用平均流速计算用沿程阻力系数计算式59页PPT
流体力学5-6沿程阻力
17
旧钢管及旧铸铁管
当v<1.2m/s
0.0179 d 0.3
1
0.867 v
0.3
当v >1.2m/s
0.021
d 0.3
舍维列夫公式是在水温为10oC,运动粘滞系数 ν=1.3×10-6m2/s的条件下得出的,前式适用于紊流过渡区, d 以m计,v 以m/s计;后式适用于阻力平方区, d 以m计
1932年尼古拉兹根据实验结果提
出了此式,n 为指数随雷诺数Re而变
化。该指数公式完全是经验性的,但 因公式形式简单,被广泛应用
u um ax
y r0
n
8
三、λ的半经验公式
1、尼古拉兹光滑管公式
1 2 lg Re
2.51
2、尼古拉兹粗糙管公式
1 2 lg 3.7d
Re vd
d l
2g v2
hf
算出若干组Re和λ值,将其点绘 在双对数坐标纸上,就得到=f(Re, ks /d)曲线,即尼古拉兹曲线图
2
3
尼古拉兹实验曲线
I.ab线层流区, =f(Re) ,=64/Re, Re<2300 II. bc线范围窄, =f(Re) , Re=2300~4000,层流向紊流
光滑区速度分布半经验公式
u 5.75lg yv 5.5
v
7
2.紊流粗糙区
u v
1
ln
y ks
c2
自然根对据数尼换古成常拉用兹对实数验,取便β=得0.4到、c2=8.48代入上式,并把
粗糙区速度分布半经验公式 u 5.75lg y 8.48
《热工与流体力学基础》课件第十章 流动阻力和能量损失
5.了解非圆管的当量直径概念,了解非圆管的沿程损失计算方法。
6.理解局部损失产生的主要原因,能正确选择局部阻力系数进行局部 损失计算。
7.了解减小流动阻力的措施。
重点与难点
• 本章的重点是雷诺数及流态判断,沿程阻力系数λ的确 定,沿程损失和局部损失计算 。 • 本章的难点在于: 1.层流和湍流的概念较抽象,理解起来有一定难度, 结合雷诺实验增加感性认识,理解起来会容易些。 2.对莫迪图中的阻力分区和沿程阻力系数λ不同计算 公式的应用会有一定难度。对于经验公式只需会用即可,
不必对其来源多加探究,也不必对经验公式死记硬背,能
根据条件选用公式即可。
第一节 沿程损失和局部损失
• 流体在流动过程中受到流动阻力,由此产生能量 损失。流动阻力是造成能量损失的根本原因,而 能量损失则是流动阻力在能量消耗上的反映。 • 影响流动阻力的主要因素:
流体的黏滞性和惯性(内因) 固体边壁形状及壁面的粗糙度的阻碍和扰动作用(外因)
第十章
流动阻力和能量损失
学习导引
实际流体在流动过程中必然要克服流动阻力 而消耗一定的能量,形成能量损失。能量损失的 计算是流体力学计算的重要内容之一,也是本章 要着力解决的基本问题。本章将以恒定流为研究 对象,从介绍流体流动形态入手,分析不同流态 下能量损失产生的规律,最后给出能量损失的常 用计算公式与方法。
两种流态
临界雷诺数Rec:对应于临界流速的雷诺数。
vc d vc d Rec
Rec稳定在2000~2320,一般取Rec2000。 Re≤2000时,是层流流动; Re>2000时,是湍流流动。 雷诺数=
惯性力 ——
黏性力
Re
vd vd
例10-1 某低速送风管道,内径d200mm,风速v3m/s, 空气温度为40℃。求:(1)判断风道内气体的流动状态;
沿程阻力和水头损失ppt课件
6
液流的总水头损失hw
hw h f h j
式中: h代f 表该流段中各分段的沿程水头损失的总和;
hj 代表该流段中各种局部水头损失的总和。
hf1
hj渐扩
D
当Vc<V<Vc’时,是层流向紊 流的过渡区,当速度从小逐渐
lg h f
C
增大时,试验点落在AB线上, 当流速达到Vc’时,流动转变为
B
A
紊流,试验点沿BC线移动;当 流速由大逐渐减小时,试验点
450
o
落在DCA上;在过度区,实验
点是分散的,取决于具体的实 验条件。
lg c lg c
lg
瞬时流速与时间平均流速之差叫做脉动流速 u,'x
脉动流速的时间平均值
ux
1 T
T 0
uxdt
1 T
T 0
uxdt
1 T
T
0 uxdt
ux ux 0
引入时间平均值的概念后,可以把某些实质上是非恒定流的紊流
看成是恒定流。
29
紊流中的其他物理量,也存在脉动的现象,其脉动的处理方 式也用时均化方法处理。
Q
udA
A
r0 0
gJ 4
(
r0
2
r 2 )2rdr
gJ 8
r0 4
平均流速
V
Q A
gJ 8
r0(2a)
V
1 2
gJ 4
r0 2
流体力学第5章管流损失和阻力计算
除了流体与管壁之间的摩擦外,流体内部的粘性、湍流等也会导致能量损失。 例如,湍流会使流体的流动变得不规则,增加流体之间的相互碰撞和摩擦,从 而产生更多的能量损失。
损失和阻力的影响
01
能量消耗
管流损失和阻力会导致流体在 流动过程中能量不断损失,这 需要额外提供能量来克服这些 损失,如泵或风机的能耗会增 加。
02 系统效率
管路中的损失和阻力会降低整 个系统的效率,使得系统需要 更多的输入能量才能达到预期 的输出效果。
03
设备选型
04
在进行设备选型时,需要考虑管 路中的损失和阻力,以确保所选 设备能够满足实际需求。例如, 在选择泵时,需要考虑到管路中 的损失和阻力,以确保泵能够提 供足够的扬程和流量。
安全风险
理论发展
实验结果可为流体力学理论的发展提 供实证支持,进一步完善管流损失和 阻力的计算模型。
THANKS
感谢观看
过大的管流损失和阻力可能会导 致流体流动受阻,甚至产生流体 过热、压力过高等问题,这可能 对设备和人员安全造成威胁。因 此,需要进行合理的设计和操作 ,以避免这些问题的发生。
02
管流损失的计算
局部损失计算
局部损失是由于流体在管道中 流动时,遇到突然扩大、缩小、 弯曲等局部障碍而产生的能量 损失。
控制流体流速和压力
降低流体流速
01
适当降低流体在管路中的流速,可以减小流体流动的阻力,从
而降低管流损失。
控制流体压力
02
合理控制流体在管路中的压力,避免过高的压力导致流体流动
阻力的增加。
使用减压阀和稳压阀
03
在管路中安装减压阀和稳压阀,可以稳定流体压力,减小流体
流体力学课件 第五章 流动阻力
斜直线分布
r hf 1 g grJ 2 l 2
du grh f dr 2l
抛物线分布
2.流速分布 3.流量
Q
r0 0
gh f 2 2 u (r0 r ) 4l
gh f 2 2 gh f 4 (r0 r ) 2 rdr d 4l 128l
(3)粗糙区
莫迪
§5-7 局部损失计算
一、边界层理论
1.边界层:贴近平板存在 较大切应力、粘性影响不能 忽略的这一层液体 。
2.边界层的厚度:当流速达到 边界层的厚度顺流增大,即δ是x的函数。
处时,它
3.转捩点,临界雷诺数 转捩点:在x=xcr处边界层由层流转变为紊流的过渡点。
临界雷诺数: Recr
三、总水头损失
hw h f h j
i 1 i 1 n n
§5-2 流体流动的两种型态
一、雷诺实验
1883年英国物理学家雷诺按图示试验装置对粘性流体进行 实验,提出了流体运动存在两种型态:层流和紊流。
1 4
(a)
hf 5
(b)
2
3
(c)
1.层流 :管中水流呈层状流动,各层的流体质点互不掺混的 流动状态。
四、湍流切应力分布和流速分布
1.切应力分布
du 2 du 2 1 2 L ( ) dy dy
摩擦切应力 普朗特混合长度 : 附加切应力
y L ky 1 r0
k 称为卡门常数
k 0.36 ~ 0.435
2.流速分布 (1)近壁层流层: 管壁切应力
du u 0 dy y
§5-6 湍流的沿程损失
一、湍流沿程损失计算
实验1 流体流动阻力的测定
第二章 实验部分实验一 流体流动阻力的测定一、实验目的(1)了解流体流动阻力的测定方法。
(2)测定流体流过直管时的磨擦阻力,并确定磨擦系数λ与雷诺数Re 的关系。
(3)测定流体流过管件(本实验为闸阀)时的局部阻力,并求出阻力系数ξ。
(4)了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理、学会正确使用。
二、基本原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所引起的局部阻力。
1.沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻力损失表现在压强的降低;h f =gp p ρ21-影响阻力损失的因素十分复杂,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,扩大实验结果的应用范围,可采用因次分析法将各变量综合成准数关系式。
影响阻力损失的诸因素有:(1)流体性质:密度ρ,粘度μ;(2)管路的几何尺寸:管径d ,管长l ,管壁粗糙度e ; (3)流动条件:流速u 。
可表示为:△P=f(d,l ,μ,ρ,u,e)。
组合成如下的无因次式:,,,2⎪⎭⎫⎝⎛=∆d e d l du u Pμρφρ22Re u d e dl p∙∙∙=∆⎪⎭⎫ ⎝⎛ϕρ引入⎪⎭⎫ ⎝⎛∙=d eRe ϕλ,则上式变为:gu dl pfh22∙=∆=λρ式中,λ称为直管摩擦系数,滞流时λ=64/Re ;湍流时λ与Re 的关系受管壁粗糙度的影响,需由实验求得。
根据伯努利方程可知,流体通过直管的沿程阻力损失,可直接由所测得的液柱压差计读数ΔR 算出:△p=ΔR(ρ指-ρ水)g其中:ρ指——压差计中指示液密度,kg/m 3。
本实验中用水银作指示液,被测流体为水。
ΔR ——U 型管中水银位差,m 。
g ——重力加速度,g=9.81m/s 2。
2.局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
流速计算
请教:已知管道直径D,管道内压力P,能否求管道中流体的流速和流量?怎么求已知管道直径D,管道内压力P,还不能求管道中流体的流速和流量。
你设想管道末端有一阀门,并关闭的管内有压力P,可管内流量为零。
管内流量不是由管内压力决定,而是由管内沿途压力下降坡度决定的。
所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。
对于有压管流,计算步骤如下:1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格;2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位;3、计算流量Q:Q = (H/sL)^(1/2)4、流速V=4Q/(3.1416d^2)式中:Q―― 流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。
管道中流量与压力的关系管道中流速、流量与压力的关系流速:V=C√(RJ)=C√[PR/(ρgL)]流量:Q=CA√(RJ)=√[P/(ρgSL)]式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。
管道的内径和压力流量的关系似呼题目表达的意思是:压力损失与管道内径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与内径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示:压力损失(水头损失)公式(阻力平方区)h=10.3*n^2 * L* Q^2/d^5.33上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。
式中n――管内壁粗糙度;L――管长;Q――流量;d――管内径在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量?管道压力0.3Mp、如把阀门关了,水流速与流量均为零。
水力学第四章层流、紊流,液流阻力和水头损失
3.7d
结论2:
•紊流光滑区水流沿程水头损失系数只取决于雷诺数,粗糙度不 起作用。容易得出光滑区紊流沿程损失与流速的1.75次方成正 比。 •紊流粗糙区水流沿程水头损失系数只取决于粗糙度,由于粗糙 高度进入流速对数区,阻力大大增加,这是不难理解的。容易 得出粗糙区紊流沿程损失与流速的2.0次方成正比。 •在紊流光滑区与粗糙区之间存在紊流过渡粗糙区,此时沿 程损失系数与雷诺数和粗糙度都有关。 •尼古拉兹试验反映了圆管流动的全部情况,在其试验结果图上 能划分出层流区,过渡区、紊流光滑区、紊流过渡粗糙区,紊 流粗糙区。紊流粗糙区通常也叫做‘阻力平方区’。
ro gJ 2 2 gJ 4 1 4 gJ 4 Q (ro r )2 rdr (ro ro ) d 0 4v 4v 2 128v
上式为哈根——泊肃叶定律:圆管均匀层流的流量Q与管径d 的四次方成比例。 3、断面平均流速: V
Q gJ 2 1 ro umax A 8 2
1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 1
1 1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 10
层流时,
64 Re
f (Re)
1 1 1 1 1 1 , , , , 及 30 61.2 120 252 507 1014
1 u u x x dt 0 T0
2、紊流的切应力 由相邻两流层间时均流速相对运动
所产生的粘滞切应力
紊流产生附加切应力
du l t v Re
t v Re 2
纯粹由脉动流速所产生 的附加切应力
dy ( du 2 ) dy
普朗特 混合长 Re 与 du 有关,根据质点脉动引起动量交换(传递),又称为动量传递理论 dy 理论
流体力学(刘鹤年)第六章-
同理可得: 所以圆管均匀流切应力分布为 或
0
表明有压圆管均匀流过流断面上切应力呈直线分布。
二、沿程损失的普遍表达式——达西公式
h
f
l v d 2g
适用于圆形管路
2
适用于 层流与 紊 流。
1 v h f 4R 2g 适用于非圆形管路
2
§6—4 圆管中的层流运动
一、流动特征
由于层流各流层质点互不掺混,对于圆管来说,各层质点沿平行管 轴线方向运动。与管壁接触的一层速度为零,管轴线上速度最大,整个 管流如同无数薄壁圆筒一个套着一个滑动。
u dA
3 A r0 0
v3 A
gJ 2 3 ( r r ) 2rdr 4 0 2 3 gJ 2 8 r0 A
3
α——动能修正系数。层流α=2.0,紊流α=1.05~1.1,一般工程计算中常取α=1.0 。
5、动量修正系数
本节只对简单均匀流作分析,找出 hf 与τ 的关系。
一、均匀流基本方程 1、沿程损失: 因为流体的流动是恒定、均匀流, 以圆管为例
所以有:
1v12
2g
2 2 v2
2g
故有:
h f ( z1
p1
) ( z2
p2
)
2、均匀流基本方程: 如果流体的流动为均匀流,则流体的受力应平衡。
lg hf
D C
E A lg vcr
B
lg vcr‘
lg v
分析: 1> AE 段: 层流
v < vcr ,为直线段,
直线的斜率 m1=1.0, hf = kv.
E A lg vcr lg vcr‘ lg hf D C
4流体力学第三章流动阻力与能量损失
二、能量损失的计算公式—长期工程经验总结
液体:沿程水头损失(达西公式):
L v hf d 2g
均流速
2
(3-1)
λ—沿程阻力系数;L—管道长度;d—管道直径;v—平
v2 局部水头损失: hj 2g
气体:沿程压强损失: 局部压强损失: 核心问题: 和 的计算。
(3-2)
L v pf d 2
第一节 流动阻力与能量损失的两种 形式
一、流动阻力和能量损失的分类 根据流动的边界条件,能量损失分:沿程能量损失 和局部能量损失 ㈠沿程阻力及沿程能量损失 ◆沿程阻力—当束缚流体流动的固体边壁沿程不变, 流动为均匀流时,流层与流层之间或质点之间只存 在沿程不变的切应力,称为沿程阻力。 ◆沿程能量损失—沿程阻力作功引起的能量损失称 之这沿程能量损失。特点:沿管路长度均匀分布, 即沿程水头损失hf ∝ l。
层流区 不稳定区
紊流区
二、沿程水头损失与流态的关系
层流区:
紊流区:
hf v
hf v
1.75: 2.0
不稳定区:关系不稳定。
三、流动型态的判断标准
●雷诺数: 雷诺等人进一步实验表明:流态不仅和流速v有关, 还和管径d、流体的动力粘度μ和密度ρ有关。 以上四个参数组合成一个无因次数,叫雷诺数,用 Re表示。
㈡时均化
紊流运动要素围绕它上下波动的平均值称为时均值。 时均速度的定义:
u x AT u x Adt
0
T
1 T u x u x dt T 0
瞬时速度
(3-20)
' x
ux ux u
二、紊流阻力
由两部分组成: ①流体各层因时均流速不同而存在相对运动,故 流层间产生因粘滞性所引起的摩擦阻力。 粘性切应力τ1按牛顿内摩擦定律计算。 ②由于脉动现象,流层间质点的动量交换形成的 紊流附加切应力τ2。 其大小由普朗特的混合长度理论计算。见式 (3-21)。 Re较小时,τ1为主要; Re足够大时,τ2为主要。
流体力学 沿程阻力和水头损失
局部水头损失:局部区域内由于水流边界条件发生变化所产生 的能量损失。常用hj表示。
在管道系统中装有阀门、弯管、变截面管等局部装臵。流体流 经这些局部装臵时流速将重新分布,流体质点之间及与局部装 臵之间发生碰撞、产生漩涡,使流体的流动受到阻碍,由于这 种阻碍是发生在局部的急变流动区段,所以称为局部阻力。流 体为克服局部阻力所损失的能量,称为局部损失。
当流速较大,各流层的液体质点形成涡
体,在流动过程中,互相混掺,这种型 态的流动叫做紊流。
水流由层流转化为紊流时的流速称为上 临界流速,用Vc’来表示。
水流从紊流转变为层流的流速称为下 临界流速,用Vc来表示。
实验证实:Vc’>Vc。
当液体流速V>Vc’时,液体属于紊流; 当液体流速V<Vc时,液体属于层流; 当Vc’<V<Vc时,可以是层流也可以是紊流,液流形态是不 稳定的。例如原来是层流,但在噪声、机械振动、固体表 面粗糙度的影响下,可变为紊流。
l
( z1
代入上式 ,各项用 gA 除之,整理后
p1 p l ) ( z2 2 ) g g A g
因断面1-1及2-2的流速水头相等,则能量方程为
( z1 p1 p ) ( z2 2 ) h f g g
有 h f l l A g R g
在所实验的管段上,因为水平直管路中流体作稳定流时,根据 能量方程可以写出其沿程水头损失就等于两断面间的压力水头 p1 p2 差,即
hf
lg h f
C
C
改变流量,将hf与v对 应关系绘于双对数坐标纸 上,得到 h f v关系曲线.
45 0
h f v关系曲线图
lg c lg c
第1章流体力学基本知识-PPT精品
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v
ud
Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
管路阻力的计算方法
管道长度越大,管路阻力越大。这是因为管道长度越大,流体在管路中流动时受到的惯性力也越大,导致压强损失也越大。
管路阻力计算公式
管路阻力的计算方法 管路阻力计算公式 1. 局部阻力系数法 局部阻力系数法是计算管路系统局部阻力的一种方法,它通过实验和理论分析得到不同类型和位置的局部阻力系数与流速的关系。然后根据已知的管路参数,如管道长度、管径、流体密度 和速度等,计算出管路系统的局部阻力。 长度损失法是计算管路系统长度损失的一种方法,它通过计算管路系统的沿程损失和局部损失之和来得到长度损失。其中,沿程损失可以通过计算流体在管路中流动时的雷诺数来确定。
03
流体速度
PART THREE
管路阻力计算,流体速度
管路阻力的计算方法
流体速度是指单位时间内流体的位移,可以用以下公 式计算
管路阻力是指流体在管路中流动时所受到的阻力,可 以用以下公式计算
管路阻力是流体在管路系统中流动时所受 到的阻力,其大小取决于流体的速度、管 路截面积、流体种类等因素。下面介绍管 路阻力的计算方法。
流体速度的影响因素
流体速度
流体速度是描述物质运动 的一个重要参数
流体性质
流体性质的研究是 物理学中一个重要 的领域,涵盖了流 动行为、粘度、热
传导等方面
物理特性
物理特性是描述物体属性, 包括密度、硬度、弹性和
热导率等
流体温度
流体温度是影响其流动特 性的重要因素之一
流动行为
流动行为是实现个人和社 会变革的关键
管路形状和尺寸
管路形状和尺寸决定了流 体流动和能量传递的性能
04
流体密度
PART FOUR
第一篇 流体力学第四章 阻力损失与管路计算
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.
水流阻力和水头损失精品
第4页/共66页
三、总阻力与总能量损失
在工程实际中,绝大多数管道系统是由许多等直管段和一些管道附件连接在一起所组成的,所以在一个管道系统中,既有沿程损失又有局部损失。我们把沿程阻力和局部阻力二者之和称为总阻力,沿程损失和局部损失二者之和称为总能量损失。总能量损失应等于各段沿程损失和局部损失的总和,即
湿周
水力半径
对于圆管水力半径
第12页/共66页
【例题】 管道直径 100mm,输送水的流量 m3/s,水的运动粘度 m2/s,求水在管中的流动状态?若输送 m2/s的石油,保持前一种情况下的流速不变,流动又是什么状态?
【解】
(1)雷诺数
第47页/共66页
边界层的流态:根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种流动状态,若全部边界层内部都是层流,称为层流边界层,若在边界层起始部分内是层流,而在其余部分内是紊流,称为混合边界层,如图所示,在层流变为紊流之间有一过渡区。判别边界层的层流和紊流的准则数仍为雷诺数,但雷诺数中的特征尺寸用离前缘点的距离x表示之,特征速度取边界层外边界上的速度 ,即临界雷诺数为
局部水头损失的通用计算公式:
应用举例
第34页/共66页
第35页/共66页
雷诺试验
雷诺实验的动态演示
第36页/共66页
抛物型流速分布
中心线的最大流速
第37页/共66页
紊流的脉动现象
或
(时均)恒定流
(时均)非恒定流
第38页/共66页
紊流的粘性底层
层流底层厚度
可见,δ0随雷诺数的增加而减小。
当Re较小时,
第4章水流阻力和水头损失
1 2
p1 p2 h f z1 z2 g g
1
2
1
2 τ0
P 1 p1 A 1 P2 p2 A2
面积
1 Z1 L
F L 0
2
Z2 O
τ0 G=ρgAL
湿 周
O
列流动方向的平衡方程式: 水力半径——过水断面面积与 湿周之比,即A/χ
vk d
vk d
2300
若Re<Rek
1.0 h V ,水流为层流, f
1.75~2.0 若Re>Rek,水流为紊流, hf V
公式只适用于圆管,对于非圆管用当量直径来实现, 如下:
湿周: 过水断面中液体与固体接触的边界长度 水力半径:R
非圆管
A
A
d
2
对于圆管水力半径
雷诺数可理解为水流惯性力和粘滞力量纲之比 量纲:称为因次,指物理量的性质和类别,例如 长度和质量,分别用[L]和[M]表达
[V ] [惯性力]=[m][a]=[ ][L ] [ ][ L2 ][V 2 ] [T ] du 2 [V ] [粘性力] [ ][ A][ ] [ ][ L ] [ ][V ][ L] dy [ L]
3
量纲为
[惯性力] [ ][ L ][V ] [ ][ L][V ] [粘带力] [ ][V ][ L] [ ]
2 2
几个基本概念
层流底层、过渡层和紊流核心
§4.3 均匀流基本方程
1、沿程水头损失与切应力的关系
列1-1、2-2断面伯努利方程式:
2 p1 1v12 p2 2 v2 z1 z2 hf g 2g g 2g
沿程阻力简便计算
第六章 流动阻力和水头损失学习要点:熟练地掌握水头损失的分类和计算、层流与紊流的判别及其流速分布规律;掌握流动阻力的分区划分、各个分区内沿程水头损失系数的影响因素,了解紊流脉动现象及其切应力的特征、人工加糙管道与工业管道实验结果的异同、沿程水头损失系数计算的经验公式、几种特殊的管路附件的局部水头损失系数等。
实际流体具有粘性,在通道内流动时,流体内部流层之间存在相对运动和流动阻力。
流动阻力做功,使流体的一部分机械能不可逆地转化为热能而散发,从流体具有的机械能来看是一种损失。
总流单位重量流体的平均机械能损失称为水头损失,只有解决了水头损失的计算问题,第四章得到的伯努利方程式才能真正用于解决实际工程问题。
第一节 水头损失及其分类流动阻力和水头损失的规律,因流体的流动状态和流动的边界条件而异,故应对流动阻力的水头损失进行分类研究。
一、水头损失分类流体在流动的过程中,在流动的方向、壁面的粗糙程度、过流断面的形状和尺寸均不变的均匀流段上产生的流动阻力称之为沿程阻力,或称为摩擦阻力。
沿程阻力的影响造成流体流动过程中能量的损失或水头损失(习惯上用单位重量流体的损失表示)。
沿程阻力均匀地分布在整个均匀流段上,与管段的长度成正比,一般用f h 表示。
另一类阻力是发生在流动边界有急变的流场中,能量的损失主要集中在该流场及附近流场,这种集中发生的能量损失或阻力称为局部阻力或局部损失,由局部阻力造成的水头损失称为局部水头损失。
通常在管道的进出口、变截面管道、管道的连接处等部位,都会发生局部水头损失,一般用j h 表示。
如图6—1所示的管道流动,其中,ab ,bc 和cd 各段只有沿程阻力,ab f h 、bc f h 、cd f h 是各段的沿程水头损失,管道入口、管截面突变及阀门处产生的局部水头损失,a j h 、bj h 、和c j h 是各处的局部水头损失。
整个管道的水头损失w h 等于各段的沿程损失和各处的局部损失的总和。