《仪器分析》教案7红外吸收光谱法
(完整版)红外吸收光谱法教案
![(完整版)红外吸收光谱法教案](https://img.taocdn.com/s3/m/6b13385d0975f46526d3e13d.png)
第六章红外吸收光谱法
基本要点:
1.红外光谱分析基本原理;
2.红外光谱与有机化合物结构;
3.各类化合物的特征基团频率;
4.红外光谱的应用;
5.红外光谱仪.
学时安排:3学时
第一节概述
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
一、红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个
1。
第二章魏培海仪器分析红外吸收光谱法
![第二章魏培海仪器分析红外吸收光谱法](https://img.taocdn.com/s3/m/41205757ec3a87c24128c405.png)
1304 k130405 .9 .1 72984cm 1
(实测值为2886cm-1)
讨论
➢力常数越大,折合质量越小,化学键的 振动频率(波数)越高。
➢C-C、C=C、C≡C三种碳-碳键的折合原 子量相同,而键力常数依次为单键<双 键<叁键,所以波数也依次增大。
➢C-C、C-H、 O-H都属于单键,键力常数 相 因近此,O-而H键折的合振原动子频量率O最-H<大。C-H<C-C ,
简单振动的类型
2.振动的理论数
N原子分子在红外光谱图上可以出现一个以上 的基频吸收峰,理论上,吸收峰的数目等于分子 的振动的数目(振动自由度)。
非线性分子: 振动自由 3N度 6
线性分子: 振动自由 3N度5
【例题2-2】 试计算CO2的振动自由度,分 析其振动类型。
解:CO2是由3个原子构成的线性分子,因此, 其振动自由度为: 3N54
二、多原子分子的振动
1.振动的基本形式 双原子分子只有简单的伸缩振动; 多原子分子的振动分解成许多简单的 基本振动。
(1)伸缩振动
只有键长发生变化而键角不变的振动 称。伸缩振动分为对称伸缩和反对称伸缩 振动。
水分子的伸缩振动。其中(a)为对称伸缩振动 (3652cm-1);(b)为反对称伸缩振动(3756cm-1)
1.基团频率区(4000~1300cm-1)
(1)X—H伸缩振动区 (4000 ~2500cm-1); (2)三键和累积双键伸缩振动区(2500~
1900cm-1); (3)双键伸缩振动区(1900~1200 cm-1)。
X-H伸缩振动区:4000-2500cm-1
叁键及累积双键区(2500~1900cm-1)
仪器分析 第四章--红外吸收光谱法
![仪器分析 第四章--红外吸收光谱法](https://img.taocdn.com/s3/m/249fed6ff5335a8102d220bf.png)
章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。
三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。
非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动
仪器分析-第7章红外吸收光谱法
![仪器分析-第7章红外吸收光谱法](https://img.taocdn.com/s3/m/bc11a33f81c758f5f71f679c.png)
红外吸收谱带的波数位置、波峰的数目 及其强度,反映了分子结构上的特点, 可以用来鉴定未知物的分子结构组成或 确定其化学基团;而吸收谱带的吸收强 度与分子组成或其化学基团的含量有关, 可用作进行定量分析和纯度鉴定.
4 仪器分析-第7章红外吸收光谱法
红外光谱分析对气体、液体、固体样品都 可测定,具有用量少、分析速度快、不破 坏试样等 特点,使红外光谱法成为现代分 析化学和结构化学的不可缺少的工具.但 对于复杂化合物的 结构测定,还需配合紫 外光谱、质谱、核磁共振波谱等其他方法, 才能得到满意的结果.
7 仪器分析-第7章红外吸收光谱法
7-1 基本原理
一、产生红光谱的条件 二、分子的振动类型 三、双原子分子振动的机械模型
四、分子振动方式与振动数
五、振动耦合 六、吸收谱带的强度
8 仪器分析-第7章红外吸收光谱法
一、产生红光谱的条件
1 辐射光子具有的能量与发生振动跃迁 所需的跃迁能量相等 .
22 仪器分析-第7章红外吸收光谱法
CO2分子
O
C
O 对称伸缩,无红外活性
O C O 非对称伸缩, 2330 cm-1
O
_
C
+
O
_
面外弯曲
O
C
O
面内弯曲
667 cm-1
23 仪器分析-第7章红外吸收光谱法
②可能有某些振动的频率(或能量)相 同,故这些振动产生的吸收峰重叠,称 这些振动是简并的.
C—X C—F 1400~1000 cm-1
C—Br 700~500 cm-1
C—Cl 800~600 cm-1
C—I 610~485 cm-1
39 仪器分析-第7章红外吸收光谱法
《红外吸收光谱》教案
![《红外吸收光谱》教案](https://img.taocdn.com/s3/m/d0f476e60129bd64783e0912a216147917117e3b.png)
《红外吸收光谱》教案教案:红外吸收光谱一、教学目标1.了解红外吸收光谱的基本概念和原理。
2.掌握红外吸收光谱的测定方法与数据解读。
3.培养学生分析问题和解决问题的能力。
4.增强学生的实验操作能力和科学思维能力。
二、教学重点与难点1.红外吸收光谱的基本概念和原理。
2.测定红外吸收光谱的方法和数据解读。
三、教学内容1.红外吸收光谱的基本概念和原理(1)红外光谱的定义和分类(2)红外光谱仪的组成和工作原理2.红外吸收光谱的测定方法与数据解读(1)红外光谱仪的操作步骤(2)红外吸收峰的解析和判断(3)红外吸收光谱的应用案例四、教学方法1.讲授法:通过课堂讲解介绍红外吸收光谱的基本概念、仪器构造和工作原理。
2.实验操作法:组织学生进行红外吸收光谱的测定实验,并进行数据解读。
3.讨论法:引导学生结合案例,共同分析红外吸收光谱的应用。
五、教学过程1.导入(5分钟)通过展示一些物质的红外吸收图谱和应用案例,引起学生的兴趣和好奇心。
2.讲解红外吸收光谱的基本概念和原理(20分钟)(1)红外光谱的定义和分类:解释红外光谱的概念,介绍近红外、中红外和远红外的区别与应用。
(2)红外光谱仪的组成和工作原理:介绍红外光谱仪的主要部件和工作原理,包括光源、样品室、光谱仪和检测器。
3.实验操作:红外吸收光谱的测定方法与数据解读(40分钟)(1)红外光谱仪的操作步骤:分组进行实验操作,按照红外光谱测定的步骤进行样品的制备和测定。
(2)红外吸收峰的解析和判断:对测得的红外吸收图谱进行解析,根据吸收峰的位置和形状判断样品的特性和结构。
(3)红外吸收光谱的应用案例:通过展示一些实际应用案例,引导学生综合运用红外吸收光谱的知识进行分析和解决问题。
4.讨论与总结(10分钟)组织学生分组进行讨论,总结红外吸收光谱的应用,以及实验中遇到的问题和解决方法。
六、教学评价根据学生的理解程度和实验操作能力,进行个别评价,以及总结讨论的结果和问题解决方法。
《仪器分析》第五章 红外吸收光谱法
![《仪器分析》第五章 红外吸收光谱法](https://img.taocdn.com/s3/m/6f3dcbfc10661ed9ad51f3db.png)
苯衍生物的红外光谱图
2)指纹区(可分为两个区)
单、双键伸缩振动 1800-900 C-O(1300-1000)
(不含氢)
C-(N、F、P),P-O,Si-O
面内外弯曲振动 900-650 用于顺反式结构、 取代类型的确定
在红外分析中,通常一个基团有多个振动形式,同时 产生相互佐证。通过一系列的峰才能准确确定一个基团 的存在。
低频)。如羧酸酐分裂为C=O( as1820、 s1760cm-1)
不同浓度的乙醇CCl4溶液IR光谱
4)费米共振
当一振动的倍频与另一振动的基频接近(2A=B)时,二
者相互作用而产生强吸收峰或发生裂分的现象。
COCl
Ar-C()=880-860cm-1 C=O(as)=1774cm-1
1773cm-1 1736cm-1
孤对电子与多重键相连产生的p- 共
轭,结果类似于共轭效应。 当诱导与共轭两种效应同时存在时,
振动频率的位移和程度取决于它们的净 效应。
2)氢键效应(X-H)
形成氢键使电子云密度平均化(缔合态),使体系能量下
降,基团伸缩振动频率降低,其强度增加但峰形变宽。
如羧酸 RCOOH(C=O=1760cm-1 ,O-H=3550cm-1); (RCOOH)2(C=O=1700cm-1 ,O-H=3250-2500cm-1)
2)多原子分子 多原子分子的振动更为复杂(原子多、化学键多、空间结构复
杂),但可将其分解为多个简正振动来研究。 简正振动
整个分子质心不变、整体不转动、各原子在原地作简谐振动且 频率及位相相同。此时分子中的任何振动可视为所有上述简谐振 动的线性组合。 简正振动基本形式 伸缩振动:原子沿键轴方向伸缩,键长变化但键角不变的振动。 变形振动:基团键角发生周期性变化,但键长不变的振动。又称
红外吸收光谱法教案
![红外吸收光谱法教案](https://img.taocdn.com/s3/m/1582b05d6c175f0e7cd1375e.png)
第六章红外吸收光谱法基本要点:1.红外光谱分析基本原理;2.红外光谱与有机化合物结构;3.各类化合物的特征基团频率;4.红外光谱的应用;5.红外光谱仪.学时安排:3学时第一节概述分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
一、红外光区的划分红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000µm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5µm),中红外光区(2.5 ~ 25µm ),远红外光区(25 ~ 1000µm)。
近红外光区(0.75 ~ 2.5µm)近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。
该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。
中红外光区(2.5 ~ 25µm)绝大多数有机化合物和无机离子的基频吸收带出现在该光区。
由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。
同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。
通常,中红外光谱法又简称为红外光谱法。
远红外光区(25 ~1000µm)该区的吸收带主要是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。
仪器分析第十三章红外吸收光谱法
![仪器分析第十三章红外吸收光谱法](https://img.taocdn.com/s3/m/e664368fcc22bcd126ff0c8b.png)
振动形式:伸缩( ):对称 对称( 振动形式:伸缩( ν ):对称(νs) 不对称( 不对称( νas ) 弯曲:面内弯曲( 简动( 弯曲:面内弯曲(β):简动(δ) 摇摆(ρ) 摇摆( 面外弯曲( 面外弯曲(γ):摇摆(ω) 摇摆( 扭曲( 扭曲( τ) 变形:对称( 变形:对称( δs ) 不对称( 不对称( δas )
Hale Waihona Puke 基频峰和泛频峰基频峰 振动能级由基态( 振动能级由基态(V=0)跃迁至第一激发 所产生的吸收峰。 态(V=1)所产生的吸收峰。νL=ν,强 度一般比较大,容易识别。 度一般比较大,容易识别。 泛频峰 倍频峰、合频峰、差频峰等。强度较弱, 倍频峰、合频峰、差频峰等。强度较弱, 可能观察不到。 可能观察不到。
O R-C-R' O R-C-OR' O R-C-Cl O R-C-F
1715cm-1 1735cm-1
1800cm-1 1870cm-1
影响峰位的因素
1.分子内部结构因素 (1)电子效应 共轭效应(conjugative effect, +C, +M): 使吸收峰向低频方向移动
O R-C-R'
O R-C
红外光谱区划
区域 近红外区 中红外区 远红外区 波长 波数 -1) 能级跃迁类型 λ( m ) σ(cm 0.76~2.5 2.5~50 50~500 13158~4000 倍频吸收区 4000~200 振动 伴转动 振动,伴转动 200~20 转动
苯酰胺的红外光谱
红外光谱与紫外光谱的区别
红外光谱 起源 应用 范围 特征性 紫外光谱
教学目标
熟悉红外光谱的基本原理与应用。
了解红外分光光度计的主要部件和制 样方法。 了解几类化合物红外光谱的主要特征 及光谱解析的一般步骤。
第三章 红外吸收光谱法
![第三章 红外吸收光谱法](https://img.taocdn.com/s3/m/35a69302763231126edb1177.png)
因此,并非所有的振动都会产 生红外吸收,只有发生偶极矩变化 (△≠0)的振动才能引起可观测 的红外吸收光谱,该分子称之为红 外活性的; △=0的分子振动不能 产生红外振动吸收,称为非红外活 性的。
当一定频率的红外光照射分 子时,如果分子中某个基团的振 动频率和它一致,二者就会产生 共振,此时光的能量通过分子偶 极矩的变化而传递给分子,这个 基团就吸收一定频率的红外光, 产生振动跃迁。
2 辐射与物质间有相互偶合作用,为了满足这个 条件,分子振动时其偶极炬必须发生变化(保证 红外光的能量能传递给分子)。
分子由于构成它的各原子的电负性的不同, 也显示不同的极性,称为偶极子。通常用分子的 偶极矩()来描述分子极性的大小。
分子的偶极距是分子中正、负电荷中心的距离 (r)与正、负电荷中心所带电荷(δ)的乘积, 它是分子极性大小的一种表示方法。
第一节 红外光谱法基本原理
一、概述
1. 红外光谱
红外光谱是是一种分子 光谱,是分子中基团的 振动和转动能级跃迁产 生的吸收光谱。也称分 子的振动光谱或振转光 谱。
E1 υ
υ υ
2
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
J J J
1
0
J
E0
分子振动吸收光谱
分子转动吸收光谱
但由于在分子的振动跃迁过程中也常常伴随转动跃迁, 使振动光谱呈带状。所以分子的红外光谱属带状光谱。
种。
但对于直线型分子,若贯
穿所有原子的轴是在x方向,
则整个分子只能绕y、z轴转
动,因此,直线性分子的振
动形式为(3n-5)种。
例如:三个原子的非线性分子H2O,有3个振动自由度。
红外光谱图中对应出现三个吸收峰, 3650cm-1,1595cm-1,3750cm-1。
仪器分析电子教案(全)
![仪器分析电子教案(全)](https://img.taocdn.com/s3/m/fb8dd443640e52ea551810a6f524ccbff021ca7a.png)
仪器分析电子教案(一)一、教学目标1. 了解仪器分析的基本概念和分类2. 掌握常见仪器分析方法的基本原理及应用3. 培养学生的实验技能和分析问题的能力二、教学内容1. 仪器分析的基本概念1.1 仪器分析的定义1.2 仪器分析的特点2. 仪器分析的分类2.1 光学分析法2.2 电化学分析法2.3 色谱分析法2.4 质谱分析法2.5 其他分析法三、教学重点与难点1. 教学重点:1. 仪器分析的基本概念2. 常见仪器分析方法的基本原理及应用2. 教学难点:1. 各种仪器分析方法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解基本概念、原理及方法2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:各种仪器分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(二)一、教学目标1. 掌握光谱分析法的基本原理及应用2. 了解光谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 光谱分析法的基本原理1.1 紫外-可见光谱分析法1.2 红外光谱分析法1.3 拉曼光谱分析法2. 光谱分析法的分类及特点2.1 紫外-可见光谱分析法2.2 红外光谱分析法2.3 拉曼光谱分析法3. 光谱分析法的应用3.1 有机化合物结构的鉴定3.2 生物大分子的结构分析3.3 环境监测及药物分析三、教学重点与难点1. 教学重点:1. 光谱分析法的基本原理2. 光谱分析法的分类及特点3. 光谱分析法的应用2. 教学难点:1. 各种光谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解光谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:光谱分析设备及实验用品3. 辅助工具:多媒体教学设备仪器分析电子教案(三)一、教学目标1. 掌握色谱分析法的基本原理及应用2. 了解色谱分析法的分类及特点3. 培养学生的实验技能和分析问题的能力二、教学内容1. 色谱分析法的基本原理1.1 气相色谱分析法1.2 液相色谱分析法1.3 色谱-质谱联用分析法2. 色谱分析法的分类及特点2.1 气相色谱分析法2.2 液相色谱分析法2.3 色谱-质谱联用分析法3. 色谱分析法的应用3.1 生物大分子的分析3.2 环境监测及药物分析3.3 食品工业中的应用三、教学重点与难点1. 教学重点:1. 色谱分析法的基本原理2. 色谱分析法的分类及特点3. 色谱分析法的应用2. 教学难点:1. 各种色谱分析法的原理及应用2. 实验操作技能的培养四、教学方法1. 讲授法:讲解色谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力五、教学准备1. 教材或教学资源:《仪器分析电子教案(四)六、教学目标1. 理解电化学分析法的基本原理及应用2. 熟悉电化学分析法的分类和特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 电化学分析法的基本原理1.1 直流电位滴定法1.2 电位分析法1.3 电化学发光分析法2. 电化学分析法的分类及特点2.1 直流电位滴定法2.2 电位分析法2.3 电化学发光分析法3. 电化学分析法的应用3.1 药物分析3.2 环境监测3.3 生物医学分析七、教学重点与难点1. 教学重点:1. 电化学分析法的基本原理2. 电化学分析法的分类及特点3. 电化学分析法的应用2. 教学难点:1. 各种电化学分析法的原理及应用2. 实验操作技能的培养八、教学方法1. 讲授法:讲解电化学分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解九、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:电化学分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果十、教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(五)十一、教学目标1. 理解质谱分析法的基本原理及应用2. 熟悉质谱分析法的分类和特点3. 提高学生的实验技能和问题解决能力十二、教学内容1. 质谱分析法的基本原理1.1 静态质谱法1.2 动态质谱法1.3 串联质谱法2. 质谱分析法的分类及特点2.1 静态质谱法2.2 动态质谱法2.3 串联质谱法3. 质谱分析法的应用3.1 蛋白质组学3.2 代谢组学3.3 药物分析与食品安全十三、教学重点与难点1. 教学重点:1. 质谱分析法的基本原理2. 质谱分析法的分类及特点3. 质谱分析法的应用2. 教学难点:1. 各种质谱分析法的原理及应用2. 实验操作技能的培养十四、教学方法1. 讲授法:讲解质谱分析法的基本原理、分类及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力4. 互动讨论法:鼓励学生提问和参与讨论,增进理解十五、教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:质谱分析设备及实验用品3. 辅助工具:多媒体教学设备4. 教学软件:用于演示实验过程和分析结果教学评估:1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(六)十一、教学目标1. 理解其他分析方法的基本原理及应用2. 熟悉其他分析方法的特点3. 提高学生的实验技能和问题解决能力二、教学内容1. 其他分析方法的基本原理1.1 原子吸收光谱分析法1.2 原子荧光光谱分析法1.3 X射线荧光光谱分析法2. 其他分析方法的特点2.1 原子吸收光谱分析法2.2 原子荧光光谱分析法2.3 X射线荧光光谱分析法3. 其他分析法的应用3.1 环境监测3.2 材料分析3.3 生物医学分析教学重点与难点1. 教学重点:1. 其他分析方法的基本原理2. 其他分析方法的特点3. 其他分析法的应用2. 教学难点:1. 各种其他分析方法的原理及应用2. 实验操作技能的培养教学方法1. 讲授法:讲解其他分析方法的基本原理、特点及应用2. 案例分析法:分析具体实例,强化理论知识3. 实验操作法:培养学生的实验技能和分析问题的能力教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 课堂问答:通过提问检查学生对知识点的理解程度2. 实验报告:评估学生在实验中的操作技能和问题解决能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(七)十二、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,教师指导教学准备1. 教材或教学资源:《仪器分析》等相关教材2. 实验器材:其他分析设备及实验用品3. 辅助工具:多媒体教学设备教学评估1. 实验操作考核:评估学生在实验中的操作技能2. 实验报告:评估学生在实验中的数据处理和分析能力3. 期末考试:综合测试学生对仪器分析知识的掌握情况仪器分析电子教案(八)十三、教学目标1. 培养学生对仪器分析实验操作的技能2. 加强学生对实验数据的处理和分析能力3. 加深学生对仪器分析理论知识的理解二、教学内容1. 实验操作流程1.1 实验前的准备1.2 实验操作步骤1.3 实验后的整理2. 实验数据处理与分析2.1 数据采集2.2 数据处理2.3 结果分析3. 实验安全与规范3.1 实验安全知识3.2 实验操作规范教学重点与难点1. 教学重点:1. 实验操作流程2. 实验数据处理与分析3. 实验安全与规范2. 教学难点:1. 实验操作技能的培养2. 实验数据的处理和分析教学方法1. 讲授法:讲解实验操作流程、数据处理与分析、实验安全与规范2. 示范法:演示实验操作,让学生跟随操作3. 练习法:学生独立操作,重点和难点解析本文主要介绍了仪器分析的教学目标、内容、重点和难点,以及相应的教学方法和评估方式。
仪器分析教案7红外吸收光谱法
![仪器分析教案7红外吸收光谱法](https://img.taocdn.com/s3/m/0b3bca5f0b1c59eef8c7b457.png)
第十章红外吸收光谱法10.1教学建议一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。
二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。
10.2主要概念一、教学要求:(一)、掌握红外吸收光谱法的基本原理;(二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法;(三)、了解红外光谱仪的结构组成与应用。
二、内容要点精讲(一)基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。
红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。
振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。
不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。
分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。
转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。
分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。
伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。
弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。
红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。
诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。
共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。
氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。
红外吸收光谱法基本原理电子教案.
![红外吸收光谱法基本原理电子教案.](https://img.taocdn.com/s3/m/e81d6f43844769eae109ed1b.png)
《仪器分析》教案内容中红外光区的四个吸收区域影响基团频率位移的因素教学重点红外吸收光谱图教学难点产生红外吸收光谱的原因产生红外吸收光谱的原因影响基团频率位移的因素参考资料仪器分析,黄一石,化学工业出版社仪器分析,高晓松,科学出版社分析化学(仪器分析部分),林树昌,曾泳怀,高等教育出版社一、概述1、红外光的发现红外辐射是在1800 年由英国的威廉.赫谢尔(Willian Hersher)发现的。
2、物质对红外光的选择性吸收赫歇尔通过实验发现,不同的溶液对红外光的吸收程度是不同的,同一种溶液对不同红外光也具有不同程度的吸收。
所以说,物质对红外光具有选择性吸收。
3、红外吸收光谱(1)红外吸收光谱图一般用T-λ或T-σ曲线表示。
4、红外光谱法的特点(1)应用面广,提供信息多且具有特征性(2)不受样品相态的限制,亦不受熔点、沸点和蒸气压的限制。
(3)样品用量少且可回收,不破坏试样,分析速度快,操作方便。
(4)现在已经积累了大量标准红外光谱图可供查阅。
(5)局限:有些物质不能产生红外吸收峰,不能用红外吸收光谱法鉴别,有干扰,准确度和灵敏度均低于可见、紫外吸收光谱法。
二、产生红外吸收光谱的原因1、分子振动(1)分子振动方程式k化学键力常数,单位 N/cmμ分子折合质量(2)简正振动分子中所有原子都在其平衡位置附近作简谐振动,其振动频率和位相都相同,是振幅可能不同,即每个原子都在同一瞬间通过其平衡位置,且同时到达其最大位移值,附近作简谐振动,每一个简正振动都有一定的频率,称为基频。
(3)分子的振动形式❑分子的振动形式可分为两大类:伸缩振动和变形振动。
❑伸缩振动是指原子沿键轴方向伸缩,使键长发生变化而键角不变的振动,动形式可分为两种:对称伸缩振动和反对称伸缩振动;❑变形振动是指使键角发生周期性变化的振动,又称弯曲振动。
可分为面内、面外、对称及不对称变形振动等形式。
2、振动能级的跃迁用一定频率的红外光照射分子时,如果分子中某个基团的振动频率与它一样,则两者就会发生共振,这个基团就吸收了一定频率的红外光,从原来的基态振动能级跃迁到较高的振动能级,从而产生红外吸收。
红外光谱法(仪器分析课件)
![红外光谱法(仪器分析课件)](https://img.taocdn.com/s3/m/ea639b107275a417866fb84ae45c3b3567ecddc3.png)
z
目录
Contents
1 红外光谱法基本原理 2 红外光谱仪 3 红外光谱实验技术 4 红外光谱仪虚拟仿真训练 5 红外光谱法在结构分析中的应用
红外光谱法
能力目标
• 能够熟练的操作傅立叶红外光谱仪; • 能够根据样品的状态、性质选择合适
的样品处理方法; • 能够根据谱图确定常见有机化合物的
—NH2,—NH(游离) —NH2,—NH(缔合)
—SH
C—H伸缩振动
一
不饱和C—H
≡C—H(叁键) ═C—H(双键) 苯环中C—H
区
饱和C—H
域
—CH3 —CH3
—CH2
—CH2
吸收频率 (cm-1)
3650—3580 3400—3200 3500—3300 3400—3100 2600—2500
近红外、中红外、远红外区域。
概述
红外谱图的表示法
样品的红外吸收曲线称为红外吸收光谱,多用百分透射比与波数或百分透
射比与波长曲线来描述。
纵坐标为吸收强度,横坐标为波长λ (μm)和波数1/λ,单位:cm-1
有机化合物的结构解析;定性(基团的特征吸收频率);定量(特征峰的强度)
红外光谱法原理 红外吸收光谱产生的条件
C=O、C=C、C=N、NO2、苯环等的伸缩振动
1500~400cm-1
C-C、C-O、C-N、C-X等的伸缩振动及含氢基团的弯曲振动
• 基团特征频率区的特点和用途
• 吸收峰数目较少,但特征性强。不同化合物中的同种基团振动吸收 总是出现在一个比较窄的波数范围内。
• 主要用于确定官能团。
• 指纹区的特点和用途
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章红外吸收光谱法10.1教学建议一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。
二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。
10.2主要概念一、教学要求:(一)、掌握红外吸收光谱法的基本原理;(二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法;(三)、了解红外光谱仪的结构组成与应用。
二、内容要点精讲(一)基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。
红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。
振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。
不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。
分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。
转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。
分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。
伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。
弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。
红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。
诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。
共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。
氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。
溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。
基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。
振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。
基团频率区——红外吸收光谱中能反映和表征官能团(基团)存在的区域。
指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。
分子振动自由度——多原子分子中原子振动形式的数目,称为分子振动自由度。
倍频峰——振动能级由基态跃迁至第二激发态、第三激发态……所产生的吸收峰称为倍频峰。
组(合)频峰——多原子分子中由于各种振动之间的相互作用而形成的组合频率(等于两个或多个基团频率之和或差)的吸收峰。
泛频与泛频峰——倍频与组(合)频,统称为泛频。
相应的吸收峰称为泛频峰。
相关峰——表征某一基团存在的一组特征峰称为相关峰。
(二)基本内容1. 红外吸收光谱的基本原理利用物质分子对红外辐射的吸收,并有其振动及转动引起偶极矩的净变化产生振动和转动能级由基态跃迁到激发态,获得分子振动和转动能级变化的振动-转动光谱,即红外吸收光谱。
除对称分子外,几乎所有具有不同结构的化合物都有相应的特征红外吸收光谱。
它反映了分子中各基团的振动特征。
因此可以用以确定化学基团和鉴定未知物结构。
同时,物质对红外辐射的吸收符合朗伯-比尔定律,故可用于定量分析。
2. 红外吸收光谱产生的条件(1)照射的红外光必须满足物质振动能级跃迁时所需的能量,即光的能量E = hv必须等于两振动能级间的能量差∆E(∆E =E振动激发态-E振动基态)。
(2)红外光与物质之间有偶合作用及分子的振动必须是能引起偶极矩变化的红外活性振动。
3. 分子的振动方程σ=由方程可知,振动波数σ(或频率ν)随键力常数k的增加或折合相对原子质量Ar的减少而增大,实际用于真实分子时应加以修正。
4. 分子振动的形式和类型分子中的基本振动形式(理论数):对于非线性分子有(3N―6)个基本振动(即简正振动)形式;线性分子有(3N―5)个基本振动形式(N为分子中原子数目),实际上大多数化合物在红外光谱图上出现的吸收峰数目比理论数要少。
振动类型:多原子分子中有伸缩振动(对称和非对称伸缩振动)和弯曲(或变形)振动两大类。
5. 红外吸收光谱与有机化合物分子结构的关系(1)红外吸收光谱的分区:按照红外吸收光谱与分子结构的关系可将其分为基团频率区(或特征区)(4000~1300cm-1)和指纹区(1300~670cm-1)两大区域。
基团频率区包括:①X—H伸缩振动区(4000~2500cm-1),主要包括C—H,O—H,N—H 和S—H键伸缩振动频率区;②三键及积累双键区(2500~1900cm-1),主要包括C≡C,C≡N键伸缩振动及C═C═C和C═C═O等累积双键的不对称伸缩振动频率区;③双键伸缩振动区(1900~1500cm-1),主要包括C═O(1900~1650cm-1)和C═C(1680~1500cm-1)伸缩振动频率区。
指纹区包括:①1300~900cm-1振动区:主要包括C—O,C—N,C—F,C—P,C—S,P —O,Si—O等单键和C═S,S═O,P═O等双键的伸缩振动频率区以及一些弯曲振动频率区。
如C—O的伸缩振动(1300~1000cm-1)和甲基的弯曲振动(~1380cm-1);②900cm-1以下振动区,主要包括一些重原子伸缩振动和一些弯曲振动频率区,δφC—H在这一区域的吸收峰可用来确定苯环的取代类型。
某些吸收峰还可用来判定化合物的顺反构型。
6. 影响红外吸收光谱的主要因素(1)影响吸收峰位置(即基团频率)的因素内部因素:诱导效应、共轭效应和氢键效应;外部因素:物质的物理状态和溶剂效应。
(2)影响吸收峰数目的因素通常大多数化合物在红外光谱上出现的吸收峰数目比理论计算数目有所增减,这主要是由于:①分子中存在着红外非活性振动;②某些振动频率完全相同,即简并为一个吸收峰;有些振动频率相近,仪器分辨不出来;③某些振动吸收强度太弱,仪器检测不出来或某些振动吸收频率超出了仪器的检测范围;④倍频峰和合频峰的产生,使吸收峰增加;⑤振动偶合使得吸收峰发生分裂;⑥费米共振,倍频峰和组频峰与基频峰之间相互偶合而产生的吸收峰的分裂,使吸收峰增多。
7. 红外吸收光谱仪用于测量和记录待测物质红外吸收光谱并进行结构分析及定性、定量分析的仪器,称为红外吸收光谱仪或红外吸收分光光度计。
仪器的类型:色散型红外吸收光谱仪和干涉型红外吸收光谱仪。
仪器的结构:红外光谱仪的基本结构与紫外光谱仪类似,也由光源、吸收池、单色器、检测器和记录系统等部分组成。
干涉型(傅里叶变换型)与普通色散型红外光谱的主要区别在于它有干涉仪和计算机两部分。
8. 红外吸收光谱法的应用红外吸收光谱法广泛用于有机物的定性分析、定量分析及未知物结构的确定。
三、重点、难点(一)重点内容1、红外吸收光谱法的基本原理;2、依据红外谱图确定有机化合物结构,推断未知物的结构方法。
(二)难点影响基团频率位移的因素、双原子分子振动及未知物结构的确定。
10.3 例题例3.1由下述力常数k数据,计算各化学键的振动频率(波数)。
(1)乙烷的C―H键,k=5.1N·cm-1;(2) 乙炔的C―H键,k=5.1N·cm-1(3) 苯的C=C键,k=7.6N·cm-1;(4) 甲醛的C=O键, k=12.3N·cm-1。
由所得计算值,你认为可以说明一些什么问题?答:计算(1)乙烷的C―H键,11 13072cm σ--===同理可得(2)乙炔的C―H键:σ2=3304 cm-1(3)苯的C=C键:σ3=1471 cm-1(4)甲醛的C=O键:σ4=1750 cm-1由此可知,①折合相对原子质量Ar的平方根与化学键的振动频率(波数)成反比,与折合相对原子质量Ar小的C―H键相比,C=C键和C=O键的振动波数比较低;②键力常数k的平方根与化学键的振动频率(波数)成正比,不同的化学键有不一样的键力常数,键力常数差异决定了折合相对原子质量相近的化学键,如C=C键和C=O键的频率(波数)有明显的差异。
【评注】本题给定条件明了、直接,解题思路清晰。
例3.2氯仿(CHCl3)的红外光谱表明其C―H伸缩振动频率为3100 cm-1,对于氘代氯仿(CDCl3),其C―D伸缩振动频率是否会改变,如果变动,是向高波数还是低波数方向移动?答:因为 =1307(k1/Ar)1/2,的折合相对原子质量Ar1=12×1/(12+1)=12/13,而C―2H的折合相对原子质量Ar2=12×2/(12+2)=12/7,显然,Ar2≈2 Ar1,所以,与氯仿(CHCl3)红外光谱中的C―H伸缩振动频率比较,氘代氯仿(CDCl3)的C―2H伸缩振动频率会改变。
从Ar2≈2 Ar1来看,C―2H伸缩振动频率向低波数方向移动。
例3.3图6-1为1-辛烯的红外光谱,试给出各峰的归属。
图6-1 1-辛烯的红外光谱图答:(1)如═CH2的反对称伸缩振动(末端═C—H出现在3085 cm-1附近)及═CH2的对称伸缩振动(═CH2出现在2975±10cm-1附近),═CH—的伸缩振动(C—H伸缩振动出现在3040~3010cm-1附近)。
(2)C═C的振动(C═C伸缩振动出现在1680~1620cm-1附近)。
(3)—CH2,—CH3的反对称变形(在1460±10cm-1附近)及—CH3的对称变形(在1370~1380cm-1附近)。
(4)═C—H的面外弯曲振动(在1000~650cm-1处出现强吸收峰)。
(5)═CH2面外摇摆振动(910~890cm-1附近)(6)—(CH2)5面外摇摆振动 [—(CH2)n—(n>4)的面内摇摆振动720cm-1]。
10.4习题精选详解(题号)2.1.羧基(-COOH)中C=O、C-O、O-H等键的力常数分别为12.1N.cm-1、7.12N.cm-1和5.80N.cm-1,若不考虑相互影响,计算:(1)各基团的伸缩振动频率;(2)基频峰的波长与波数;(3)比较ν(O-H)与ν(C-O),ν(C=O)与ν(C-O),说明键力常数与折合原子质量对伸缩振动频率的影响。
解:Ar (H )=1.00794,Ar (O )=15.9994,Ar (C )=12.0107)(9.1730161216121.1213031-==+⨯=cm O C σ)(777.5109.1730114m μσλ=⨯==)(1051931039.17301010Hz c ⨯=⨯⨯=⋅=συ)(7.13271612161212.713031--=+⨯=cm O C σ)(532.7107.1327114m μσλ=⨯==)(101.39831037.13271010Hz c ⨯=⨯⨯=⋅=συ)(6.323416116180.513031--=+⨯=cm H O σ)(092.3106.3234114m μσλ=⨯==)(108.97031036.32341010Hz c ⨯=⨯⨯=⋅=συ2.2. 化合物的不饱和度是如何计算的?答:不饱和度是有机化合物分子中含有双键、三键及环的个数,即碳原子的不饱和程度,其经验公式为Ω=1+n4+1/2(n3-n1)n4、n3、n1分别为四价元素(C,Si 等)、三价元素(N,P 等)和一价元素(H,F,Cl,Br 等)的个数。