代谢控制发酵知识点
代谢控制发酵名词解释
代谢控制发酵名词解释代谢控制是指通过调控细胞内多个代谢途径的活性,以达到对生物体生理状态的调节。
在发酵过程中,代谢控制是实现产物合成和细胞能量供应的关键。
下面我将针对代谢控制和发酵的相关名词进行解释。
1. 代谢(Metabolism):代谢是指生物体内发生的一系列物质转化过程,涉及能量的产生与消耗以及有机物的合成与降解等。
代谢包括两个相互依赖的过程,即合成(Anabolism)和降解(Catabolism)。
2. 代谢途径(Metabolic pathways):代谢途径是由一系列相互连接的酶催化反应组成的网络。
它们能够协同合作,将底物转化为产物,并产生能量或合成特定产物。
3. 代谢调节(Metabolic regulation):代谢调节是通过对代谢途径中关键酶的活性进行调控,以适应环境条件和维持生理平衡的过程。
代谢调节能够使细胞对外部信号做出响应,从而合理分配代谢物,调节能量产生和物质合成。
4. 酶(Enzyme):酶是催化生物体内化学反应的蛋白质。
在发酵过程中,酶能够加速底物转化的速率,从而促进产物的合成。
5. 代谢产物(Metabolites):代谢产物是在代谢过程中生成的化学物质。
在发酵中,代谢产物可以是所需的产品(如酒精、酸类),也可以是副产物(如乳酸、CO2等)。
6. 基因调控(Gene regulation):基因调控是通过对基因表达的调控,实现细胞代谢活动的调节。
在发酵中,通过操纵产物代谢途径上的关键基因,可以调节特定发酵产物的产生。
7. 底物浓度(Substrate concentration):底物浓度是指代谢途径中反应底物的浓度。
底物浓度的增加或减少会影响酶催化反应的速率,进而影响代谢途径的活性和产物的合成。
8. 产物抑制(Product inhibition):产物抑制是指在代谢过程中,产物的积累对酶的活性产生抑制作用。
产物抑制是一种重要的负反馈调控机制,可以通过抑制产物合成途径上的酶活性,调节代谢活动。
代谢控制发酵
第一章绪论1、代谢控制发酵:就是利用遗传学的方法或其他生物化学方法,人为地在脱氧核糖核酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。
P22、代谢控制发酵的关键:取决于微生物代谢控制机制是否能够被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。
P23、代谢工程的具体思路:P31、改变代谢流:(1)、加速速度限制反应;(2)、改变分支代谢途径的流向;(3)、构建代谢旁路;(4)、改变能量代谢途径。
2、扩展代谢途径和构建新的代谢途径:(1)、引入外源基因,延伸代谢途径;(2)、利用新的底物,构建新的生物合成途径。
第二章代谢控制发酵的基本思想1、微生物细胞的调节机制:P7-9(1)、通过控制基因的酶生物合成的控制机制:①诱导——促进酶的合成;②阻遏——抑制酶的合成,包括:1)终产物阻遏,2)分解代谢物阻遏。
(2)、酶活性的控制机制:①终产物抑制或激活,②通过辅酶水平的活性调节,③酶原的活化,④潜在酶的活化。
(3)、通过细胞渗透性的控制:(根据酶在代谢调节中作用不同分类)①调节酶:变构酶、同功酶、多功能酶。
②静态酶③潜在酶2、脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。
注:处理方法:①使变构酶解聚,②基因突变。
P153、反馈抑制的调节类型可以分为以下几种:P18-21 图略(1)、单功能途径中酶活性的调节类型:①前体激活,②补偿性激活。
(2)、多功能途径中酶活性的调节类型:①协作反馈抑制或称多价反馈抑制,②合作反馈抑制,③积累反馈抑制,④顺序反馈抑制,⑤假反馈抑制:指结构类似物的反馈抑制,⑥同功酶4、分解代谢物阻遏:当细胞具有一优先利用的底物(通常是,但并不总是葡萄糖)时,很多其他分解反应途径受到阻遏。
P27 (注:根据葡萄糖效应理解)5、突破微生物的自我调节控制机制,使代谢产物大量积累的有效措施:P31 (1)、应用营养缺陷型菌株。
代谢控制发酵
磷酸盐调节(高于10mmol/L抑制许多抗生素合成)
A抑制酶的作用;B导致细胞能荷变化;C竞争某些金属离子的作用。
代谢工程
• 代谢网络理论:
将细胞的生化反应以网络整体来考虑,而不 是孤立地来考虑。将代谢网络分流处的代谢产物 称为节点,对终产物合成起决定作用的少数节点 称主节点。根据节点下游分支的可变程度,节点 分为柔性、半柔性和刚性三类。 1.改变代谢途径 2.扩展代谢途径 3.转移或构建新的代谢途径
1.改变代谢途径
• 改变分支途径流向,阻断其他产物合成,提高目标 产物产量。 ①加速限速反应
如:头孢霉素C的代谢工程菌的构建。青霉素N积累,下一酶克隆、导
入、产量上升25%;
②改变分支途径流向
提高目的产物支路的酶活性,占据优势、提高产量;
③构建代谢旁路
将抑制物分解或转化成影响小的其他物质;如:乙酸→乙醇(乳酸)。
3.菌种遗传特性的改变
• 抗反馈调节突变株;
抗反馈调节突变株是指一种对反馈抑制不敏 感或对阻遏有抗性的组成型菌株,或兼而有之的 菌株。如苏氨酸发酵:
• 组成型突变株; • 抗性突变株。
次级代谢与次级代谢调节
• 主要包括:抗生素、刺激素、生物碱、 维生素、色素、毒素等。 1.初级代谢和次级代谢
初级代谢:与生物生存有关的,涉及能量产生和能量消 耗的代谢类型。 生存必需;始终产;不同种,相同;环境敏感性 小;酶专一。 次级代谢:某些生物为避免某种代谢物积累造成不利作 用而产生的一类有利生存的代谢。 并非必需,但有一定价值;某一时产;不同种,不 同;受环境敏影响大;酶专一性不强。
2.次级代谢的调节类型
①酶合成的诱导调节 有些酶也是诱导酶,以底物或底物类似物(内 源、外源)为诱导剂。 ②反馈调节 次级代谢物的自身反馈抑制和反馈阻遏
代谢控制发酵
《代谢控制发酵》复习题1.名词解释代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。
关键酶:参与代谢调节的酶的总称。
作为一个反应链的限速因子,对整个反应起限速作用。
变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。
诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。
调节子:就是指接受同一调节基因所发出信号的许多操纵子。
温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。
碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。
氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。
营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。
渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。
因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。
代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。
平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b 酶,结果优先合成E。
E过量后就会抑制a酶,使代谢转向合成G。
G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流转向又合成E,如此循环。
(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。
E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。
G合成达到一定浓度时就会对c酶产生抑制作用。
代谢控制发酵1(1)
从微生物发酵的历史角度看,最早的微生物发酵是一个自然 发酵过程,如古代的酿酒技术、酱油、食醋酿造技术等;现代微 生物工业通常是指微生物的代谢控制发酵,如有机酸发酵工业、 酶制剂工业、生物医药工业等
抗生素发酵也属于代谢控制发酵的范畴,但目前许多发酵试 验还具有很大的盲目性,大部分试验都是靠经验及推测来设计, 通过结果来进行验证。主要原因是由于抗生素属于次级代谢产物, 生物合成途径比较复杂,代谢机理有的目前还没有搞清楚;其次 是由于中间代谢产物种类繁多且时刻处于动态变化之中,而且每 种物质的流向不止一条,这就使得微生物的即时代谢状态很难被 把握,即检测手段缺乏的问题。 如目前我们在头孢菌素C的发酵试验及生产中,常用的一些 检测指标如:PH、总糖、氨氮、溶氧、菌浓、还原糖、空气流 量、罐压、转速等,都与头C的生产速率及最终产量没有直接的 关联,只能作为一种参考指标,不到发酵结束很难准确预测发酵 结果的好坏。例如有些批次效价很低,但各种消耗并不低,各项 检测指标也正常,发酵失败的原因就很难分析(营养物质没有用 于产物的合成)。
代谢控制发酵
1.关于代谢控制发酵的几个概念 2.研究代谢控制发酵的意义 3.主要代谢底物的代谢途径及其联系 4.自然发酵实例 5.代谢控制发酵实例
一.代谢控制发酵的几个概念 1.代谢
代谢也叫新陈代谢,是细胞内发生的各种化学反应的总称, 包括合成代谢和分解代谢两大方面。分解代谢又称异化作用,是指 由复杂的营养物质分解成简单化合物的过程;合成代谢也称同化作 用,是指由简单化合物合成复杂的细胞物质的过程。
利用丙酮丁醇梭菌(Clostridium aceto-butylicum)在严格嫌气 条件下进行发酵时,其生成途径由葡萄糖发酵生成乙酸、丁酸、 二氧化碳和氢气,当pH值下降至4-4.5时,还原生成丙酮、正丁 醇和乙醇。通常以玉米为原料,利用生产菌分泌的淀粉酶进行边 糖化边发酵。溶剂比例因菌种、原料、发酵条件不同而异。正常 情况下丙酮、丁醇和乙醇的比例为3:6:1。近年来选出的菌种,可 使丁醇产量提高至70%。按发酵方法可分为间隙发酵和连续发酵,
代谢控制发酵
第一章:微生物代谢小结:1、能量代谢是生物新陈代谢的核心2、化能异养微生物的生物氧化必须经历脱氢、递氢和受氢3个阶段,依据受体的不同将生物氧化分为三种:呼吸、无氧呼吸和发酵3、化能自养微生物利用无机氧化获得ATP,产能少,生长得率极低4、字样微生物通过光和磷酸化获得ATP,包括循环光合酸化、分循环光和磷酸化和紫膜光合磷酸化三种5、微生物具有固氮作用复习题:1、名词解释:生物氧化:在生物体内,从代谢物脱下的氢及电子﹐通过一系列酶促反应与氧化合成水﹐并释放能量的过程。
有氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以分子氧作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程无氧呼吸:微生物在降解底物过程中,将释放出电子传给NAD(P)+、FAD或FMN等电子载体,在经电子传递系统传给外源电子受体,以氧化型化合物作为最终电子受体,从而生成水或其它还原型产物并释放出能量的过程发酵:是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。
电子传递链(呼吸链):多种递电子体或递氢体按次序排列的连接情况。
生物氧化过程中各物质氧化脱下的氢,大多由辅酶接受,这些还原性辅酶的氢在线粒体内膜上经一系列递电子体(或递氢体)形成的连锁链,逐步传送到氧分子而生成水。
此种连锁过程与细胞内呼吸过程密切相关。
植物的叶绿体中则存在光合电子传递链以传递电子,完成光合作用中水分解出氧,形成NADPH的过程。
光和磷酸化(循环/非循环):一种存在于厌氧光合细菌中的利用光能产生ATP的磷酸化反应,由于它是一种在光驱动下通过电子的循环式传递而完成的磷酸化,故称循环光合磷酸化。
生物固氮:生物固氮是指分子氮通过固氮微生物固氮酶系的催化而形成氨的过程。
自生/共生/联合固氮菌:自生固氮菌:独立进行固氮,但并不将氨释放到环境中,而是合成氨基酸;固氮效率较低。
微生物代谢控制发酵——【发酵工程】
• 渗漏型突变株
•
指遗传性障碍不完全的缺陷型。由于这种突变是它的某一种酶的
活性下降而不是完全丧失,因此,渗漏缺陷型能够少量地合成某一代谢
最终产物,能在基本培养基上进行少量的生长
• 代谢互锁 Metabolic int,受来自另外一种从生物合成途径来看似 乎完全无关的终产物的控制,这种现象叫代谢互锁
枯草芽胞杆菌嘌呤核苷酸生物合成的调节机 制
• 在枯草芽胞杆菌的嘌呤核苷酸生物合成中,有几个部位 受到产物的反馈调节,催化这些步骤的酶都是变构酶。
• PRPP合成5/-磷酸核糖胺途径中的酶受AMP、GMP的反馈抑 制,并且二者在抑制该酶活性中有互相增效的作用。
• IMP是AMP、GMP合成途径的分支点,分别接受AMP和GMP的 反馈调节。即在AMP合成中,专一性酶腺苷琥珀酸合成酶 (SAMP合成酶)仅受AMP系物质的反馈阻遏;在GMP合成 中,专一性酶(IMP脱氢酶)仅受GMP系物质的反馈阻遏 和反馈抑制。
• 代谢控制发酵工程能否获得成功,目的产物产量的高低,取决于微生 物细胞自我调节控制是否能够解除或解除的程度。
• 能否解除微生物的自我调节控制机制,而使代谢产物大量积累是代谢 控制发酵育种的关键。
菌体及终端产物
从
初级代谢产物(如酶类)
易
基因改造
到
次级代谢产物(如抗生素)
难
大分子合成素材性产物
外源基因产物
营养缺陷型应用举例 (二)
• 必需氨基酸: • 赖氨酸(Lys)、色氨酸(Trp)、苯丙氨酸(Phe)、蛋
氨酸(Met)、苏氨酸(Thr)、亮氨酸(Leu)、异亮氨酸 (Ile)、缬氨酸(Val)。
赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低, 且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。
代谢控制发酵
添加标题
代谢控制发酵的未来发展趋势
代谢控制发酵的研究热点和难点
代谢调控机制的研究 微生物代谢网络的研究 代谢工程的应用研究 微生物发酵过程的优化和控制
代谢控制发酵的研究趋势和发展方向
代谢控制发酵技术的深入研究:通过基因工程、蛋白质工程等手段,对代谢途径进行精确调 控,提高发酵产物的产量和纯度。
智能化和自动化技术的应用:利用人工智能、大数据等技术手段,实现代谢控制发酵过程的 智能化和自动化,提高生产效率和产品质量。
代谢控制发酵
汇报人:PPT
代谢控制发酵的基本概念 代谢控制发酵的研究进展
代谢控制发酵的基本概念
代谢控制发酵的定义
代谢途径:控制微生物生长繁殖的过程 发酵过程:利用微生物生产产品的过程 代谢控制发酵:通过控制代谢途径来优化发酵过程 目的:提高产品产量、质量或降低成本等
代谢控制发酵的目的和意义
目的:通过控制代谢过程,提高微生物产品的产量和收率
生物能源和生物材料的研究:利用代谢控制发酵技术,生产生物能源和生物材料,降低对传 统能源和材料的依赖,促进可持续发展。
拓展应用领域:将代谢控制发酵技术应用于医疗、环保等领域,开发新型药物、生物催化剂 等,推动相关领域的发展。
THANK YOU
汇报人:PPT
意义:实现微生物发酵过程的优化和控制,提高生产效率和产品质量 与传统发酵相比的优势:能够更好地控制发酵过程,提高产品纯度和稳 定性 应用领域:医药、食品、化工等领域
代谢控制发酵的研究进展
代谢控制发酵的研究现状
代谢控制发酵的原理介绍
代谢控制发酵的应用案例
添加标题
添加标题代谢控制发酵Fra bibliotek技术手段添加标题
代谢控制发酵
绪 论
第一节 代谢控制发酵的 研究对象和任务
代谢控制发酵是发酵生理学的重要部分,是生物工程的重要专业基础课。它是利用遗传学或其它生物化学的方法,人为地在脱氧核糖核酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用的代谢产物大量生成、积累的发酵技术。
一、几个概念
微生物生理学(Microbiol Physiology) 是微生物学的一个分支,是从生理生化的角度研究微生物细胞的形态、结构和功能以及微生物生命活动(及代谢)规律的学科。
发酵生理学 (Fermentation Physiology) 是微生物生理学和生物工艺学(发酵工艺)的交叉分支,它是从生理、生化及发酵工艺角度研究工业微生物细胞的形态、结构和功能以及微生物生命活动(主要是代谢活动)规律的学科。
工业微生物(Inductrial Microbiology) 是指在发酵工业上已经应用或具有潜在应用价值的微生物,它包括细菌、放线菌、酵母菌、霉菌也包括藻类和病毒。其范畴随科学技术的发展而不断扩大。
生理学(Physiology) 研究生物的功能的科学。按生物类别分为:人体生理学、动物生理学、植物生理学、微生物生理学等分科。按生理学研究的观点和水平分有:比较生理学、器官生理学、细胞生理学和分子生理学。
二、 代谢控制发酵的发展 ——代谢工程 (Metabolic engineering )
1. 代谢工程定义 2. 代谢工程研究的内容 3. 代谢工程研究的任务
1. 代谢工程定义
采用重组DNA技术和高精度的分析生物学技术相关的遗传学方法,进行精确目标的基因操作,改变微生物原由调节系统,实现提高目的代谢活性和目的代谢产物量。
发酵(fermentation) (1)早期的概念 微生物在无氧时的代谢进程。有机物是通过另一个有机物还原而将自身氧化的生物学过程,脱氢体和受氢体均是有机物。 (2)利用微生物生长和代谢活动生产多种有用物质。 (3)利用微生物或通过细胞工程、酶工程、基因工程等获得的生命体生产各种有用物质。
代谢控制发酵的原理及应用
代谢控制发酵的原理及应用1. 引言发酵作为一种重要的工业生产过程,广泛应用于食品工业、制药工业、化工工业等领域。
控制发酵过程中的代谢反应是提高发酵产物得率和质量的关键。
本文将介绍代谢控制发酵的原理及其在实际应用中的意义。
2. 代谢控制发酵的原理2.1 代谢途径代谢途径是细胞内各种代谢酶反应所组成的网络。
通过对代谢途径进行控制,可以实现对发酵过程中代谢产物的合成与降解的调控。
•代谢途径的分类:–糖代谢途径:通过调节糖酵解和糖异生途径的活性,实现对碳源代谢的控制。
–脂肪代谢途径:调节脂肪酸合成和降解途径,影响发酵产物的合成。
–氨基酸代谢途径:调控氨基酸的合成和降解,影响蛋白质合成和产物生成。
–核苷酸代谢途径:控制DNA和RNA的合成,对生物体的生长和发育起到重要作用。
2.2 代谢调控策略代谢调控策略是通过对代谢途径内关键酶的调控,实现对代谢产物合成和降解速率的调控。
•调控策略的分类:–底物浓度调控:通过调节底物浓度,影响酶催化反应速率,进而控制代谢产物的生成。
–反馈抑制:通过代谢产物对酶活性的抑制,调节代谢途径内各个酶的活性,从而控制代谢产物的生成。
–遗传调控:通过改变生物体内部基因表达水平,调节代谢途径内酶的含量,进而影响代谢产物的合成速率。
–外部条件调控:例如温度、pH值等环境条件的调控,对代谢产物合成有重要影响。
3. 代谢控制发酵的应用3.1 食品工业在食品工业中,利用代谢控制发酵技术可以实现食品添加剂、发酵食品等的生产。
•食品添加剂的生产:通过控制微生物发酵过程中的代谢途径和代谢产物的合成,可以高效生产食品添加剂,如谷氨酰胺、谷氨酰胺钠等。
•发酵食品的生产:利用代谢控制发酵技术,可以生产出口感好、品质优良的发酵食品,如酸奶、面包等。
3.2 制药工业代谢控制发酵技术在制药工业中有着广泛应用。
•抗生素的生产:通过调控微生物发酵过程中底物浓度、代谢途径和酶活性,可提高抗生素的产量和质量。
•生物药物的生产:通过遗传调控和代谢途径调控,可以实现生物药物的高效合成,如重组人胰岛素和重组人生长激素等。
代谢控制发酵
《代谢控制发酵》复习题1.名词解释代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。
关键酶:参与代谢调节的酶的总称。
作为一个反应链的限速因子,对整个反应起限速作用。
变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。
诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。
调节子:就是指接受同一调节基因所发出信号的许多操纵子。
温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。
碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。
氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。
营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。
渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。
因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。
代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。
平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b酶,结果优先合成E。
E过量后就会抑制a酶,使代谢转向合成G。
G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流转向又合成E,如此循环。
(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。
E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。
G合成达到一定浓度时就会对c酶产生抑制作用。
第3章 1 发酵机制和代谢控制发酵
淀粉质原料生பைடு நூலகம்酒精工艺流程
• 原料预处理 • ↓ • 蒸煮(145-155℃) • ↓ • 糖化(糖化剂) • ↓ • 发酵(酒母) • ↓ • 蒸馏(乙醇、杂醇油、醛酯等)
酒精发酵的三个阶段
• 前期发酵 • 主发酵 • 后发酵
前期发酵
• 酒母和糖化醪加入发酵罐后,由于醪液中 含有一定的溶解氧和充足的营养物质,酵 母能迅速生长到一定的水平.此时醪液中 . 的糊精继续被糖化酶作用生成可发酵糖. • 该过程一般保持温度为26-28OC,时间为10 小时左右. • 此时由于酵母数量较少,易染杂菌.
酶合成的开 关 迟缓 粗的控制
高分子化合物(酶蛋 白)
代谢控制发酵常用方法
• 选育营养缺陷型.由于某一途径发生缺陷,不能 积累终产物,解除了反馈调节,使中间产物或另 一途径终产物积累. • 选育抗反馈调节突变株,由于这样的突变株不再 受正常反馈调节,终产物可积累. • 选育细胞通透性突变株,使终产物在细胞内不能 积累到引起反馈调节的浓度. • 利用营养缺陷型回复突变株或条件突变株的方 法,解除终产物对关键酶的调节.
同型乳酸发酵
• 大多数乳酸菌不具有丙酮酸脱羧酶,因此不能生 成乙醛.而是在乳酸脱氢酶的作用下,丙酮酸直 接作为受氢体被还原为乳酸. • C6H12O6 →2CH3CHOHCOOH • 转化率:(90× 2/180) ×100%=100% • 进行同型乳酸发酵的菌种有: 乳酸链球菌 (Streptococcus Lactis),保加利亚乳杆菌 (Lac.bulgaricus), 德氏乳杆菌(Lac.delbriickii)
主发酵
• 醪液中糖分迅速下降,酒精逐渐增多,CO2 大量产生搅动酵母上下翻动与糖充分接 触,使发酵进行得更彻底,发酵醪温度快速 上升. • 该阶段温度保持在30-340C,大约12小时左 右. • 由于产生大量的发酵热,提前做好降温准 备,否则易染菌(高于37OC)和酵母老化.
(整理)代谢控制发酵复习
代谢控制发酵绪论第二章新陈代谢三大特点:条件温和,与酶催化和调控相关、反应有顺序性、灵敏的自我调节功能代谢控制发酵:利用遗传学的方法或其他生物化学的方法,人为的在脱氧核酸核糖(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。
代谢控制发酵有两种途径(思路):控制培养条件和控制遗传型。
第三章代谢控制发酵的基本思想酶合成的调控(操纵子学说):(酶反应终产物如何对酶的合成进行调控?6页) 按操纵子学说,操纵子由细胞中的操纵基因和邻近的几个结构基因组成。
结构基因能转录遗传信息,合成相应的RNA(mRNA),进而再翻译合成特定的酶。
操纵基因能够控制结构基因作用的发挥。
细胞中还有一种调节基因,嫩巩固产生一种细胞质阻遏物(调节蛋白),细胞质阻遏物与阻遏物(通常是酶反应的终产物)结合时,由于变构效应,结构改变和操纵基因亲和力变大,而使有关的结构基因不能合成mRNA,因此,酶合成受到阻遏。
关键酶:是参与代谢调节的酶的总称。
特点:1、关键酶并不都是分支点酶2、生物合成途径越长,关键酶数目越多3、不同微生物间的关键酶所受到调控不同天冬氨酸激酶(大肠杆菌中3种同功酶苏氨酸、蛋氨酸、赖氨酸反馈抑制谷氨酸棒杆菌中,受赖氨酸,苏氨酸协同反馈抑制)DAHP合成酶(大肠杆菌中3种同功酶酪氨酸,苯丙氨酸,色氨酸反馈抑制变构酶:具有两个或两个以上结合部位的蛋白质,当其中一个部位与效应物(小分子物质)结合后,蛋白质构象发生改变,性能也随之变化。
变构酶的作用程序:专一性的代谢物(变构效应物)与酶蛋白表面的特定部位(变构部位)结合→酶分子的构象变化(变构转换)→活性中心的修饰→抑制或促进酶活性动力学特点(3个)1、S形:意味着存在底物及效应物对反应速度发生影响的阈值。
2、3、脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。
(1、使变构酶解聚:加热、加尿素、汞盐;基因突变:2、诱变育得的抗类似物突变株中多发生调节中心的独立性)酶活力调节类型:Ⅰ单功能途径:终产物抑制、代谢产物激活作用(前体激活、补偿激活)Ⅱ多功能途径:1、协作反馈抑制(多价反馈抑制):当一条代谢途径中有两个以上终产物时,两者同时过剩时,才能协同抑制第一个酶的活性。
代谢控制发酵复习.doc
试卷题型:⑴、名词解释:8X47⑵、填空题:22X1,⑶、简答题:3X8’⑷、综合题:2Xir第一章绪论1、代谢控制发酵:就是利用遗传学的方法或其他生物化学方法,人为地在脱氧核糖核酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用冃的产物大量生成、积累的发酵。
P22、代谢控制发酵的关键:取决于微生物代谢控制机制是否能够被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。
P23、代谢工程的具体思路:P31、改变代谢流:(1)、加速速度限制反应;(2)、改变分支代谢途径的流向;(3)、构建代谢旁路;(4)、改变能量代谢途径。
2、扩展代谢途径和构建新的代谢途径:(1)、引入外源基因,延伸代谢途径;(2)、利用新的底物,构建新的生物合成途径。
第二章代谢控制发酵的基本思想1、微生物细胞的调节机制:P7-9(1)、通过控制基因的酶生物合成的控制机制:①诱导一一促进酶的合成;②阻遏一一抑制酶的合成,包括:1)终产物阻遏,2)分解代谢物阻遏。
(2)、酶活性的控制机制:①终产物抑制或激活,②通过辅酶水平的活性调节,③酶原的活化,④潜在酶的活化。
(3)、通过细胞渗透性的控制:(根据酶在代谢调节屮作用不同分类)①调节酶:变构酶、同功酶、多功能酶。
②静态酶③潜在酶2、脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。
注:处理方法:①使变构酶解聚,②基因突变。
P153、反馈抑制的调节类熨可以分为以下儿种:P18-21图略(1)、单功能途径中酶活性的调节类型:①前体激活,②补偿性激活。
(2)、多功能途径屮酶活性的调节类型:①协作反馈抑制或称多价反馈抑制,②合作反馈抑制,③积累反馈抑制,④顺序反馈抑制,⑤假反馈抑制:指结构类似物的反馈抑制,⑥同功酶4、分解代谢物阻遏:当细胞具有一优先利用的底物(通常是,但并不总是葡萄糖)时,很多英他分解反应途径受到阻遏。
P27(注:根据葡萄糖效应理解)5、突破微牛物的自我调节控制机制,使代谢产物大量积累的有效措施:P31(1)、应用营养缺陷型菌株。
发酵制品学代谢调控发酵机制培训课件
有过量的NH4+ 存在,-酮戊二酸经氧化还原共轭氨基化反应而 生成谷氨酸却不形成蛋白质,从而分泌泄漏于菌体外;
同时,谷氨酸生产菌应不利用体外的谷氨酸,使谷氨酸成为最
终产物。
发酵制品学代谢调控发酵机制
18
从前图还可以看出: 生产菌株还应该具有生物素合成缺陷、油酸合成
缺陷和甘油合成缺陷等特点。
发酵制品学代谢调控发酵机制
发酵制品学代谢调控发酵机制
12
2. 谷氨酸代谢调节机制
①谷氨酸脱氢酶 ②-酮戊二酸脱氢酶 ③磷酸烯醇丙酮酸羧化酶 ④柠檬酸合成酶
NH4+
在黄色短杆菌中谷氨酸、天冬氨酸生物合成的调节机制
发酵制品学代谢调控发酵机制
13
▪ 在微生物的代谢中,Glu比Asp优先合成; 合成过量时则抑制谷氨酸脱氢酶,使代谢转向合成Asp; Asp过量时反馈抑制PEP羧化酶的活力,停止合成草酰乙酸。
发酵制品学代谢调控发酵机制
35
在黄色短杆菌、谷氨酸棒杆菌等微生物中,AK是单一的, 并且受Lys 和 Thr的协同反馈抑制,反馈调节易于解除,使 育种简单化,所以常常被用作氨基酸发酵育种的出发菌株。
黄色短杆菌的AK受Lys和Thr协同反馈情况
发酵制品学代谢调控发酵机制
36
▪ 乳糖发酵短杆 菌中赖氨酸及其 前体物生物合成 的代谢调节
▪ NH4+的导入不仅仅证明Glu是氮素同化发酵,它还会抑制 Glu生成的逆反应,因此当NH4+存在时,葡萄糖的消耗速度 很快, Glu的生成很高;但是当生物素充足时,NH4+几乎 不影响糖代谢。
发酵制品学代谢调控发酵机制
14
• Glu生产菌大多是生物素缺陷型,发酵时控制生物素亚适 量,使细胞变形拉长,改变了细胞膜的通透性引起代谢失 调使Glu得以积累。
代谢控制发酵名词解释
代谢控制发酵名词解释
代谢控制发酵是一种生物工程技术,旨在通过调控微生物的代谢过程,使其能够高效地生产目标化合物。
在传统的发酵过程中,微生物通常在一定的培养基中生长并产生代谢产物。
然而,由于微生物的代谢途径是非常复杂的,导致产物的产量和质量难以得到有效控制。
代谢控制发酵的目标是通过对微生物代谢过程的调控,实现产物的高产和高纯度。
这一技术的核心在于通过对微生物的基因组进行工程改造,调节关键酶的表达水平,从而改变代谢途径,提高目标产物的产量。
在代谢控制发酵中,首先需要对微生物的代谢途径进行深入的研究和了解,包括代谢产物的合成途径、限速酶等。
然后,通过基因工程技术对微生物基因组进行改造,例如通过插入外源基因或删除某些基因,从而改变微生物的代谢途径和产物的合成过程。
此外,还可以通过优化培养条件,如调整pH值、温度和培养基组分等,来进一步提高产物的产量和质量。
代谢控制发酵在生物制药、食品工业和能源生产等领域有着广泛的应用。
通过该技术,可以有效提高目标产物的产量和质量,降低生产成本,减少对环境的影响。
同时,代谢控制发酵也为新型生物材料和生物能源的开发提供了新的途径。
总之,代谢控制发酵是一种利用基因工程技术来调控微生物代谢过程的生物工程方法。
它可以通过改变微生物的基因组,调节代谢途径和培养条件,实现高效生
产目标产物的目标。
这一技术的应用前景广阔,对于提高生产效率、降低成本、保护环境等方面都具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15、抗生素法:有青霉素法和制霉菌素法等素种。青霉素法适用于细菌,青霉素的抑制细菌细胞壁的生物合成,杀死正在繁殖的野生型细菌,但无法杀死正处于休止状态的营养缺陷型细菌。制霉菌素法则适用于真菌,制霉菌素可与真菌细胞膜上的甾醇作用,从而引起膜的损伤,也是只能杀死生长繁殖着的酵母菌或霉菌。在基本培养基中加入抗生素,野生型生长被杀死,营养缺陷型不能再基本培养基中生长而被保留下来得以浓缩。
41、磷酸盐的作用:①提供某些蛋白质、核酸、ADP、ATP所需磷元素;②缓冲作用。
42、复合反应是可逆的,影响复合反应的条件有:①葡萄糖浓度;②淀粉乳浓度(生产中一般采用10~12°Be18~21% 这时糖化液纯度90~92%,复合糖7%左右)③酸度和酸的种类。
43、无机酸的选择和用量:目前国内普遍采用催化效能最高的盐酸进行淀粉水解。
4、代谢控制发酵技术:是指应用动态生物化学的知识和遗传学的理论选育微生物突变株,从DNA分子水平上,控制微生物的代谢途径,进行最合理的代谢,积累大量有用发酵产物的技术。
5、发酵工程技术的发展趋势:①利用基因工程等先进技术,人工选育和改良菌种,实现发酵产品产量和质量的提升;②采用发酵技术进行高等动植物细胞培养,具有诱人的的前景;③随着酶工程的发展,固定化技术被广泛应用;④不断开发和采用大型节能高效的发酵装置,计算机自动控制将成为发酵生产控制的主要手段;⑤发酵法生产单细胞蛋白,将是产量最大、最具广阔前景的产业,寄希望于解决人类未来粮食问题;⑥应用代谢控制技术,发酵生产氨基酸、核苷酸;⑦将生物技术更广泛的用于环境工程。
1、生物材料:包括来自自然界的微生物,基因重组微生物,各种来源的动植物细胞,因此,发酵工程是生物工程的主要基础和支柱。
2、初级代谢产物:是指微生物产生的,生长和繁殖所必须的物质。如蛋白质,核酸等。
3、次级代谢产物:是指微生物产生的,与微生物生长和繁殖无关的一类物质。其生物合成至少有一部分是和与初级代谢产物无关的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关。
28、培养湿度:一般相对湿度在40%~45%时孢子数量最多。
29、培养基pH变化与碳氮比直接有关,比值高于某一值培养基倾向于向酸性转移,低于那一值倾向于向碱性转移。
30、泡沫危害:a、影响微生物对氧的吸收;b、妨碍二氧化碳的排除;c、降低装料系数,影响设备利用率;d、发生跑料,招致染菌。
16、组成型突变株定义:如果调节基因发生突变以致产生无效的阻遏物而不能和操纵基因结合;或操纵基因突变,不能和阻碍物结合从而造成结构基因不受控制的转录,酶的生长将不再需要诱导剂或不再被末端产物分解代谢物阻遏,这样的突变株称为组成型突变株。
17、条件抗性突变的定义:条件致死突变菌指菌株突变后在特定条件下能生长,而在原来条件下不能生长而被致死的突变。如适宜在中温条件下生长的细菌,经过诱变后获得的温度敏感突变株只能在低于37度条件下生成。
48、淀粉老化的影响因素:①直链淀粉易老化,支链淀粉不易老化;②DE值越小越易老化;③碱性条件可以抑制淀粉老化;④高温条件下不易老化,2~4℃极易老化;⑤快速升温或快速降温不易老化;⑥淀粉糊浓度过高易发生老化。
49、检验液化终点的方法是:将碘溶液滴入液化液中,如显棕红色或橙黄色则达到液化终点。
34、生长因子:生长因子是一类对微生物正常代谢必不可少且不能用简单的氮源或氮源自行合成的,需要量一般很少的有机物。狭义的生长因子一般仅指维生素。。广义的生长因子除了维生素外,还包括碱基、卟啉及其衍生物、甾醇、胺类、C4-C6的分枝或直链脂肪酸、以及需要量较大的氨基酸。
35、培养基:根据原料分为天然、合成和半合成培养基。天然培养基的优点是取材方便,营养丰富,种类多样,配置方便,成本低廉;缺点:成分不稳定。常用的有牛肉浸膏、蛋白胨、酵母浸膏、豆芽汁、玉米浆、麸皮水解液、牛奶、血清、胡萝卜汁、椰子汁等。合成培养基的优点是成分精确,重演性高;缺点:价格较贵,配置繁琐。
23、微孔接种法:利用注射器在罐的接种口橡皮膜上注入罐内进行接种。
24、一级种子罐扩大培养:也称二级发酵;二级种子罐扩大培养:也称三级发酵。
25、双种法:用两只种子罐接种一只发酵罐的接种方法。
26、倒种法:从一只发酵罐中倒出适宜的,适量的发酵液给另一发酵罐做种子的方法。
27、培养基:种子罐是培养菌体的,培养基的糖分要少,对微生物生长起主导作用的氮源要多。
13、出发菌株的选择:可选择已经过诱变剂处理的菌株,因为这样的菌株对诱变剂的敏感性会有所提高。
14、诱变剂的剂量选择:诱变剂的剂量与致死率有关,而致死率又与突变率有一定的关系,因此可用致死率作为诱变剂剂量选择依据。一般突变率随诱变剂剂量的增加而提高,但达到一定程度以后,再提高剂量反使突变率下降。
18、溶源性转化:当温和噬菌体感染宿主而使其发生溶源化石因噬菌体的基因整合到宿主的核基因组上,而使后者获得了除免疫性以外的新性状的现象称为溶源性转化。
19、接合:结合是原核微生物的有性繁殖方式。结合的两菌株分属不同的交配型,遗传信息总是从供体转移到受体。当两种不同的交配型的菌株相互识别和结合以后,雄性细胞的致育因子,通过细胞的表面结构传递到雌性细胞,这种致育因子后来称为F因子。结合定义的关键是细胞间的直接接触。细菌在结合的时候,两个细胞直接接触处形成接合管,单链DNA可以直接通过这个通道转移。通常情况下接合转移的是带有接必须基因的质粒,但是少数情况下这种质粒整合到细菌染色体,就可能发生染色体转移,单链转移完毕,供体和受体细胞分别合成互补链,完成接合。
50、淀粉糖化的温度和pH:根据酶的特性,尽量选用较高的温度和较低的pH糖化。
51、辐射灭菌法常用的射线:紫外线、X射线和γ射线、高速电子流的阴极射线。
52、化学药剂灭菌法常用化学药剂:高锰酸钾溶液、漂白粉、过氧乙酸、新洁尔灭和杜灭芬、甲醛、戊二醛、酚类、焦炭酸二乙脂、抗生素、环氧乙烷。
22、载体应具备的特点:a、载体本身是一个单独的复制子,在共价连接了外源DNA后仍能自我复制。b、对某些限制酶只有一个切口,并在酶作用后不影响其自主繁殖能力。c、从细菌核酸中分离纯化很容易。d、在宿主中能以多拷贝的形式存在,有利于插入的外源基因的表达,能在宿主中稳定的遗传。砂土管保藏法:选取过40目筛的黄砂,酸洗,再水洗至中性,烘干备用;过120目筛子的黄土备用;按一份土加4份砂的比例均匀混合后,装入小试管,装量1厘米左右。121摄氏度蒸汽灭菌1~1.5h,间歇灭菌3次。50摄氏度烘干后经检查无误后备用。将待保藏的菌株制成菌悬液或孢子悬液,取0.1ml滴入砂土管中,放线菌和霉菌也可直接刮下孢子与载体混匀,而后真空干燥约2~4h,用火焰熔封管口,置于干燥器中,在室温或4摄氏度冰箱内保藏。
53、过滤除菌是用0.01~0.45μm孔径滤膜对压缩空气、酶溶液、啤酒及其他不耐热化合物溶液除菌。
54、空气过滤除菌的原理:布朗扩散截留作用、惯性截留作用、拦截截留作用、重力沉降作用、静电吸引作用。
46、淀粉葡萄糖苷酶、糖化型淀粉酶、糖化酶:是外切型淀粉酶,从底物非还原性末端依次水解α-1,4糖苷键,也能水解α-1,6糖苷键,但较慢,速度仅是前者的十分之一。水解速度也受底物分子大小的影响,水解聚合度10~20的糊精时速度最快,水解淀粉和低聚糖速度较慢。水解能力随不同微生物来源而异。
47、糊化过程分为三个阶段:预糊化、糊化、溶解。
31、①菌丝结团:危害:影响菌的呼吸和对营养物质的吸收。原因:搅拌效果差,接种量小。②菌丝粘壁:原因:搅拌效果不好,泡沫过多,种子装料系数过小。危害:培养液菌丝浓度减少,可能形成菌丝团。
32、氮源:通常无机氮源和有机氮源联合使用,既保证了营养丰富也保证了可被菌体迅速吸收使用。
33、无机盐类的主要功能:①提供合成细胞结构物质所需元素;②作为酶的组成部分或维持酶的活性;③调节渗透压、PH、的优越性:
a、受接合型和致育型的限制小,两亲株没有供体和受体之分,有利于不同种属微生物的杂交。b、重组频率高于其他杂交方法。c、遗传物质的传递更加充分、完善,既有核配又有质配。d、可以用温度、药物、紫外线等处理纯化的一方或双方,然后使其融合,筛选再生重组子菌落,提高筛选效率。e、用微生物的原生质体进行诱变,可明显提高诱变频率。
39、无机氮源:氨水、氨液、尿素、硝酸盐和铵盐等。
40、前体:有些化合物被加入培养基后,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量,这类小分子物质被称为前体。
前体物质有的是菌体本身能够合成的,如合成青霉素分子所需的缬氨酸和半胱氨酸,合成链霉素的肌醇等。有的是菌体不能合成或合成的很少,需从外界加入的。如合成青霉素V的苯氧乙酸等,因此这些物质就必须是培养基的成分之一。前体的使用浓度要适当,因为许多前体物质浓度大对菌体有毒副作用,一般采用流加的方式,减少一次加入量。
44、活性碳吸附法:①温度一般控制在65摄氏度;②pH控制在5.0以下;③时间25~30分钟为好;④活性碳用量控制在淀粉量的0.6%~0.8%。
45、α-淀粉酶、液化酶、糊精化酶:是内切型淀粉酶,从淀粉分子在内部任意切开α-1,4糖苷键,不能水解α-1,6糖苷键。水解速度受底物分子大小和结构的影响,分子越小越难水解,分枝越多越难水解,离α-1,6糖苷键越近的键越难水解。
36、种子培养基要求:营养相对丰富、完全,并要考虑能够维持稳定的PH,尤其是氮源的含量应该较高即C/N比值低。
37、发酵培养基的氮源:多为淀粉、淀粉水解酶、糖蜜、有机酸、低碳醇、脂质、烃类等。
38、有机氮源:黄豆饼粉、花生饼粉、棉子饼粉、玉米浆、蛋白胨、酵母粉、鱼粉、蚕蛹粉、发酵菌丝体和酒精等。
6、转化:是指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。
7、转导:是指通过病毒将一个宿主的DNA转移到另一个宿主细胞中,而引起的基因重组现象。如果共组DNA与受体DNA发生重组则称此转导过程为流产转导。获得新遗传性状的受体细胞,称转导子。