数列求和(错位相减法)

合集下载

数学课件 数列求和的方法之错位相减法

数学课件 数列求和的方法之错位相减法
(1-x)Sn =1 + x + x2+ …… + xn-1 - nxn
这时等式的右边是一个等 n项
比数列的前n项和与一个式 子的和,这样我们就可以 化简求值。
解:∵ Sn =1 + 2x +3x2 + …… +nxn-1 … ……. ①
∴xSn = x + 2x2 + … … + (n-1)xn-1 + nxn ……②
…...①
…... ②
①-②,得
.
.
.
方法总结
(1)若一个数列是由一个等差数列与一个等比数列 的对应项相乘所得数列,求和问题适用错位相减法 。
(2)在写出“ Sn”与“ q”S的n 表达式时应特别
注意将两式“错项对齐”以便下一步准确写出 “ Sn - q”Sn的表达式.
(3)如果出现 q为参数时,一定要讨论 q和=0 的q情=1
数列求和的方法之 ——错位相减法
错位相减法:
设数列 {是an公} 差为d的等差数列(d不等于
零),数列{bn是} 公比为q的等比数列(q不等于
1),数列{cn满} 足: cn ,anb则n 的前{cnn}项和为: Sn c1 c2 c3 cn
a1b1 a2b2 a3b3 anbn
况。
类似于这样形式的数列,求前n项和,可以用错 位相减法求和。
例:求和 Sn =1 + 2x + 3x2 + …… + nxn-1 (x≠0,1)
[分析] 这是一个等差数列{n}与一个等比数列{xn-1}的对应
相乘构成的新数列,这样的数列求和该如何求呢?
Sn =1 + 2x +3x2 + …… +nxn-1 ① xSn = x + 2x2 +……+ (n-1)xn-1 + nxn ②

数列求和(错位相减) 高考数学

数列求和(错位相减) 高考数学

试卷讲评课件
=
【解析】∵
= ⋅
+ =
=
=

,解得

(舍去)

+ = ⋅ +
=
=
∴ = + − = − .
又∵ = − ,
当 = 时, = − ,则 =

− ⋅


+. . . + − ⋅


= +
− − ⋅


+

+

+




+. . . +




= −
+
+
− − ⋅
+


试卷讲评课件
+
∴ = − .



则 −
= −

− ,

当 ≥ 时,由 + + = 有− + − + = ,两式相减

可得�� = − ,



即{ }是以− 为首项,以 为公比的等比数列,





所以 = −
= −
.



试卷讲评课件
(2)设数列{bn }满足2bn + n − 3 an = 0 n ∈ N ∗ ,记数列{bn }的前n项
所以 = − ,

+
因为 − =

错位相减数列求和

错位相减数列求和

∴数列{an}从第2项起是公比为3的等比数列.
又a2=2S1=2,
1 a n n 2 2 3 n 1 n 2,n N .
(2)Tn=a1+2a2+3a3+„+nan. 当n=1时,T1=1; 当n≥2时,Tn=1+4·30+6·31+„+2n·3n-2, 3Tn=3+4·31+6·32+„+2n·3n-1, ① ②
1 n 21- 2 1 n - 4 1- n + n -1 2 2
∴ Sn=
1 1- 2
1 1 n n = 4 1- n - 4 1- n + n-1= n-1. 2 2 2 2
训练
已知数列{an}的前n项和为Sn,a1=1,an+1
a2=0,a6+a8=-10. (1)求数列{an}的通项公式; (2)求数列 {
an } 的前n项和. n 1 2
【解析】(1)设等差数列{an}的公差为d,
a1 d 0, a 1 1 则 , 解得 , d 1 2a1 12d 10
故数列{an}的通项公式为an=2-n.
10 11 1 2 1 n- 2 1 ∴①-②得, Sn= 2 + 2 + 2 +„+ 2 2 1 n 1× 1- 2 1 1 1 n n- 1 n +2 - n·2 = - n·2 , 1 1- 2 1 n- 2 1 n- 1 ∴ Sn=4- 2 - n· 2 .
- - -
∴an=3n(n∈N ).
1 * ∴an= n(n∈N ). 13 *
(2) bn=n· 3n,Sn=1· 3+2· 32+3· 33+…+n· 3n, 3Sn=1· 32+2· 33+3· 34+…+(n-1)· 3n+n· 3n+1 两式相减,得-2Sn=3+32+33+…+3n-n· 3n+1,

错位相减法求和附答案解析

错位相减法求和附答案解析

错位相减法求和专项错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:①项的对应需正确;②相减后应用等比数列求和部分的项数为(n-1)项;③若等比数列部分的公比为常数,要讨论是否为11. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求.[解析]考察专题:2.1,2.2,3.1,6.1;难度:一般[答案] (Ⅰ)由于二次函数的图象经过坐标原点,则设,,∴,∴,又点均在函数的图象上,∴.∴当时,,又,适合上式,∴............(7分)(Ⅱ)由(Ⅰ)知,,∴,∴,上面两式相减得:.整理得..............(14分)2.已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.[答案]查看解析[解析] (1)当n = 1时,解出a1 = 3,又4S n = a n2 + 2a n-3①当时4s n-1 = + 2a n-1-3 ②①-②, 即,∴,(),是以3为首项,2为公差的等差数列,6分.(2)③又④④-③=12分3.(2013年XXXX市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得是以为公比的等比数列,故.(Ⅱ)由,得…,记…+,用错位相减法可求得:. (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项.(Ⅰ)求数列的通项公式:(Ⅱ)若.求数列的前项和[解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则,所以,解得或,当时, ,;当时,.所以或. (6分)(Ⅱ)因为,所以,所以,所以,所以两式相减得,所以. (13分)5.已知数列的前项和,,,等差数列中,且公差.(Ⅰ)求数列、的通项公式;(Ⅱ)是否存在正整数,使得若存在,求出的最小值,若不存在,说明理由.[解析](Ⅰ)时,相减得:,又,,数列是以1为首项,3为公比的等比数列,.又,,. (6分)(Ⅱ)令………………①…………………②①-②得:,,即,当,,当。

题型-数列求和之错位相减法

题型-数列求和之错位相减法

1数列求和之错位相减法一、题型要求:错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法)。

二、例题讲解:1、求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S2、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.三、练习巩固:1、(2012-信宜二模)设{}n a 为等比数列,121(1)2n n n T na n a a a -=+-+++,已知11T =,24T =,(1)求数列{}n a 的首项和公比;(2)求数列{}n T 的通项公式.;2、(2015-漳浦校级模拟)等差数列}{n a 中,.2,49197a a a ==数列}{n b 满足n a n n a b 22⋅=(1)求数列}{n a 的通项公式;(2)求数列}{n b 的前n 项和n S3、(2014-肇庆高三期末)已知数列{}n a 满足11=a ,n a a na n n n =-++11,*N n ∈.(1)求数列{}n a 的通项公式;(2)设2nn nb a =,数列{}n b 的前n 项和为n T ,求n T ;4、(2014-肇庆高三期末)已知数列{}n a 满足11=a ,121+=+n n a a (*N n ∈).(1)求数列{}n a 的通项公式;(2)设n S 为数列}12{+n a n的前n 项和,求n S ;35、(2014-惠州调研)已知数列{}n a 的前n 项和为n S ,且有12n n a S -=;数列{}n b 满足(27)n n b n a =-(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和为n T6、(2014-珠海六校联考)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T .7、(2014-中山期末)数列{n a }的前n 项和为n S ,2131(*)22n n S a n n n N +=--+∈. (1)设n n b a n =+,证明:数列{}n b 是等比数列;(2)求数列{}n nb 的前n 项和n T ;8、(2014-梅州质检)设等比数列{n a }的前n 项和为Sn ,已知122(*)n n a S n N +=+∈。

错位相减法在数列求和中的应用

错位相减法在数列求和中的应用

错位相减法在数列求和中的应用近年来,高考中数列问题正向多元化发展,命题中含有复合数列屡见不鲜.要想在高考中从容应对,就需熟练掌握等差、等比数列的有关知识,同时要善于把非等差等比数列转化为等差等比数列来求解.现对数列求和的方法----错位相减法简要分析如下:一.利用错位相减法推导等比数列求和公式.已知等比数列,它的前项和是,根据等比数列的通项公式,上式可写成的两边乘得的两边减去的两边,得当时,等比数列的前项和的公式又因为所以上面公式可写成当时,点评:通过将式的左右两边同时乘以公比,使式与式产生错位后相减得出.二、应用错位相减法求和如果一个数列的各项是由一个等差数列和一个等比数列对应项乘积组成,此时求和可采用错位相减法.例1、求数列的前项和分析:数列成等差数列,数列成等比数列,此例用错位相减法可达到目的.同时应注意和两种情况.解:若,则若,则式两边同乘以,得减去得所以点评:这个数列可以看成一个等差数列和一个等比数列的对应项的乘积,这种数列我们称为“混合数列”,解决这类问题的常用方法是:依照等比数列前项和公式的推导方法——错位相减法,特别注意分和两种情况讨论.例2、(2007全国卷文,21题)设是等差数列,是各项都为正数的等比数列,且,,.求,的通项公式.求数列的前项和.解:设的公差为,的公比为则依题意有>0且解得所以,,,减去得==点评:本题主要考查数列的概念,等差数列,等比数列,及求数列前项和的方法等基础知识,考查运算能力.第问就运用了混合数列的求和方法----错位相减法.。

专题31 数列中错位相减法求和问题(解析版)

专题31 数列中错位相减法求和问题(解析版)

专题31 数列中错位相减法求和问题【高考真题】 2022年没考查 【方法总结】 错位相减法求和错位相减法:错位相减法是在推导等比数列的前n 项和公式时所用的方法,适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(3)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.【题型突破】1.已知等差数列{a n }的前n 项和为S n ,a 1=2,且S 1010=S 55+5.(1)求a n ;(2)若b n =a n ·4S n a n求数列{b n }的前n 项的和T n .1.解析 (1)设等差数列{a n }的公差为d ,因为S 1010=S 55+5,所以10(a 1+a 10)210-5(a 1+a 5)25=5,所以a 10-a 5=10,所以5d =10,解得d =2.所以a n =a 1+(n -1)d =2+(n -1)×2=2n ;(2)由(1)知,a n =2n ,所以S n =n (2+2n )2=n 2+n .所以b n =a n ·4Sn an=2n ·4n 2+n 2n =2n ·2n +1=n ·2n +2,所以T n =1×23+2×24+2×25+…+n ·2n +2①,所以2T n =1×24+2×25+3×26+…+(n -1)·2n +2+n ·2n +3②, ①-②,得-T n =23+24+…+2n +2-n ×2n +3=23(1-2n )1-2-n ×2n +3=2n +3-8-n ×2n +3所以T n =(n -1)×2n +3+8.2.(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.2.解析 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2. (2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n=1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.3.(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0, b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).3.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2,所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8,① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2(n ∈N *).所以数列{a n }的通项公式为a n =3n -2(n ∈N *),数列{b n }的通项公式为b n =2n (n ∈N *).(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,③4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,④ ③-④,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83(n ∈N *).所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83(n ∈N *).4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n -2. (1)求a 2,a 3和通项a n ;(2)设数列{b n }满足b n =a n ·2n -1,求{b n }的前n 项和T n . 4.解析 (1)当n =2时,2S 2=2(1+a 2)=3a 2-2,则a 2=4, 当n =3时,2S 3=2(1+4+a 3)=4a 3-2,则a 3=6, 当n ≥2时,2S n =(n +1)a n -2, 当n ≥3时,2S n -1=na n -1-2,所以当n ≥3时,2(S n -S n -1)=(n +1)a n -na n -1=2a n ,即2a n =(n +1)a n -na n -1,整理可得(n -1)a n =na n -1,所以a n n =a n -1n -1,因为a 33=a 22=2,所以a n n =a n -1n -1=…=a 33=a 22=2,因此,当n ≥2时,a n =2n ,而a 1=1,故a n =⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2.(2)由(1)可知b n =⎩⎪⎨⎪⎧1,n =1,n ·2n ,n ≥2,所以当n =1时,T 1=b 1=1,当n ≥2时,T n =b 1+b 2+b 3+…+b n ,则 T n =1+2×22+3×23+…+(n -1)×2n -1+n ×2n , 2T n =2+2×23+3×24+…+(n -1)×2n +n ×2n +1,作差得T n =1-8-(23+24+…+2n )+n ×2n +1=(n -1)×2n +1+1, 易知当n =1时,也满足上式, 故T n =(n -1)×2n +1+1(n ∈N *).5.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *). (1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n .5.解析 (1)∵S n -n =2(a n -2),当n ≥2时,S n -1-(n -1)=2(a n -1-2), 两式相减,得a n -1=2a n -2a n -1,∴a n =2a n -1-1,∴a n -1=2(a n -1-1), ∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2),得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列. (2)由(1)知,a n -1=2×2n -1=2n ,∴a n =2n +1, 又b n =a n ·log 2(a n -1),∴b n =n (2n +1),∴T n =b 1+b 2+b 3+…+b n =(1×2+2×22+3×23+…+n ×2n )+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n , 则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1, 两式相减,得-A n=2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1, ∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n (n +1)2,∴T n =(n -1)×2n +1+2+n (n +1)2(n ∈N *).6.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).数列{b n }是公差d 不等于0的等差数列,且满足:b 1=32a 1,b 2,b 5,b 14成等比数列.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n .6.解析 (1)n =1时,a 1+12a 1=1,a 1=23,n ≥2时,⎩⎨⎧S n =1-12a n ,Sn -1=1-12a n -1,S n -S n -1=12()a n -1-a n ,∴a n =13a n -1(n ≥2),{a n }是以23为首项,13为公比的等比数列,a n =23×⎝⎛⎭⎫13n -1=2⎝⎛⎭⎫13n.b 1=1,由b 25=b 2b 14得,()1+4d 2=()1+d ()1+13d ,d 2-2d =0,因为d ≠0,解得d =2,b n =2n -1(n ∈N *). (2)c n =4n -23n ,T n =23+632+1033+…+4n -23n ,①13T n =232+633+1034+…+4n -63n +4n -23n +1,② ①-②得,23T n =23+4⎝⎛⎭⎫132+133+ (13)-4n -23n +1=23+4×19-13n +11-13-4n -23n +1=43-23n -4n -23n +1, 所以T n =2-2n +23n (n ∈N *).7.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n .7.解析 (1)因为S n +1=3S n -2S n -1(n ≥2),所以S n +1-S n =2S n -2S n -1(n ≥2), 即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足, 故数列{a n }的通项公式为a n =2n . (2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1 =12+1-⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=32-n +32n +1.故数列{b n }的前n 项和为T n =3-n +32n .8.已知数列{a n }满足a 1=12,a n +1=a n2a n +1.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求{a n }的通项公式;(2)若数列{b n }满足b n =12n ·a n,求数列{b n }的前n 项和S n .8.解析 (1)因为a n +1=a n 2a n +1,所以1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是等差数列,所以1a n =1a 1+2(n -1)=2n ,即a n =12n .(2)因为b n =2n 2n =n 2n -1,所以S n =b 1+b 2+b 3+…+b n =1+22+322+…+n2n -1,则12S n =12+222+323+…+n2n , 两式相减得12S n =1+12+122+123+…+12n -1-n 2n =2⎝⎛⎭⎫1-12n -n2n ,所以S n =4-2+n 2n -1. 9.(2020·全国Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .9.解析 (1)a 2=5,a 3=7.猜想a n =2n +1.证明如下:由已知可得a n +1-(2n +3)=3[a n -(2n +1)],a n -(2n +1)=3[a n -1-(2n -1)],…,a 2-5=3(a 1-3). 因为a 1=3,所以a n =2n +1.(2)由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1, 所以S n =(2n -1)2n +1+2.10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解.注:若选择多个条件分别解答,按第一个解答计分.10.解析 (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1.选条件②:∵a n =2n ,b n =(-1)n a n ,∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数,S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ×4n ,①4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,② 由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1 =8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .11.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1. 由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 12.在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .注:如果选择不同方案分别解答,按第一个解答计分.12.解析 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列,所以a n =3n -1.选①②时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3. 因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,解得b 1=23,b 2=73,所以d =53,所以b n =5n -33,满足b 2n =2b n +1.所以b n a n =5n -33n .S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,(1)所以13S n =232+733+1234+…+5n -83n +5n -33n +1,(2)(1)-(2),得23S n =23+5⎝⎛⎭⎫132+133+…+13n -5n -33n +1=23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1, 所以S n =94-10n +94×3n.选②③时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3,即2b 1+d =3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而d =b 1=1,所以b n =n ,所以b n a n =n3n -1,S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,(1)所以13S n =131+232+333+…+n -13n -1+n 3n ,(2)(1)-(2),得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎫1-13n -n 3n =32-2n +32×3n ,所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d ,因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,所以d =b 1+1. 又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而无解,所以等差数列{b n }不存在,故不符合题意.13.在①已知数列{a n }满足:a n +1-2a n =0,a 3=8;②等比数列{a n }中,公比q =2,前5项和为62,这两个条件中任选一个,并解答下列问题: (1)求数列{a n }的通项公式;(2)设b n =na n ,数列{b n }的前n 项和为T n ,若2T n >m -2 022对n ∈N *恒成立,求正整数m 的最大值.注:如果选择两个条件分别解答,则按第一个解答计分. 13.解析 (1)选择条件①,设等比数列{a n }的首项为a 1,公比为q .由a n +1-2a n =0,a 3=8,得{a n }为等比数列,q =2,a 1=2,所以a n =2n . 选择条件②,设等比数列{a n }的首项为a 1,由公比q =2,前5项和为62,得a 1(1-25)1-2=62,解得a 1=2,所以a n =2n . (2)因为b n =n a n =n2n ,所以T n =12+222+323+…+n2n ,①12T n =122+223+324+…+n2n +1,② ①-②得12T n =12+122+123+124+…+12n -n 2n +1=1-12n -n2n +1,所以T n =2-2+n 2n .因为T n +1-T n =⎝ ⎛⎭⎪⎫2-2+n +12n +1-⎝⎛⎭⎫2-2+n 2n =n +12n +1>0,所以数列{T n }单调递增,T 1最小,最小值为12.所以2×12>m -2 022.所以m <2 023.故正整数m 的最大值为2 022.14.(2021·全国乙)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n2.14.解析 (1)设{a n }的公比为q ,则a n =q n -1.因为a 1,3a 2,9a 3成等差数列,所以1+9q 2=2×3q ,解得q =13,故a n =13n -1,b n =n3n .(2)由(1)知S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n ,T n =13+232+333+…+n3n ,①13T n =132+233+334+…+n -13n +n3n +1,② ①-②得23T n =13+132+133+…+13n -n 3n +1,即23T n =13⎝⎛⎭⎫1-13n 1-13-n 3n +1=12⎝⎛⎭⎫1-13n -n3n +1, 整理得T n =34-2n +34×3n ,则2T n -S n =2⎝ ⎛⎭⎪⎫34-2n +34×3n -32⎝⎛⎭⎫1-13n =-n 3n <0,故T n<S n 2.15.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.15.解析 (1)由a n +1=2S n +3,得a n =2S n -1+3(n ≥2),两式相减得a n +1-a n =2(S n -S n -1)=2a n ,故a n +1=3a n (n ≥2), 所以当n ≥2时,{a n }是以3为公比的等比数列.因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n .(2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝⎛⎭⎫13n , T n =1×13+2×⎝⎛⎭⎫132+3×⎝⎛⎭⎫133+…+n ×⎝⎛⎭⎫13n ,① 13T n =1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+3×⎝⎛⎭⎫134+…+(n -1)×⎝⎛⎭⎫13n +n ×⎝⎛⎭⎫13n +1.② ①-②,得23T n =13+⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -n ×⎝⎛⎭⎫13n +1=13-⎝⎛⎭⎫13n +11-13-n ×⎝⎛⎭⎫13n +1=12-32+n ⎝⎛⎭⎫13n +1, 所以T n =34-12⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n. 因为⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n >0,所以T n <34.又因为T n +1-T n =n +13n +1>0, 所以数列{T n }单调递增,所以(T n )min =T 1=13,所以13≤T n <34.16.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.(1)当n ∈N *时,求f (n )的表达式;(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2.16.解析 (1)因为函数f (x )满足f (x +y )=f (x )·f (y ),所以令y =1,得f (x +1)=f (x )·f (1),所以f (n +1)=f (n )·f (1).又因为f (1)=12,所以f (n +1)f (n )=12,所以f (n )=⎝⎛⎭⎫12n(n ∈N *). (2)由(1)得a n =n ·⎝⎛⎭⎫12n,设T n =a 1+a 2+a 3+…+a n -1+a n , 则T n =1×12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+(n -1)×⎝⎛⎭⎫12n -1+n ×⎝⎛⎭⎫12n ,① 所以12T n =1×⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+…+(n -2)⎝⎛⎭⎫12n -1+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1,② 所以由①-②得12T n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n ·⎝⎛⎭⎫12n +1=1-⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=1-2+n 2n +1,所以T n =2-n +22n <2,即a 1+a 2+a 3+…+a n -1+a n <2.17.已知各项均不相等的等差数列{a n }的前4项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前3项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)设K n 为数列{a n b n }的前n 项和,若不等式λS n T n ≥K n +n 对一切n ∈N *恒成立,求实数λ的最小值.17.解析 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d =1或d =0(舍去),a 1=2, 所以a n =n +1,S n =n (n +3)2.b n =2n ,T n =2n +1-2.(2)由题意得K n =2×21+3×22+…+(n +1)×2n ,① 则2K n =2×22+3×23+…+n ×2n +(n +1)×2n +1,②①-②得-K n =2×21+22+23+…+2n -(n +1)×2n +1,∴K n =n ×2n +1.要使λS n T n ≥K n +n 对一切n ∈N *恒成立,即λ≥K n+n S n T n =2n +1+1(n +3)(2n -1)恒成立,设g (n )=2n +1+1(n +3)(2n -1),因为g (n +1)g (n )=(n +3)(2n -1)(2n +2+1)(n +4)(2n +1-1)(2n +1+1)=(n +3)(22n +2-1-3·2n )(n +4)(22n +2-1)<(n +3)(22n +2-1)(n +4)(22n +2-1)<1, 所以g (n )随n 的增加而减小,所以g (n )max =g (1)=54,所以当λ≥54时不等式恒成立,因此λ的最小值为54.18.(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.18.解析 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716,所以a 2a 1=34. 所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)·⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)·⎝⎛⎭⎫34n ,① 所以34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)·⎝⎛⎭⎫34n +(n -4)·⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)·⎝⎛⎭⎫34n +1 =-94+916⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫34n -11-34-(n -4)·⎝⎛⎭⎫34n +1=-n ·⎝⎛⎭⎫34n +1, 所以T n =-4n ·⎝⎛⎭⎫34n +1. 因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ·⎝⎛⎭⎫34n +1≤λ(n -4)·⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立. 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立;当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1,即实数λ的取值范围为[-3,1].19.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.19.解析 (1)由题意,得⎩⎪⎨⎪⎧ a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2a 1q 2+2,解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n .(2)∵b n =a n 12log a n =2n ·12log 2n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ), ① 则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2,解2n +1-2>62,得n >5,∴n 的最小值为6.20.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =12log n n a a ,S n =b 1+b 2+…+b n ,求使S n +n ×2n +1>30成立的正整数n 的最小值.20.解析 (1)设等比数列{a n }的首项为a 1,公比为q .由题意知2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8,所以a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧ q =2,a 1=2或⎩⎪⎨⎪⎧ q =12,a 1=32.又数列{a n }单调递增,所以q =2,a 1=2,所以数列{a n }的通项公式为a n =2n .(2)因为b n =1122log 2log 2n n n n a a ==-n ×2n ,所以S n =-(1×2+2×22+…+n ×2n ),2S n =-[1×22+2×23+…+(n -1)×2n +n ×2n +1],两式相减,得S n =2+22+23+…+2n -n ×2n +1=2n +1-2-n ×2n +1. 又S n +n ×2n +1>30,可得2n +1-2>30,即2n +1>32=25, 所以n +1>5,即n >4.所以使S n +n ×2n +1>30成立的正整数n 的最小值为5.。

数列求和错位相减法

数列求和错位相减法

知识与技能目标:理解用错位相减推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题。

知识与技能目标:理解用错位相减推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题。

过程与方法:通过对公式的研究过程,提高学生探究问题、分析问题与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

知识与技能目标:理解用错位相减推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题。

过程与方法:通过对公式的研究过程,提高学生探究问题、分析问题与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。

情感、态度和价值目标:通过对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的经验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。

2020年全国Ⅲ卷17题(12分)设数列{}满足1=3,r1=3−4u(1)计算2,3,猜想{}的通项公式并加以证明;(2)求数列{2}的前n项和.2020年全国Ⅲ卷17题(12分)设数列{}满足1=3,r1=3−4u(1)计算2,3,猜想{}的通项公式并加以证明;(2)求数列{2}的前n项和.2020年全国Ⅲ卷17题(12分)设数列{}满足1=3,r1=3−4u(1)计算2,3,猜想{}的通项公式并加以证明;(2)求数列{2}的前n项和.解:(2)解:(2)22)12(.2)12(212122232)12(222222232)12(27252322)12(272523,2)12(2)1(1112132n 1432n 32n n +-=⨯+---⋅+⨯=⨯+-⨯++⨯+⨯+⨯=--⨯+++⨯+⨯+⨯=⨯+++⨯+⨯+⨯=+=++-++n n n n n n n n n n n S n n S n S n S n a 所以)(②得①②从而①所以得由 2020年全国Ⅲ卷17题(12分)设数列{}满足1=3,r1=3−4u(1)计算2,3,猜想{}的通项公式并加以证明;(2)求数列{2}的前n 项和.复习回顾等比数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

数列求和错位相减

数列求和错位相减

数列求和错位相减数列求和错位相减随着数学技能的不断提高,我们经常会遇到各种数列问题。

其中,求和问题是最基本的一种问题,而本文将介绍的是一种特殊的求和方法——数列求和错位相减。

一、什么是数列求和错位相减数列求和错位相减是一种求解数列问题的方法。

它的具体方法是将数列按照一定的规律错位相减,然后将差值加起来得到求和结果。

这一方法通常适用于一些存在周期性变化的数列问题。

例如,对于一个等差数列:1, 3, 5, 7, 9…如果采用传统的求和方法,其公式为:Sn = n(2a+(n-1)d)/2其中,Sn为前n项和,a为首项,d为公差。

则该序列前5项之和为:S5 = 5(2*1+(5-1)*2)/2=25而采用数列求和错位相减的方法,则可以按照如下步骤进行:1. 将数列分成两部分,如下所示:1, 5, 9…3, 7, 11…2. 对两部分数列进行相减:(5-1) + (9-5) + … = 4 + 4 + … = 2n-1(7-3) + (11-7) + … = 4 + 4 + … = 2n+13. 将两部分差值相加:(2n-1) + (2n+1) = 4n得出的结果为求和结果的n倍,因此需要除以n得到真正的结果:Sn = 4n/n = 4二、数列求和错位相减的应用数列求和错位相减在实际问题中常常会被应用。

比如,我们常常会遇到以下类型的问题:1. 求一个周期性变化的数列的前n项和。

2. 求某个阶段内两个连续数相邻的差值之和。

3. 求某个阶段内两个连续数相邻的比值之和。

这些问题都可以通过数列求和错位相减来解决。

下面我们以一个例子来说明其应用:假设有以下数列:1, 5, 9, 13, 17, 21, 25, 29, 33现在需要求出该数列中,连续两项之间的差值之和。

按照数列求和错位相减的方法,我们可以将数列分成两部分:1, 9, 17, 25, 335, 13, 21, 29对两部分进行相减:8 + 8 + 8 + 8 = 324 + 4 + 4 = 12将两部分相加:32 + 12 = 44得到的结果即为连续两项之间的差值之和。

错位相减法万能公式朱昊鲲

错位相减法万能公式朱昊鲲

错位相减法万能公式朱昊鲲
错位相减法万能公式:bn=b1+(n-1)×d。

如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。

形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1xq^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q-Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。

这种数列求和方法叫做错位相减法。

题型-数列求和之错位相减法

题型-数列求和之错位相减法

题型-数列求和之错位相减法数列求和之错位相减法一、题型要求:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n和公式的推导方法)。

二、例题讲解:1、求和:$S_n=1+3x+5x^2+7x^3+。

+(2n-1)x^{n-1}$,其中$x=2$。

2、求数列$2,3.n$前$n$项的和。

三、练巩固:1、(2012-信宜二模)设$\{a_n\}$为等比数列,$T_n=na_1+(n-1)a_2+。

+2a_{n-1}+a_n$,已知$T_1=1$,$T_2=4$。

1)求数列$\{a_n\}$的首项和公比;2)求数列$T_n$的通项公式;2、(2015-漳浦校级模拟)等差数列$\{a_n\}$中,$a_7=4$,$a_{19}=2a_9$。

数列$\{b_n\}$满足$b_n=a_n\times2$。

1)求数列$\{a_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$S_n$;4、(2014-肇庆高三期末)已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=2a_n+1$($n\in N^*$)。

1)求数列$\{a_n\}$的通项公式;2)设$b_n=\frac{a_{2n}}{n}$,数列$\{b_n\}$的前$n$项和为$T_n$,求$T_n$;5、(2014-惠州调研)已知数列$\{a_n\}$的前$n$项和为$S_n$,且有$S_n=1-a_n$。

数列$\{b_n\}$满足$2b_n=(2n-7)a_n$。

1)求数列$\{a_n\}$和$\{b_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$T_n$;6、(2014-珠海六校联考)已知数列$\{a_n\}$为等差数列,且$a_5=14$,$a_7=20$,数列$\{b_n\}$的前$n$项和为$S_n$,且满足$3S_n=S_{n-1}+2$($n\geq2$,$n\in N^*$),$b_1=$。

等比数列求和错位相减

等比数列求和错位相减

等比数列求和错位相减
等比数列求和错位相减是一种用于求解等比数列前n项和的方法,其核心思想是将原数列错位相减,得到一个新的数列,再用等比数列求和公式求解得到前n项和。

具体步骤如下:
1. 设原数列为a1,a2,a3,...,an,公比为q。

2. 将原数列错位相减,得到一个新的数列b1,b2,b3,...,bn-1,其中bi=ai+1-ai。

3. 根据等比数列求和公式,求解新数列的前n-1项和
Sn-1=q(b1+b2q+b3q^2+...+bn-2q^(n-2))。

4. 将Sn-1乘以公比q,得到
qSn-1=q(b1q+b2q^2+b3q^3+...+bn-2q^(n-1))。

5. 将qSn-1和原数列第一项a1相加,得到
qSn-1+a1=q(a1+a2q+a3q^2+...+anq^(n-1))。

6. 通过上式求解得到原数列前n项和的公式为
Sn=a1(q^n-1)/(q-1)。

这种方法适用于公比为非零有限数的等比数列,可以避免复杂的递归或循环计算。

- 1 -。

新高考数学(理)之数列 专题07 数列的求和(错位相减法求和)(解析版)

新高考数学(理)之数列 专题07 数列的求和(错位相减法求和)(解析版)

新高考数学(理)数列07 数列的求和(错位相减法求和)一、具体目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:11()(1)22n n n a a n n S na d +-==+; 等比:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩公比是字母时需要讨论.(理)无穷递缩等比数列时, (2)掌握一些常见的数列的前n 项和公式:()21321+=++++n n n Λ;n n n +=++++22642Λ; 2531n n =++++Λ;()()61213212222++=++++n n n n Λ;()2333321321⎥⎦⎤⎢⎣⎡+=++++n n n Λ(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么qa S -=11【考点讲解】这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.形如:n n b a +其中⎪⎩⎪⎨⎧是等比数列是等差数列nn b a ,()()⎩⎨⎧∈=∈-==**N k k n n g N k k n n f a n ,2,,12, (6)合并求和:如求22222212979899100-++-+-Λ的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:111;(1)1n n n n =-++ 1111;(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭ 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;n n n n -+=++111.【错位相减法例题解析】 1.【2018优选题】求和:n n n S 21813412211⨯++⨯+⨯+⨯=Λ 【解析】由n n n S 21813412211⨯++⨯+⨯+⨯=Λ得:()nn n n n S 2121121321211132⨯+⨯-++⨯+⨯+⨯=-Λ(1)14322121)1(2132122121+⨯+⨯-++⨯+⨯+⨯=n n n n n S Λ(2) 将(1)—(2)得:231111111222222n n n S n +=++++-⨯L整理得:12n S 11111221212n n n +⎛⎫- ⎪⎝⎭=-⨯-,所以求得:111222n n n S n -=--⨯()n N *∈. 关注:参与相减的项.【变式】求和:n n n S 21)12(815413211⨯-++⨯+⨯+⨯=Λ . 【解析】由n n n S 21)12(815413211⨯-++⨯+⨯+⨯=Λ得:)n n n S 211)32(1⨯--+=Λ(1)两边同乘以12得,)1211)32(121+⨯--+=n n n S Λ(2) 将(1)—(2)得:()231111111221222222n n n S n +⎛⎫=++++--⨯ ⎪⎝⎭L 12n S ()211111112222112212n n n -+⎛⎫- ⎪⎝⎭=+⨯--⨯-12n S ()1131121222n n n -+=---⨯ 所以可得:()21132122n n n S n -=---⨯()n N *∈.1.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;【真题分析】(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n nn n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3n n b =.(2)112222n n a c a c a c +++L ()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L ()2123613233n n n =+⨯+⨯++⨯L .记1213233n n T n =⨯+⨯++⨯L ,①则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n nn n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L ()22(21)3692n n n n +*-++=∈N . 【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N2.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+,所以34543428a a a a ++=+=,解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-L 23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+L .设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥L ,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅L 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅L ,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.3.【2017年高考天津卷】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①.由114=11S b ,可得1516a d += ②, 联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23112(14)324343434(31)44(314n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----L 111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 4.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==, 所以2n n a =. (2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n nn n T c c c --+=+++=+++++L L又234113572121222222n n n n n T +-+=+++++L , 两式相减得2111311121()222222n n n n T -++=++++-L , 所以2552n nn T +=-. 【答案】(1)2nn a =;(2)2552n nn T +=-5.【2017年高考山东卷理数】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积.【解析】(1)设数列的公比为q ,由已知0q >.由题意得,所以,因为0q >,所以,因此数列的通项公式为(2)过…,向轴作垂线,垂足分别为…,, 由(1)得记梯形的面积为. 由题意, 所以…+=…+ ①, 又…+ ②,①-②得121132(222)(21)2n n n T n ----=⨯++++-+⨯L= 所以 【答案】(1)12n n x -=;(2)nT {}n x 1121132x x q x q x q +=⎧⎨-=⎩23520q q --=12,1q x =={}n x 12.n n x -=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b 101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=(21)21.2n n n T -⨯+=1.【2019优选题】已知数列,设,数列. (1)求证:是等差数列; (2)求数列的前n 项和S n ;【解析】本题考点是等差数列的定义、等比数列的通项、以及数列求和的综合运用题.要求对数列的相关知识能熟练应用.(1)由题意知,∴数列的等差数列 (2)由(1)知,于是两式相减得所以nnn S ⎪⎭⎫ ⎝⎛⨯+-=4132332.2.已知等比数列{}na 的公比1>q ,且28543=++a a a 24+a ,是53a a ,a 3的等差中项.数列{}nb 满足11=b ,数列(){}n n n a b b -+1的前n 项和为n n +22.的等比数列公比是首项为41,41}{1==q a a n *)(log 3241N n a b n n ∈=+n n n n b a c c ⋅=满足}{}{n b }{n c *)()41(N n a n n ∈=12log 3,2log 3141141=-=-=a b a b n n Θ3log 3log 3log 3log 341141411411===-=-∴+++q a a a a b b nn n n n n 3,1}{1==d b b n 公差是首项*)(23,)41(N n n b a n n n ∈-==*)(,)41()23(N n n c n n ∈⨯-=∴,)41()23()41)53()41(7)41(4411132n n n n n S ⨯-+(⨯-++⨯+⨯+⨯=∴-Λ1432)41()23()41)53()41(7)41(4)41(141+⨯-+(⨯-++⨯+⨯+⨯=n n n n n S Λ132)41()23(])41()41()41[(34143+⨯--++++=n n n n S Λ.)41()23(211+⨯+-=n n 【模拟考场】(Ⅰ)求q 的值;(Ⅱ)求数列{}nb 的通项公式.【解析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比,(Ⅱ)先根据数列(){}nn n a b b-+1的前n 项和为n n +22求通项,解得n n b b -+1,再通过叠加法以及错位相减法求n b . 【解析】(Ⅰ)由24+a 是53a a ,的等差中项得42453+=+a a a ,所以28434543=+=++a a a a ,解得84=a .由2053=+a a 得,2018=⎪⎪⎭⎫⎝⎛+q q 因为1>q .所以2=q.(Ⅱ)设()n n n n a b b c -=+1,数列{}n c 前n 项和为n S .由⎩⎨⎧≥-==-2,1,11n S S n S c n n n 解得14-=n c n . 由(Ⅰ)可知12-=n n a ,所以()112114-+⎪⎭⎫ ⎝⎛-=-n n n n b b ,故()2215421≥⎪⎭⎫⎝⎛-=---n n b b n n n ,,()()()()12232111b b b b b b b b b b n n n n n -+-++-+-=----Λ=()()32172194215432+⨯++⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛---Λn n n n .()2,21542111217322≥⎪⎭⎫⎝⎛⋅-++⎪⎭⎫ ⎝⎛⨯+⨯+=-n n T n n Λ设,()1322154211121721321-⎪⎭⎫⎝⎛⋅-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⨯=n n n T Λ 两式相减得:()122154214214321-⎪⎭⎫⎝⎛⋅-++⎪⎭⎫ ⎝⎛⨯+⨯+=n n n T Λ.因此得().22134142≥⎪⎭⎫⎝⎛⋅+-=-n n T n n ,又,11=b 所以()2213415-⎪⎭⎫⎝⎛⋅+-=n n n b .3.【2016高考山东理数】已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【分析】(Ⅰ)根据1--=n n n S S a 及等差数列的通项公式求解;(Ⅱ)根据(Ⅰ)知数列{}n c 的通项公式,再用错位相减法求其前n 项和.考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【解析】(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a ,所以56+=n a n . 设数列{}n b 的公差为d , 由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,可解得3,41==d b ,所以13+=n b n .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T . 4.数列的通项,其前n 项和为. {}n a 222(cossin )33n n n a n ππ=-n S(1) 求; (2) 求数列{}的前n 项和. 【解析】(1) 由于,故 ,故 ()(2)两式相减得:故n S 3,4nn n S b n =⋅n b n T 222cossin cos 333n n n πππ-=312345632313222222222()()()1245(32)(31)(3)(6)((3)))222k k k k S a a a a a a a a a k k k --=+++++++++++-+-=-++-+++-+L L 1331185(94)2222k k k -+=+++=L 3133(49),2k k k k k S S a --=-=2323131(49)(31)1321,22236k k k k k k k S S a k ------=-=+=-=--1,3236(1)(13),316(34),36n n n k n n S n k n n n k ⎧--=-⎪⎪+-⎪==-⎨⎪+⎪=⎪⎩*k N ∈394,424n n n nS n b n +==⋅⋅21132294[],2444n n n T +=+++L 1122944[13],244n n n T -+=+++L 12321991999419419443[13][13]8,12444242214nn n n n n n n n n T --+-++=+++-=+-=---L 2321813.3322n n n n T -+=--⋅5.已知数列的首项,,….(Ⅰ)证明:数列是等比数列; (Ⅱ)数列的前项和. 【解析】(Ⅰ) ,,,又,, 数列是以为首项,为公比的等比数列. (Ⅱ)由(Ⅰ)知,即,. 设…, ① 则…,②由①②得…, .又…. 数列的前项和 .6.设数列满足,. {}n a 123a =121n n n a a a +=+1,2,3,n =1{1}na -{}nna n n S Q 121n n n a a a +=+∴111111222n n n na a a a ++==+⋅∴11111(1)2n n a a +-=-123a =∴11112a -=∴1{1}n a -12121111111222n n n a -+-=⋅=1112n n a =+∴2n n n nn a =+23123222n T =+++2n n+23112222n T =++1122n n n n+-++-2111222n T =++11111(1)1122112222212n n n n n n n n n +++-+-=-=---∴11222n n n n T -=--123+++(1)2n n n ++=∴{}n n a n 22(1)4222222n n n n n n n n n S +++++=-+=={}n a 211233333n n n a a a a -++++=…a ∈*N(Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和. 【解析】 (I)验证时也满足上式, (II) , ①②① -② : ,7.已知数列{n a }满足11=a ,且),2(22*1N n n a a nn n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{nna 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S【解析】(Ⅰ)622212=+=a a ,2022323=+=a a .(Ⅱ)),2(22*1N n n a a n n n ∈≥+=-且Θ, ∴),2(122*11N n n a a n n n n ∈≥+=--且, 即),2(122*11N n n a a n n n n ∈≥=---且. ∴数列}2{nn a 是首项为21211=a ,公差为1=d 的等差数列. (Ⅲ)由(Ⅱ)得,211)1(21)1(212-=⋅-+=-+=n n d n a n n ∴nn n a 2)21(⋅-=.{}n a n nnb a ={}n b n n S 2112333 (3),3n n n a a a a -+++=221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥1(2).3n n a n =≥1n =*1().3n n a n N =∈3nn b n =⋅23132333...3nn S n =⋅+⋅+⋅+⋅231233333nn n S n +-=+++-⋅1133313n n n ++-=-⋅-111333244n n n n S ++∴=⋅-⋅+⋅23413132333...3n n S n +==⋅+⋅+⋅+⋅)2(2)21(2)211(2252232212)1(2)21(2252232211432321+⋅-+⋅--++⋅+⋅+⋅=⋅-++⋅+⋅+⋅=n n n n n n n S n S ΛΛΘ1322)21(2221)2()1(+⋅--++++=--n n n n S Λ得12)21(2222132-⋅--++++=+n nn Λ12)21(21)21(21-⋅----=+n n n 32)23(-⋅-=n n . ∴32)32(+⋅-=n n n S .8.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T【解析】(Ⅰ)12n n a S +=Q ,12n n n S S S +∴-=,13n nS S +∴= 又111S a ==Q ,∴数列{}n S 是首项为1,公比为3的等比数列,1*3(n n S n -=∈N当2n ≥时,21223(2)n n n a S n --==g≥,21132n n n a n -=⎧∴=⎨2⎩g , ,,≥.(Ⅱ)12323n n T a a a na =++++L , 当1n =时,11T =;当2n ≥时,0121436323n n T n -=++++gg L g ,…………①12133436323n n T n -=++++g g L g ,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-L g 213(13)222313n n n ---=+--g g11(12)3n n -=-+-g1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥ 又111T a ==Q 也满足上式, 1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥9.已知数列{}n a 满足11111,,224nn n a a a n N ++⎛⎫==∈ ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n项和2n s n =,112233n n n T a b a b a b a b =++++L ,求证:3n T <。

数列求和之错位相减法教学设计

数列求和之错位相减法教学设计

数列求和之错位相减法教学设计(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!数列求和之错位相减法教学设计《数列求和之错位相减法》教学设计由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢数列求和之错位相减法。

人教版高考数学复习《数列求和(错位相减法)》优质教案

人教版高考数学复习《数列求和(错位相减法)》优质教案

《数列求和(错位相减法)》教学设计教学背景:数列求和是高考数列问题中的一个重难点。

故安排了数列求和总结的专题课,帮助学生归纳数列求和的方法,形成知识体系。

错位相减法是数列求和的一种重要方法,之前在推导等比数列求和公式的时候,学生有教材分析接触过一次,但是没有推广到差比数列的求和。

由于错位相减法的步骤比较多,计算起来也比较复杂,所以学生容易犯错。

所以本节课的目的在于让学生掌握错位相减法,能运用错位相减法求差比数列的和。

教学目标:(1)对例题进行变形,引导学生通过类比等比数列的求和方法,探索差比数列的求和方法,即错位相减法。

从中让学生体会化归与转化的数学思想。

(2)通过课堂练习,让学生熟悉错位相减法的解题步骤。

知识与技能:掌握错位相减法,能够用错位相减法求“差∙比”数列的和。

过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,在探究的过程中让学生体会数学的转化思想。

情感态度与价值观:通过例题变形,引导学生探索差比数列的求和方法,体会化归情感,态度与与转化的数学思想,唤起学生追求真理,乐于创新的情感需求,引价值观发学生渴求知识的强烈愿望。

教学重难点重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n 项和。

难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。

教学过程:一、课前复习让学生回顾已经学过的数列求和方法:(1)公式法;等差数列 等比数列 2S 2)1(S 1n 1n na a n d n n na +=-+=或通项公式: 一次函数 等差数列 指数型函数 等比数列(2)分组求和法:通项公式是“差+比”型数列的求和注:在求和之前,一定要先判断数列的类型,如何判断?设计意图:回顾数列求和的方法,求和之前先判断数列类型,为接下来研究错位相减法做好复习铺垫工作。

二、方法探究例:已知数列{a n }的通项公式为a n =n , 数列{b n }的通项公式为b n =2n(1)求数列{a n }的前n 项和;(“差”求和)(2)求数列{b n }的前n 项和;(“比”求和)(3)求数列{a n +b n }的前n 项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前面,我们学习了数列求和的哪些方法? 2、分组求和法:
通项公式是“等差 等比”型数列的求和 注:
在求和之前,一定要先判断数列的类型, 如何判断?
通项公式:一次函数 指数型函数
等差数列 等比数列
方法探究
例题:
已知数列{an}的通项公式为an 2n 1,等差数列
数列{bn}的通项公式为bn 2n 等比数列
即 Sn 2 22 23 2n n 2n1
2 2n 2 n 2n1 (1 n)2n1 2 1 2
故Sn 2 (1 n)2n1
变式训练
例:数列{an}的通项公式an n, 数列{bn}的通项公式bn 2n
变式问题:
求数列 {an } 的前n项和 bn
课堂练习 解:an bn
S 30 2 22 23 230 一项多乘个2
2S30 2(2 22 23 230 ).
即2SS3030 22S230223 22431 231
作 减 法
S30 2 231
错位相减法!
S30 231 2 2147483646 元
法例探题:究
数列{an}的通项公式an n, 数列{bn}的通项公式bn 2n , 新问题:求数列{anbn}的前n项和
普通高中人教版 数学 必修五
数列求和 专题
复习回顾
前面,我们学习了数列求和的哪些方法?
1、公式法: 等差数列的前n项和公式:
Sn
a1n
n(n 1) 2
d

Sn
a1
an 2
n
等比数列的前n项和公式:
当q
1,Sn
a1 (1 q n ) 1 q
ห้องสมุดไป่ตู้
a1 an q 1 q
当q 1,Sn na1
复习回顾
3n1
故Sn 3 (1 n) 3n1
课堂总结
数列求和的新方法:错位相减法
1、什么数列可以用错位相减法来求和?
通项公式是“等差×等比”型的数列
2、错位相减法的步骤是什么?
①展开:将Sn展开 ②乘公比:等式两边乘以等比数列的公比 ③错位:让次数相同的相对齐 ④相减 ⑤解出Sn
作业布置
1、求和:(1)1
(1)求数列{an}的前n项和 (2)求数列{bn}的前n项和
公式法
(3)求数列{an bn}的前n项和 分组求和法
新问题:
? 求数列{an bn }的前n项和
情景重现: 银行贷款问题
N年后,如果你自己开了公司,当了 老板,但是由于资金短缺,需向银行贷款 1000万。银行向你推荐了一个新的贷款 方案:
2
2
2
1 ( 1 ) 2 ( 1 ) n n ( 1 ) n1
22
2
2
1 (1)n 22
1 2
n ( 1 ) n1
1 1
2
2
1 (1)n
n
1 n1
2
2
故Tn
2 ( 1 ) n1 2
n(1)n 2
① ②
课堂练习
求和:1 3 3 32 (2n 1) 3n
解:
记Sn 1 3 3 32 (2n 3) 3n1 (2n 1) 3n
银行一次性借给你1000万元,你可以分30个月 偿还,第一个月还2元,第二个月还4元,第三个月 还8元,第四个月还10元,以此类推,每个月的还 款数是前一个月的两倍。
你能接受这个方案吗?
等比数列前n项和公式推导 回顾:
Sn a1 a2 a3 an1 an
后一项都比前 一项多乘个q
Sn a1 a1q a1q2 a1qn2 a1qn1
n 2n
n (1)n 2
Tn
1 1 2
2(1)2 2
(n 1) ( 1 ) n1 2
n(1)n 2
1 2 Tn
1 ( 1 )2 2 ( 1 )3 (n 1) ( 1 )n n ( 1 )n1
2
2
2
2
① ②得
1 2
Tn
1
1 2
1( 1 )2 1( 1 )n n ( 1 )n1
4 22
6 23
2n 2n
(2)1 3x 5x2 (2n 1)xn1
2、求数列{2n 3n}的前n项和
3Sn 1 32 3 33 (2n 3) 3n (2n 1) 3n1
两式相减得
2Sn 1 3 2 32 2 3n (2n 1) 3n1
2Sn 3 2 (32 3n ) (2n 1) 3n1
3
2
32
3n 3 13
(2n
1) 3n1
6
(2
2n)
错位相减法:
解:anbn n 2n
展开,乘公比,错位,相减
Sn a1b1 a2b2 anbn
即Sn 1 2 2 22 (n 1) 2n1 n 2n
2Sn 1 22 2 23 (n -1) 2n n 2n1
①-②得
Sn 1 2 1 22 1 23 1 2n n 2n1

qSn a1q a1q 2 a1q3 a1q n1 a1q n ②
①—② ,得
(1 q)Sn a1 a1q n
(1 q)Sn a1 a1qn
错 位 相
q 1时:
Sn
a1 a1qn 1 q
a1 anq 1 q
减 法
情景重现:
等比数列的前n项和
请同学们考虑如何求出这个和? 后一项都比前
相关文档
最新文档