2020年六年级下册数学思维易错题难题训练及答案

合集下载

2020年六年级下册数学思维易错题难题训练及答案

2020年六年级下册数学思维易错题难题训练及答案

2020年六年级下册数学思维易错题难题训练及答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1实际股价37.436.633.734.236.3(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

2020年六年级下册数学思维易错题难题训练及答案

2020年六年级下册数学思维易错题难题训练及答案


∵ 右边=
= =n2+2n+1=(n+1)2=左边, ∴ 原等式成立.
故答案为 15,
,25,n2;25=10+15,36=15+21.
【分析】(1)由“三角形数”得意义可得规律:第 n 个数为
,把 n=5 代入计算即可
求解;根据“正方形数”的意义可得:第 n 个数为 ,把 n=5 代入计算即可求解; (2)通过计算可知,36 既是三角形数,也是正方形数; (3)由题意可得④25=10+15,⑤36=15+21;
星期 一 二 三 四 五 每股涨跌 +2.4 ﹣0.8 ﹣2.9 +0.5 +2.1 (1)星期四收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价每股多少元?
(3)根据交易规则,老黄买进股票时需付 0.15%的手续费,卖出时需付成交额 0.15%的手 续费和 0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何? 【答案】(1)解:
(4)由(3)中的计算可得:

,,

5. 、 、 三个试管中各盛有 克、 克、 克水.把某种浓度的盐水 克倒入 中,充分混合后从 中取出 克倒入 中,再充分混合后从 中取出 克倒入 中,最 后得到的盐水的浓度是 .问开始倒入试管 中的盐水浓度是百分之几?
【答案】 解:0.5%÷
÷
÷
=0.5%×2×3×4
【答案】 解:
= =
= (天)
答:要用 天才能完成。 【解析】【分析】 首先应确定按每一种顺序去做的时候最后一天由谁来完成。如果按甲、 乙、丙的顺序去做,最后一天由丙完成,那么按乙、丙、甲的顺序和丙、甲、乙的顺序去 做时用的天数将都与按甲、乙、丙的顺序做用的天数相同,这与题意不符;如果按甲、 乙、丙的顺序去做,最后一天由乙完成,那么按乙、丙、甲的顺序去做,最后由甲做了半

六年级下册数学思维提升易错难点训练及答案含答案

六年级下册数学思维提升易错难点训练及答案含答案

最新六年级下册数学思维提升—易错难点训练及答案含答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元x>100. x 元,其中50元的部分按95%收费.设小红在同一商场累计购物后,超出(1)根据题意,填写下表(单位:元):x取何值时,小红在甲、乙两商场的实际花费相同?(2)当100元时,在哪家商场的实际花费少?(3)当小红在同一商场累计购物超过 2.5+278;0.95x;)2710.9x+10;【答案】(1(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

x<150.,解得+2.5x>150,由0.9x+10>0.95x(3)解:由0.9x+10<0.95x +2.5,解得元时,在甲商场的实际花费少.150∴当小红累计购物超过当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物元时,甲、乙商场花费一样150【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】)根据提供的方案列出代数式;(1的方程,解方程即可;)中的代数式利用费用相同可得关于x2)根据(1(.的范围,可选择商场3()列不等式得出x3=2×1+3=5 ⊕,如1b和,规定a⊕b=2a+b.2用“⊕”定义一种新运算:对于有理数a2(﹣)的值;1)求2⊕(的值.=a+4,求)(﹣3]⊕a ((2)若[)⊕=22)(﹣【答案】(1)解:原式=2×2+)解:根据题意可知:(2,]+ ))a+1+(﹣3 =a+4(2[,=a+4+ )2﹣a(2.),(a+44(a﹣2)+1=2,﹣8+1=2a+84a,2a=15.a=)根据题目中定义的新运算,)根据定义的新运算,进行计算。

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.【答案】(1)解:原式=2×2+(﹣2)=2(2)解:根据题意可知:2[(a+1)+(﹣3)]+ =a+4,2(a﹣2)+ =a+4,4(a﹣2)+1=2(a+4),4a﹣8+1=2a+8,2a=15,a= .【解析】【分析】(1)根据定义的新运算,进行计算。

(2)根据题目中定义的新运算,写出算式,计算出a的值3.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。

【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案一、培优题易错题件连衣裙的件连衣裙,针对不同的顾客,30.某儿童服装店老板以32元的价格买进301元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果售价不完全相同,若以45如下表:534756售出件数21售价(元)0+2﹣+2﹣+130件连衣裙后,赚了多少钱?请问,该服装店售完这件连衣裙后,赚的钱数为:解:由题意可得,该服装店在售完这30【答案】]-2)-1)+5×((45-32)×30+[7×2+6×2+3×1+5×0+4×(]-10)-4)+(=13×30+[14+12+3+(=390+15(元),=405405元即该服装店在售完这30件连衣裙后,赚了【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买.30件,求出差价,计算即可进3=2×1+3=5 ⊕b=2a+b,如1a和b,规定a⊕定义一种新运算:对于有理数2.用“⊕”)的值;⊕(﹣2(1)求2的值.,求a)]⊕=a+4(﹣(2)若[()⊕3=2)(﹣2【答案】(1)解:原式=2×2+)解:根据题意可知:2(,]+ =a+43)+(﹣)2[(a+1,+ =a+4a﹣2)2(),(a+42)+1=24(a﹣,﹣8+1=2a+84a,2a=15.a=【解析】【分析】(1)根据定义的新运算,进行计算。

(2)根据题目中定义的新运算,的值a写出算式,计算出3.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神222222,因此4,===.如:数秘”42-0 ,124-2 ,206-412,20这三个数都是神秘数.? 为什么这两个数是神秘数吗?1)28和2012((2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数? 为什么的倍数吗?是4? 为什么是神秘数吗?)两个连续奇数的平方差(取正数)(3222222,=6 28=4×7-2-4 ,20)解:找规律:【答案】(14=4×1=2=-04×5 ,12=4×3=42222都是神秘数和2012 =504所以-50228 =8-6,,…,2012=4×503 2 2的倍数4,因此由这两个连续偶数构造的神秘数是=(2)解:(2k+2)4(2k +1)-(2 k)(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍2-(2n-(2 n +1)和2 n -1,则数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1 2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘1)数.2222,504得到-50228=4×7=828-6,2012=4×503=)根据规律得到【解析】【分析】(1这两个数是神秘数;2012和 2 2=(2k+2+2k)(2k+2-2k2)由(2k+2))=4(2k -(2k)+1),因此由这两个连续偶数构造的神秘(的倍数;数是4(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西)行驶为负,一天中七次行驶纪录如下。

2020年六年级下册数学思维提升—易错难点训练及答案

2020年六年级下册数学思维提升—易错难点训练及答案

(2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的
过程中能否相遇。 若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】(1)解:设男生有 x 人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,
则女生 x+70=210+70=280(人).
(4)由(3)中的计算可得:

,,客作品模型中需要用到一种花瓣图案(如下图),花瓣图 案的各个小圆半径都是 1cm。明明打算从一块长 10cm,宽 8cm 的长方形纸板上剪花瓣图 案。(注:花瓣图案不能使用胶水、胶带等剪拼)
(1)这块长方形纸板的面积是多大? (2)这个花瓣图案的面积是多大?(π 取 3.14) (3)明明还能从这块长方形纸板的剩余部分再剪出 1 个花瓣图案吗?如果能,如何剪?请 你画一画、写一写;如果不能,请说明理由。 【答案】 (1)10×8=80(平方厘米) 答:这块长方形纸板的面积是 80 平方厘米。 (2)如图:
【答案】 解:假设一开始 桶中有液体 升, 桶中有 升.第一次将 桶的液体倒入
桶后, 桶有液体 升, 桶剩
升;第二次将 桶的液体倒入 桶后, 桶有液
体 桶有液体 等,得
升,
桶剩 升,

桶剩 ,
升;第三次将 桶的液体倒入 桶后, 升.由此时两桶的液体体积相

现在还不知道 桶中装的是牛奶还是水,可以将稀释牛奶的过程列成下表:
2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年 宫在学校东 300m 处. 商场在学校西 200m 处,医院在学校东 500m 处.若将马路近似地看 做一条直线,以学校为原点,向东方向为正方向,用 1 个单位长度表示 100m.

六年级下册数学思维易错题难题训练及答案.docx

六年级下册数学思维易错题难题训练及答案.docx

六年级下册数学思维易错题难题训练及答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=23+4,7△2=7 8, 3△5=34+5 6+7,⋯;按此,算:(1) 10△ 3=________.(2)若 x△7=2003 , x=________.【答案】(1) 11(2) 2000【解析】【解答】( 1) 10△ 3=10-11+12=11;( 2)∵ x△ 7=2003,∴x-(x+1) +( x+2) -( x+3) +(x+4) -(x+5) +( x+6) =2003,解得x=2000.【分析】( 1)首先弄清楚定新运算的算法,从目中出的例子来看,第一个数表示从整数几开始,后面的数表示几个整数相加减,根据的运算,即可由10△ 3 列出算式,再根据有理数加减法法,即可算出答案;(2)根据定新运算的算方法,由x△ 7=2003 ,列出方程,求解即可。

2 .察下列一形:它是按照一定律排列的,依照此律,第个形中共有________个“★ ”.【答案】(3n+1)【解析】【解答】解:① 4 个★,② 7 个★,③ 10 个★,④ 13 个★,通察,可得第 n 个形( 3n+ 1)个★ .故答案:( 3n+ 1)【分析】察形,先写出①②③④的★的个数,通找律,写出第 n 个形中的★个数。

3.某儿童服装店老板以 32 元的价格 30 件衣裙,不同的客, 30 件衣裙的售价不完全相同,若以45 元准,将超的数正,不足的数,果如下表:售出件数763 5 45售价(元)+2 +2 +1 0 12,服装店售完30 件衣裙后,了多少?【答案】解:由意可得,服装店在售完30 件衣裙后,的数:(45-32 )×30+[7 ×2+6×2+3×1+5×(0+4-1×) +5×( -2) ]=13 × 30+[14+12+3+( -4) +( -10) ]=390+15=405(元),即该服装店在售完这30 件连衣裙后,赚了405 元45 元为标准32 元的价格买【解析】【分析】根据表格计算售出件数与售价积的和,再以进 30 件,求出差价,计算即可.4.股民老黄上星期五买进某股票1000 股,每股35 元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌 +2.4 ﹣0.8 ﹣ 2.9 +0.5 +2.1(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和 0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:星期一二三四五每股涨跌+2.4﹣ 0.8﹣ 2.9+0.5+2.1实际股价37.436.633.734.236.3星期四收盘时,每股是34.2 元(2)解:本周内最高价是每股37.4 元,最低价每股33.7 元(3)解:买入总金额 =1000×35=35000 元;买入手续费 =35000×0.15%=52.5元;卖出总金额 =1000×36.3=36300元;卖出手续费 =36300×0.15%=54.45元;卖出交易税 =36300×0.1%=36.3元;收益 =36300﹣( 35000+52.5+54.45+36.3 ) =1156.75 元【解析】【分析】( 1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.【答案】(1)解:原式=2×2+(﹣2)=2(2)解:根据题意可知:2[(a+1)+(﹣3)]+ =a+4,2(a﹣2)+ =a+4,4(a﹣2)+1=2(a+4),4a﹣8+1=2a+8,2a=15,a= .【解析】【分析】(1)根据定义的新运算,进行计算。

(2)根据题目中定义的新运算,写出算式,计算出a的值3.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

2020年六年级下册数学思维易错题难题训练及答案

2020年六年级下册数学思维易错题难题训练及答案

2020年六年级下册数学思维易错题难题训练及答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。

2020年六年级下册数学思维提升—易错难点训练及答案

2020年六年级下册数学思维提升—易错难点训练及答案

2020 年六年级下册数学思想提高—易错难点训练及答案一、培优题易错题1.如,用同样的小正方形依据某种律行放,第________,第n( n 正整数)个形中小正方形的个数是6 个形中小正方形的个数是________(用含n 的代数式表示).【答案】 55;( n+1)2+n【分析】【解答】第 1 个形共有小正方形的个数2×2+1;第 2 个形共有小正方形的个数 3×3+2;第 3 个形共有小正方形的个数4×4+3;⋯;第 n 个形共有小正方形的个数(n+1)2+n,因此第 6 个形共有小正方形的个数:7×7+6=55.故答案: 55;( n+1)2+n【剖析】察形律,第 1 个形共有小正方形的个数2×2+1;第 2 个形共有小正方形的个数 3×3+2;第 n 个形共有小正方形的个数(n+1)2+n,找出一般律 .2.甲、乙两商以同的价钱销售同的商品,并且又各自推出不一样的惠方案:在甲商累物超100 元后,高出100 元的部分按90%收;在乙商累物超后,高出 50 元的部分按95%收.小在同一商累物x 元,此中x>100.(1)根据意,填写下表(位:元50 元):(2)当 x 取何,小在甲、乙两商的花同样?(3)当小在同一商累物超100 元,在哪家商的花少?【答案】(1) 271; 0.9x+ 10; 278; 0.95x+ 2.5(2)解:依据意,有 0.9x+ 10 = 0.95x+ 2.5,解得 x= 150 ,∴当 x= 150 ,小在甲、乙两商的花同样。

(3)解:由 0.9x+ 10<0.95x+ 2.5,解得 x>150,由 0.9x+ 10>0.95x+2.5,解得 x<150.∴当小累物超150 元,在甲商的花少.当小累物超100 元而不到150 元,在乙商的花少.当小累物150元,甲、乙商花一【分析】【解答】解: (1)在甲商: 271, 0.9x+ 10;在乙商: 278,0.95x+ 2.5.【剖析】(1)依据供给的方案列出代数式;x 的方程,解方程即可;(2)依据( 1)中的代数式利用用同样可得对于(3)列不等式得出x 的范,可商.3.如,梯的每个台上都着一个数,从下到上的第1 个至第 4 个台上挨次着-5, -2, 1, 9,且随意相四个台上数的和都相等.(1)求前 4 个台上数的和是多少?(2)求第 5 个台上的数是多少?(3)用求从下到上前31 个台上数的和.用含 k( k 正整数)的式子表示出数“1所”在的台数.【答案】(1)解:由意得前 4 个台上数的和是-5-2+1+9=3(2)解:由意得 -2+1+9+x=3,解得: x=-5,第 5 个台上的数 x 是-5(3)解:用:由意知台上的数字是每 4 个一循,∵31 ÷ 4=7 ,⋯3∴7× 3+1-2-5=15,即从下到上前31 个台上数的和15;:数“1所”在的台数4k-1【分析】【剖析】( 1 )由台上的数求出台上数的和即可;(2)依据意和(1)的,求出第 5 个台上的数x 的;( 3)依据意知台上的数字是每 4 个一循,获取从下到上前31 个台上数的和,获取数“1所”在的台数4k-1.4.已知 x、y 有理数,定一种新运算“※ ”,足x※ y=xy+1.(1)求 3※ 4 的;(2)求( 2※4)※(﹣ 3)的值;(3)探究 a※( b﹣ c)与( a※ c)的关系,并用等式表示它们.【答案】(1)解: 3※4=3×4+1=13(2)解:( 2※ 4)※(﹣ 3) =(2×4+1)※(﹣ 3) =9※(﹣ 3) =9×(﹣ 3) +1=﹣ 26(3)解:∵ a※( b﹣ c) =a?( b﹣ c) +1=ab﹣ ac+1=ab+1﹣ ac﹣ 1+1,a※ c=ac+1.∴a※(b ﹣ c) =a※ b﹣ a※c+1【分析】【剖析】依据新运算的规律,求出计算式的值,求出探究的式子之间的关系.5.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600 千克,乙容器中装有浓度为的硫酸溶液400 千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度同样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸: 400×40%=160(千克),混淆后浓度:(48+160 )÷( 600+400)=20.8%,应互换溶液的量:600 ×( 20.8%-8%)÷( 40%-85)=600 × 0.128 ÷ 0.32=240(千克)答:各取 240 千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度同样。

2020年六年级下册数学思维提升—易错难点训练及答案

2020年六年级下册数学思维提升—易错难点训练及答案

【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果; (4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.
4.列方程解应用题:
(1)一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16 个,现共有橙子、梨 400 个,而且装梨的箱子是装橙子箱子的 2 倍.请算一下,装橙子和装梨的箱子各多少个? (2)一群小孩分一堆苹果,每人 3 个多 7 个,每人 4 个少 3 个,求有几个小孩?几个苹 果? (3)一架飞机在两城之间飞行,风速为 24 千米/时.顺风飞行需要 2 小时 50 分,逆风飞 行需要 3 小时,求无风时飞机的速度和两城之间的航程. 【答案】(1)解:设装橙子的箱子 x 个,则装梨的箱子 2x 个,依题意有 18x+16×2x=400, 解得 x=8, 2x=2×8=16. 答:装橙子的箱子 8 个,则装梨的箱子 16 个
③余下的 由甲独做需要多少小时? (小时),
④共用了多少小时? (小时)。
答:共用了 小时。 【解析】【分析】在工程问题中,转换条件是常用手法.本题中,甲做 1 小时,乙做 1 小 时,相当于他们合作 1 小时,也就是每 2 小时,相当于两人合做 1 小时。这样先算一下一 共进行了多少个这样的 2 小时,余下部分问题就好解决了。
甲的工作效率:

合做:
(天)。
答:如果甲、乙合作, 天可以完成。 【解析】【分析】 如图:
从图中可以直观地看出:甲 15 天的工作量和乙 12 天的工作量相等,即甲 5 天的工作量等 于乙 4 天的工作量。于是可用“乙工作 4 天”等量替换题中“甲工作 5 天”这一条件。这样这 项工程就相当于乙独做需要(20+4)天。用乙的工作效率乘 4 再除以 5 即可求出甲的工作 效率,用总工作量除以工作效率和即可求出合作完成的天数。

六年级下册数学思维易错题难题训练及答案

六年级下册数学思维易错题难题训练及答案

∴不大于 200 的智慧数共有: 50 × 3+1=15.1
故答案为: 151.
【分析】根据题意先找到智慧数的分布规律,由平方差公式
(a+b)(a-b)=a2-b2 , 因为 2n+1=
(n+1) 2-n2 , 所以所有的奇数都是智慧数,所有 4 的倍数也都是智慧数,而被 4 除余 2
的偶数,都不是智慧数;由此可知,最小的智慧数是
0,第 2 个智慧数是 1,其次为 3,
4,得到从 0 开始第 7 个智慧数是 8.
2.列方程解应用题:
(1)一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16 个,现共有橙子、梨 400 个,而且装梨的箱子是装橙子箱子的 2 倍.请算一下,装橙子和装梨的箱子各多少个? (2)一群小孩分一堆苹果,每人 3 个多 7 个,每人 4 个少 3 个,求有几个小孩?几个苹 果? (3)一架飞机在两城之间飞行,风速为 24 千米 / 时.顺风飞行需要 2 小时 50 分,逆风飞 行需要 3 小时,求无风时飞机的速度和两城之间的航程. 【答案】 (1)解:设装橙子的箱子 x 个,则装梨的箱子 2x 个,依题意有 18x+16 × 2x=40,0 解得 x=8, 2x=2 × 8=1.6 答:装橙子的箱子 8 个,则装梨的箱子 16 个
【答案】 (1)解: ∵14-9-18-7+13-6+10-5=-8 ,∴ B 在 A 正西方向,离 A 有 8 千米
(2)解: ∵ |14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82
千米,
∴82 × 0.5-29=1升2 . ∴途中要补油 12 升 【解析】 【分析】( 1)根据题意得到 B 地在 A 地 14-9-18-7+13-6+10-5=-8 处,即正西方 向,离 A 有 8 千米;( 2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得

六年级下册数学思维提升—易错难点训练及答案含答案

六年级下册数学思维提升—易错难点训练及答案含答案

六年级下册数学思维提升—易错难点训练及答案含答案一、培优题易错题1.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额. 2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案

六年级下册数学思维易错题难题训练及答案含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.3.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.4.学校举行“创客节”,明明的创客作品模型中需要用到一种花瓣图案(如下图),花瓣图案的各个小圆半径都是1cm。

2020年六年级下册数学思维提升—易错难点训练及答案

2020年六年级下册数学思维提升—易错难点训练及答案

2020年六年级下册数学思维提升—易错难点训练及答案一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.5.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。

六年级下册数学思维易错题难题训练及答案含答案

六年级下册数学思维易错题难题训练及答案含答案

六年级下册数学思维易错题难题训练及答案含答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

3.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.4.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

2020年六年级下册数学思维易错训练及答案

2020年六年级下册数学思维易错训练及答案

2020年六年级下册数学思维易错训练及答案一、培优题易错题1.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.2.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.3.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.4.、、三个试管中各盛有克、克、克水.把某种浓度的盐水克倒入中,充分混合后从中取出克倒入中,再充分混合后从中取出克倒入中,最后得到的盐水的浓度是.问开始倒入试管中的盐水浓度是百分之几?【答案】解:0.5%÷÷÷=0.5%×2×3×4=12%答:一开始倒入A中盐水的浓度是12%。

最新六年级下册数学思维易错题难题训练及答案含答案

最新六年级下册数学思维易错题难题训练及答案含答案

最新六年级下册数学思维易错题难题训练及答案含答案一、培优题易错题1.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.3.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.4.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.5.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.6.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年六年级下册数学思维易错题难题训练及答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.5.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.6.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。

【解析】【分析】由于交换前后两容器中溶液的重量均没有改变,而交换一定量的硫酸溶液其目的是将原来两容器中溶液的浓度由不同变为相同,而且交换前后两容器内溶液的重量之和也没有改变,根据这个条件可以先计算出两容器中的溶液浓度达到相等时的数值,从而再计算出应交换的溶液的量。

7.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?【答案】解:设原来有酒精溶液x千克。

30%x+1.5=40%x0.1x=1.5x=15设再加入y千克酒精,溶液浓度变为50%。

10+0.5y=6+yy=8答:再加入8千克酒精,溶液浓度变为50%。

【解析】【分析】本题可以用两次方程作答,首先求出原来有酒精溶液的质量,即,由此可以解得原来有酒精溶液的质量,然后设再加入y千克酒精,溶液浓度变为50%,即,即可解得再加入酒精的质量。

8.甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用天.已知甲单独完成这件工作需天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?【答案】解:甲的工作效率:1÷10.75=,乙的工作效率:,丙的工作效率:,(天)。

答:完成工作需要天。

【解析】【分析】以甲、乙、丙各工作一天为一个周期,即3天一个周期。

容易知道,第一种情况下一定不是完整周期内完成,但是在本题中,有两种可能,第一种可能是完整周期天,第二种可能是完整周期天。

如果是第一种可能,有,得。

然而此时甲、乙、丙的效率和为,经过4个周期后完成,还剩下,而甲每天完成,所以剩下的不可能由甲1天完成,即所得到的结果与假设不符,所以假设不成立。

第二种可能:完整周期不完整周期完成总工程量第一种情况n个周期甲1天,乙1天“1”第二种情况n个周期乙1天,丙1天,甲天“1”第三种情况n个周期丙1天,甲1天,乙天“1”可得,所以,。

因为甲单独做需天,所以工作效率为,于是乙的工作效率为,丙的工作效率为。

于是,一个周期内他们完成的工程量为。

则需个完整周期,剩下的工程量;正好甲、乙各一天完成.所以第二种可能是符合题意的。

这样用总工作量除以三人的工作效率和即可求出合作完成的时间。

9.甲、乙两人同时加工同样多的零件,甲每小时加工40个,当甲完成任务的时,乙完成了任务的还差40个.这时乙开始提高工作效率,又用了小时完成了全部加工任务.这时甲还剩下20个零件没完成.求乙提高工效后每小时加工零件多少个?【答案】解:40+(40+20)÷7.5=40+60÷7.5=40+8=48(个)答:乙提高工效后每小时加工48个零件。

【解析】【分析】当甲完成任务的时,乙完成了任务的还差40个,这时乙比甲少完成40个;当乙完成全部任务时,甲还剩下20个零件没完成,这时乙比甲多完成20个;所以在后来的7.5小时内,乙比甲多完成了(40+20)个,那么乙比甲每小时多完成(40+20)÷7.5个,然后求出乙提高工效后每小时完成的个数即可。

10.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降,二队的工作效率要下降.结果两队同时完成工作,问工作时间内下了多少天雨?【答案】解:原来一队比二队的工作效率高:,提高后的工作效率二队比一队高:==,则3个晴天5个雨天,两队的工作进度相同,共完成:,5÷=10(天)答:工作时间内下了10天雨。

【解析】【分析】先表示出原来两队的工作效率,然后计算出工作效率下降后两人的工作效率,写出前后工作效率差的比,化简后确定3个晴天和5个雨天的工作进度是相同的,然后计算出3个雨天与5个晴天完成的工作量,再求出下雨的天数即可。

相关文档
最新文档