含解析
14.已知p:(x-m)2〉3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________.
【答案】{m|m≥1或m≤-7}
【解析】
由命题p中的不等式(x-m)2〉3(x-m)变形,得(x-m)(x-m-3)>0,解得x〉m+3或x〈m;
【详解】双曲线 : 的右焦点为 , 由 ,可得直线 的方程为 , , 设直线 与双曲线相切,且切点为左支上一点, 联立 ,可得 ,
由 , 解得 (4舍去),
可得 到直线 的距离为 ,
即有 的面积Байду номын сангаас最小值为 .
故答案为: .
【点睛】本题考查三角形的面积的最小值的求法,注意运用联立直线方程和双曲线方程,运用判别式为0,考查化简整理的运算能力,属于中档题.
【详解】(Ⅰ)当 t=1 时,
≤3 在[1,+∞)上恒成立,故命题 q 为真命题.
(Ⅱ)若 p∨q 为假命题,则 p,q 都是假命题.
当 p 为假命题时,Δ= -4<0,解得-1〈t〈1;
当 q 为真命题时, ≤4 -1,即 -1≥0,解得 t≤ 或 t≥
∴当 q 为假命题时,
∴t 的取值范围是 .
所以圆心到直线的距离
可解得 ,所以切线方程为
当在x轴与y轴上的截距不为0时,设切线方程为
所以 ,解得 或 (舍),即切线方程为
所以共有3条切线方程
所以选C
【点睛】本题考查了点到直线距离 简单应用,直线与圆的位置关系,属于基础题.
6.给出下列两个命题,命题 “ "是“ ”的充分不必要条件;命题q:函数 是奇函数,则下列命题是真命题的是( )
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷Word版含解析
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。
《高等数学》2019-2020学年第一学期期末考试A卷
河海大学2019-2020学年第一学期期末考试《高等数学》试题(A)卷姓名:学号:班级:成绩:一、选择题(每题3分,共12分)1.若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为().(A)1(B)2(C)3(D)-12.已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为().(A)1(B)3(C)-1(D)123.定积分22ππ-⎰的值为().(A)0(B)-2(C)1(D)24.若()f x 在0x x =处不连续,则()f x 在该点处().(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(每题3分,共12分)1.平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为.2.1241(sin )x x x dx -+=⎰.3.201lim sinx x x→=.4.3223y x x =-的极大值为.三、计算题(每题6分,共42分)1.求2ln(15)lim.sin 3x x x x→+2.设2,1y x =+求.y '3.求不定积分2ln(1).x x dx +⎰4.求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5.设函数()y f x =由方程0cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7.求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(每题6分,共24分)1.设(ln )1,f x x '=+且(0)1,f =求().f x 2.求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3.求曲线3232419y x x x =-+-在拐点处的切线方程.4.求函数y x =+在[5,1]-上的最小值和最大值.五、证明题(10分)设()f x ''在区间[,]a b 上连续,证明:1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰标准答案一、1B;2C;3D;4 A.二、131;y x =+22;330;40.三、1解原式25lim3x x x x →⋅=5分53=1分2解22ln ln ln(1),12xy x x ==-++ 2分2212[121xy x x '∴=-++4分3解原式221ln(1)(1)2x d x =++⎰3分222212[(1)ln(1)(1)]21x x x x dx x =++-+⋅+⎰2分2221[(1)ln(1)]2x x x C =++-+1分4解令1,x t -=则2分321()()f x dx f t dt-=⎰⎰1分1211(1)1cos t tdt e dtt -=+++⎰⎰1分210[]t e t =++1分21e e =-+1分5两边求导得cos 0,yey x '⋅+=2分cos yx y e '=- 1分cos sin 1x x =-1分cos sin 1xdy dxx ∴=-2分6解1(23)(23)(22)2f x dx f x d x +=++⎰⎰2分21sin(23)2x C =++4分7解原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分=32e2分四、1解令ln ,xt =则,()1,t t x e f t e '==+3分()(1)t f t e dt =+⎰=.t t e C ++2分(0)1,0,f C =∴= 2分().x f x x e ∴=+1分2解222cos x V xdx πππ-=⎰3分2202cos xdxππ=⎰2分2.2π=2分3解23624,66,y x x y x '''=-+=-1分令0,y ''=得 1.x =1分当1x -∞<<时,0;y ''<当1x <<+∞时,0,y ''>2分(1,3)∴为拐点,1分该点处的切线为321(1).y x =+-2分4解1y '=-=2分令0,y '=得3.4x=1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭2分∴最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭2分五、证明()()()()()()bbaax a x b f x x a x b df x '''--=--⎰⎰1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰1分[2()()ba x ab df x =--+⎰1分{}[2()]()2()bba a x ab f x f x dx =--++⎰1分()[()()]2(),ba b a f a f b f x dx =--++⎰1分移项即得所证.1分。
2020年厦门市高二上期末市质检数学模拟试题及参考答案【解析】3
2019-2020学年度厦门市第一学期高二年级质量检测数学试题满分为150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.全部答案答在答题卡上,答在本试卷上无效。
一、选择题:本大题共8个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0∈R,2<或x02>x0”的否定是()A.∃x0∈R,2≥或x02≤x0B.∀x∈R,2x≥或x2≤xC.∀x∈R,2x≥且x2≤xD.∃x0∈R,2≥且x02≤x02.如图,M是三棱锥P﹣ABC的底面△ABC的重心,若(x、y、x∈R),则x+y+z的值为()A.B.C.D.13.有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为()A.B.C.D.4.某一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,摄氏温度﹣504712151923273136/℃热饮杯数15615013212813011610489937654(如图所示),请根据结果预测,若某天的气温是3℃,大约能卖出的热饮杯数为()(单词提示:Linear 线性)A.143B.141C.138D.1345.如图,在三棱柱ABC﹣A1B1C1中,点P在平面A1B1C1内运动,使得二面角P﹣AB﹣C的平面角与二面角P﹣BC﹣A的平面角互余,则点P的轨迹是()A.一段圆弧B.椭圆的一部分C.抛物线D.双曲线的一支6.命题p:关于x的方程x|x|﹣2x+m=0(m∈R)有三个实数根;命题q:0<m<1;则命题p成立是命题q成立的()A..充分而不必要条件B..必要而不充分条件C..充要条件D.既不充分又不必要的条件7.设F1,F2是双曲线C:=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2的一条直线与双曲线C和y轴分别交于A、B两点.若|OA|=|OF2|,|OB|=|OA|,则双曲线C的离心率为()A. B. C. D.8.《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F是椭圆=1(a>b>0)的左焦点,直线y=x交椭圆于A、B两点,若|AF|,|BF|恰好是Rt△ABF的”勾”“股”,则此椭圆的离心率为()A. B. C. D.二、多选题:本大题共2个小题,每小题5分,共10分。
河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析
石家庄市2018~2019学年度第一学期期末考试试题高二数学(文科)第Ⅰ卷(选择题,共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.命题“若则”地逆否命题是()A. 若则B. 若则C. 若则D. 若则【结果】B【思路】本题主要考查命题及其关系。
逆否命题是将原命题地款件与结论否定,然后再将否定后地款件和结论互换,故命题“若则”地逆否命题是“若,则”。
故选2.一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19地学生留下进行交流,这里运用地是A. 分层抽样法B. 抽签法C. 随机数表法D. 系统抽样法【结果】D【思路】【思路】依据系统抽样地定义进行判断即可.【详解】每个班同学以1﹣50排学号,要求每班学号为19地同学留下来交流,则数据之间地间距差相同,都为50,所以依据系统抽样地定义可知,这里采用地是系统抽样地方式.故选:D.【点睛】本题主要考查抽样地定义和应用,要求熟练掌握简单抽样,系统抽样和分层抽样地定义,以及它们之间地区别和联系,比较基础.3.抛物线地焦点坐标是A. B. C. D.【结果】B【思路】【思路】先将方程化简为标准形式,即可得焦点坐标.【详解】由抛物线可得x2=4y,故焦点坐标为(0,1)故选:B.【点睛】本题主要考查抛物线地简单性质,属于基础题.4.已知命题:,。
命题:,,则下面表达中正确地是A. 是假命题B. 是真命题C. 是真命题D. 是假命题【结果】C【思路】【思路】先判断命题地真假,进而求得复合命题真假判断真值表得到结果.【详解】命题p,,即命题p为真,对命题q,去 ,所以命题q为假,为真所以是真命题故选:C.【点睛】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可。
(2)对于复合命题地真假判断应利用真值表。
(3)也可以利用“互为逆否命题”地等价性,通过判断其逆否命题地真假来判断原命题地真假.5.阅读下边地程序框图,运行相应地程序,则输出地值为A. -1B. 0C. 3D. 4【结果】D【思路】【思路】直接依据程序框图计算得出结果.【详解】由程序框图可知。
精品解析:福建省三明市2019-2020学年高二上学期期末数学试题(解析版)
故函数在 上单调递减,在 上单调递增, 错误;
,根据单调性知 , 正确;
, ,故方程 有实数解, 正确;
,易知当 时成立,当 时, ,设 ,
则 ,故函数在 上单调递增,在 上单调递减,
在 上单调递增,且 .
画出函数图象,如图所示:当 时有ห้องสมุดไป่ตู้个交点.
综上所述:存在实数 ,使得方程 有 个实数解, 正确;
16.设过原点的直线与双曲线 : 交于 两个不同点, 为 的一个焦点,若 , ,则双曲线 的离心率为__________.
【答案】
【解析】
【分析】
如图所示:连接 ,根据对称性知 为平行四边形,计算得到
,利用余弦定理计算得到答案.
【详解】如图所示:连接 ,根据对称性知 为平行四边形.
,则 , ,
, ,故 .
【详解】 , ,取 得到 .
故函数在 上单调递减,在 上单调递减,在 上单调递增.
对比图象知: 满足条件.
故选: .
【点睛】本题考查了根据导数求单调区间,函数图像的识别,意在考查学生对于函数知识的综合应用.
7.若 ,且 ,则下列不等式一定成立的是
A. B. C. D.
【答案】D
【解析】
【分析】
设函数 ,函数为偶函数,求导得到函数的单调区间,变换得到 ,得到答案.
C.当 , 时,方程不成立,错误;
D.方程表示的曲线不含有一次项,故不可能为抛物线,正确;
故选: .
【点睛】本题考查了椭圆,双曲线,抛物线的定义,意在考查学生对于圆锥曲线的理解.
10.(多选题)如图,在长方体 中, , , ,以直线 , , 分别为 轴、 轴、 轴,建立空间直角坐标系,则()
山东省泰安市2019-2020学年高二数学上学期末考试题答题卡
高二年级考试数学试题答题卡请在各题目的答题区域内作答,超出矩形边框的答案无效学校姓名班级准考证号一、单项选择题(共40分)非选择题答题区共分1 [A ][B ][C ][D ]2 [A ][B ][C ][D ]3 [A ][B ][C ][D ]4 [A ][B ][C ][D ]5 [A ][B ][C ][D]6 [A ][B ][C ][D ]7 [A ][B ][C ][D ]8 [A ][B ][C ][D ]18.(12分)请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效数学二[1]请在各题目的答题区域内作答,超出矩形边框的答案无效注意事项1.答题前,考生先将自己的学校、班级、姓名、准考证号填写清楚,并将准考证号填涂在相应位置。
2.选择题使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题使用黑色碳素笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
3.保持卡面清洁,不要折叠、不要弄破。
贴条形码处二、多项选择题(共20分)9 [A ][B ][C ][D ]10 [A ][B ][C ][D ]11 [A ][B ][C ][D ]12 [A ][B ][C ][D ]20.(12分)请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效请在各题目的答题区域内作答,超出矩形边框的答案无效22.(12分)21.(12分)数学二[2]。
北京市第一次普通高中2023-2024学年高二上学期学业水平合格性考试数学试题
③ k R ,使曲线 y f x 与 y kx 恰有两个交点.
其中所有正确结论的序号是
.
试卷第 3页,共 7页
三、解答题
25.已知函数 f x 2cos2x .
(1)求 f x 的最小正周期;
(2)求
f
x
在区间
0,
π 2
上的最大值和最小值.
26.阅读下面题目及其解答过程.
已知函数 f x 2x 2x .
北京市第一次普通高中 2023-2024 学年高二上学期学业水平 合格性考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A 1, 0,1, B 1, 2 ,则 A B ( )
A. 1
B. 2
C.1, 2
1 2
试卷第 2页,共 7页
D. 1 6
18. sin15 cos15 2 ( )
A.
1 2
B.1
C. 3 2
19.已知 a 0,b 0 ,且 a b 1,则 a b 的取值范围是( )
A.1, 0
B. 0,1
C. 1,1
D.2
D. 2,2
20.某校组织全校 1850 名学生赴山东曲阜、陕西西安和河南洛阳三地开展研究性学习
D.1,0,1, 2
2.复数 i2 ( )
A.i
B. i
3.函数 f x x x2 1 的零点为( )
C.1
D. 1
A. 1
B.0
C.1
4.已知向量
a
0,1
,
b
2,1
,则
a
b
2019-2020学年上海市浦东新区陆行中学高二数学文上学期期末试卷含解析
2019-2020学年上海市浦东新区陆行中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列2,5,11,20,x,47,…合情推出x的值为()A.29 B.31 C.32 D.33参考答案:C2. 已知不等式组表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A、B,当∠APB最大时,?的值为( )A.2 B.C.D.3参考答案:B【考点】平面向量数量积的运算;简单线性规划.【专题】计算题;平面向量及应用.【分析】作出不等式组对应的平面区域,根据数形结合求确定当α最小时,P的位置,利用向量的数量积公式,即可得到结论.【解答】解:作出不等式组对应的平面区域如图,要使∠APB最大,则P到圆心的距离最小即可,由图象可知当OP垂直直线x+y﹣2=0,此时|OP|==2,|OA|=1,设∠APB=α,则sin=,=此时cosα=,?==.故选:B【点评】本题主要考查线性规划的应用,考查学生分析解决问题的能力,利用数形结合是解决本题的关键.3. 在中,分别为内角的对边,且则等于A.30°B.45°C.60°D.120°参考答案:D结合余弦定理,得,可求出。
解:由得:,,则=120°。
故选D。
考点:余弦定理.点评:本题主要考查了余弦定理的应用,属于基础试题4. 设抛物线y2=4x的焦点为F,过点M(﹣1,0)的直线在第一象限交抛物线于A、B,使,则直线AB的斜率k=()A.B.C.D.参考答案:B【考点】直线与圆锥曲线的关系.【分析】由题意可得直线AB的方程 y﹣0=k (x+1),k>0,代入抛物线y2=4x化简求得x1+x2和x1?x2,进而得到y1+y2和y1?y2,由,解方程求得k的值.【解答】解:抛物线y2=4x的焦点F(1,0),直线AB的方程 y﹣0=k (x+1),k>0.代入抛物线y2=4x化简可得 k2x2+(2k2﹣4)x+k2=0,∴x1+x2=,x1?x2=1.∴y1+y2=k(x1+1)+k(x2+1)=+2k=,y1?y2=k2(x1+x2+x1?x2+1)=4.又=(x1﹣1,y1)?(x2﹣1,y2)=x1?x2﹣(x1+x2)+1+y1?y2=8﹣,∴k=,故选:B.5. 已知数列的前项积为,且满足,若,则为()A. B. C. D.参考答案:B【分析】根据题意,求出前5项,确定数列是以4为周期的数列,求出前4项的乘积,即可求出结果.【详解】因为,,所以,所以,所以,所以,所以数列以为周期,又,所以.故选B【点睛】本题主要考查周期数列的应用,会根据递推公式推出数列的周期即可,属于常考题型.6. “”是“” 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B7. 已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0﹣2)(x0+1)2,则函数f(x)的极值点的个数()A.0个B.1个C.两个D.三个参考答案:B【考点】利用导数研究函数的极值.【分析】由题意可知函数的导函数为(x0﹣2)(x0+1)2 ,求出函数的单调区间,求出函数的极值点的个数即可.【解答】解:由题意可知函数的导函数为f′(x)=(x0﹣2)(x0+1)2,令f′(x)>0,解得:x>2,∴f(x)在(﹣∞,2)递减,在(2,+∞)递增,∴f(x)在极小值是f(2),故函数f(x)的极值点的个数是1个,故选:B.【点评】此题主要考查函数导函数的性质及函数的单调性,考查函数的极值点,是一道基础题.8. 设实数x,y满足,则的取值范围为( ) A.B.C.D.参考答案:D【考点】简单线性规划.【专题】计算题;数形结合.【分析】画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(0,0)连线的斜率,由图求出取值范围,从而求出所求即可.【解答】解:画出可行域:设k=表示可行域中的点与点(0,0)连线的斜率,由图知k∈[,2]∴∈[,2]∴=k﹣取值范围为故选:D【点评】本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法,属于基础题.9. 设S n是等差数列{a n}的前n项和,若=()A.1 B.﹣1 C.2 D.参考答案:A【考点】等差数列的性质.【分析】充分利用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.10. 设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB、BC、CA 的距离分别为d1、d2、d3,则有d1+d2+d3为定值a;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1、d2、d3、d4,则有d1+d2+d3+d4为定值 ( ).A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有种(用数字作答);参考答案:14012. 一物体沿着直线以v = 2 t + 3 ( t的单位:s, v的单位:m/s)的速度运动,那么该物体在3~5s间行进的路程是米。
广东省中山市2019-2020学年高二上学期期末考试数学试卷含详解
【答案】B
【解析】
【分析】由 ,两边平方后展开整理,即可求得 ,则 的长可求.
【详解】解: ,
,
, ,
, ,
.
,
,
故选: .
【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
4.已知等比数列 的各项均为正数,前 项和为 ,若 ,则
1.“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】C
【解析】
【分析】根据充分条件和必要条件的定义进行判断即可.
【详解】
∴“ ”是“ ”的充分必要条件.
故选C
【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.
2.在等差数列 中,若 的值是
11.已知点 和点 ,直线 , 的斜率乘积为常数 ,设点 的轨迹为 ,下列说法正确的是()
A.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
B.存在非零常数 ,使 上所有点到两点 , 距离之和为定值
C.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值D.不存在非零常数 ,使 上所有点到两点 , 距离之差的绝对值为定值
【详解】根据题意,在△ADC中,∠ACD=45°,∠ADC=67.5°,DC=2 ,
则∠DAC=180°-45°-67.5°=67.5°,则AC=DC=2 ,
在△BCE中,∠BCE=75°,∠BEC=60°,CE= ,
则∠EBC=180°-75°-60°=45°,
则有 = ,变形可得BC= = = ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高二上学期期末考试试题【时量:120分 分值:150分】一:选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0a b <<,则下列不等式成立的是A .22a b <B .1a b <C .11a b <D .||||a b >2.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 下列各组数能组成等比数列的是A. 31,61,91 B. 3lg ,9lg ,27lg .C 6, 8, 10 D. 3,33-,9 4. 若命题“()p q ∧⌝”为真命题,则A .p q ∨为假命题B .q 为假命题C .q 为真命题D .()()p q ⌝∧⌝为真命题5. 已知}{n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为}{n a 的前n 项和,则10S 的值为A .-110B .-90C .90D .110 6. 设0>a ,若关于x 的不等式4≥+x a x 在x ∈(0,+∞)恒成立,则a 的最小值为 A. 4 B. 2 C. 16D. 1 7. 已知点0(4,)M y 在抛物线2:2(0)C y px p =>上,点M 到抛物线C 的焦点F 的距离为5,设O 为坐标原点,则OFM △的面积为A .1B .2CD .8. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上不是单调函数,则实数a 的取值范围是A .(-∞,-3)∪(3,+∞)B . (-3,3)C .(-∞,-3]∪[3,+∞)D .[-3,3]9. 在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA ,︒=∠90BAD ,︒=∠=∠6011DAA BAA ,则=1ACA. 85B. 25C. 109D. 5510. 已知1>x ,函数11-+=x x y 的最小值是 A. 1 B. 2 C. 3 D. 411. 古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若使得该女子所织布的尺数不少于10尺,则该女子所需的天数至少为A .8 B.7 C .6 D.512.椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B F ,为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]124ππα∈,则该椭圆离心率的最小值为 A. 21 B.63 C.32 D.22 二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线14416922=-y x 的渐近线方程为=y . 14. 已知变量x ,y 满足约束条件1,0,20,x x y x y ≥-⎧⎪-≤⎨⎪+-≤⎩则2z x y =+取最大值为.15. 已知等差数列{}n a 的前n 项和为n S ,且33a =,36S =,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前99项和为______.16. 函数的定义域为,1)1(=-f ,对任意,4)(>'x f ,则54)(+<x x f 的解集为.)(x f R R ∈x三:解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤)17. (10分)已知函数3)(2++=bx x x f ,且不等式0)(≥x f 的解集为),3[]1,(+∞-∞Y(1)求实数b 的值;(2)求不等式29)(x x f -≤的解集;18.(12分)已知等差数列}{n a 前n 项的和为n S ,且c a n S n n ++=2)2((c 为常数,*N n ∈),41=a .(1)求c 的值及数列}{n a 的通项公式;(2)设n a n b )2(=(*N n ∈),设数列}{n b 前n 项的和为n T ,求n T .19.(12分)在长方体ABCD 1111A B C D -中,2=AB ,11==BC BB ,E 是面对角线1CD 上一点,且154CD CE = (1)求证:1CD AE ⊥;(2)设异面直线1AB 与1BD 所成角的大小为α,求αcos 的值.20.(12分)近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?21.(12分)已知椭圆)0(1:2222>>=+b a by a x C 经过点)22,1(P ,离心率22=e ,直线l 的方程为2-=x .(1)求a ,b 的值;(2)过椭圆左焦点F 的直线l '交椭圆于A ,B 两点,过B 作直线l 的垂线与l 交于点Q .求证:当直线l '绕点F 旋转时,直线AQ 必经过x 轴上一定点.22.(12分)已知函数x ax x f ln )(+=)(R a ∈,22)(2+-=x x x g .(1)当1=a 时,求曲线)(x f y =在点1=x 处的切线方程;(2)当21-=a 时,求函数)(x f 在区间],1[e 上的最大值和最小值; (3)若对任意的]2,1[1-∈x ,均存在),0(2+∞∈x ,使得)()(21x f x g <,求a 的取值范围.【参 考 答 案】一:选择题:DBDBD ABAAC CD12. 因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为'F ,根据椭圆的定义:'2AF AF a +=,又因为'BF AF =,所以2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以2AB c =,2sin ,2cos AF c BF c αα==,所以()2sin cos 2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由于[,]124ππα∈,所以23c a ∈⎣⎦. 二、填空题(本大题共4小题,每小题5分,共20分)13.=y x 43±. 14.3 15.1009917. )1,(--∞考查函数)54()()(+-=x x f x F 单调性三:解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤) 17(10分)解:(1)Θ0)(≥x f 的解集为),3[]1,(+∞-∞Y ∴1和3是方程0)(=x f 的两个根,(3分)4-=∴b (5分)29)(x x f -≤∴即:22934x x x -≤+-化简得:06422≤--x x (6分)解得:31≤≤-x (9分)∴原不等式的解集为:]3,1[-(10分)18.(12分)解:由c a n S n n ++=2)2( 令1=n 得c a S a +==23111c a 21-=,又41=a 2-=∴c (2分)令2=n 得2242221-==+a S a a 62=a (3分) 所以,等差数列}{n a 的公差2=d (5分)22+=∴n a n (7分)(2)12)2(+==n a n n b 2≥∴n 21=-n n b b (9分) ∴数列}{n b 是首项为4,公比为2的等比数列(10分))12(4-=∴n n T (12分)19.(12分)解:(1)如图建立空间直角坐标系,(1分)依题意得)0,0,1(A ,)0,2,1(B ,)1,2,1(1B ,)1,0,0(1D)0,2,0(C (3分)设),,0(z y E ,则)1,2,0(1-=CD ),2,0(z y -=154CD CE =Θ)54,58,0(),2,0(-=-∴z y ∴52=y ,54=z )54,52,1(-=∴(5分)0)1,2,0()54,52,1(1=-⋅-=⋅∴CD (7分) 1CD AE ⊥∴(8分) (2))1,2,0(1= ,)1,2,1(1--=(9分) =⋅=><=∴|||||||,cos |cos 111111BD AB BD AB α1030(12分) 20.(12分)解(Ⅰ)当040x <<时,()()227001010025010600250W x x x x x x =-+-=-+-;..............….(2分) 当40x ≥时,()100001000070070194502509200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,.......….(4分)∴()210600250,040100009200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.......................…..........………….(6分) (Ⅱ)若040x <<,()()210308750W x x =--+,当30x =时,()max 8750W x =万元 . ....................……….(8分) 若40x ≥,()10000920092009000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,....…….(10分) 当且仅当10000x x=时,即100x =时,()max 9000W x =万元 . ....….(11分) ∴2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. .….(12分)21.(12分)解:由22=e 得22222)22()(=-=a b a a c 222b a =∴(2分) 又)22,1(P 在椭圆C 上,121122=+∴ba 解得:2=a ,1=b (5分)(1)左焦点)0,1(-F ,设直线l '的方程为:1-=my x (6分) 由⎪⎩⎪⎨⎧=+-=12122y x my x 012)2(22=--+⇒my y m 设),(),,(2211y x B y x A 则22122121,22my y m m y y +-=+=+,),2(2y Q -(8分) 直线:AQ )2(21212++-=-x x y y y y 在上述方程中令23-=x 得:)2(21212+-+=x y y y y 将111-=my x 代入一式得:)2(2)1(2)2(212121212+-++=+-+=x y y my y x y y y y)2(2212121+++=x y y m y y )2(22222122++++-=x m m m m 0= 即直线AQ 经过点)0,23(-P (10分) 特别,当l '与x 轴重合时,显然直线AQ 经过点)0,23(-P (11分) 综上所述,直线AQ 过定点)0,23(-P 。