第三章-红外吸收光谱分析

合集下载

第三章 红外吸收光谱分析-1

第三章 红外吸收光谱分析-1

波长和波数
红外区光谱用波长和波数( 红外区光谱用波长和波数(wave number) 波长和波数 ) 来表征 ; 波长多用m做单位; 做单位; 波长多用 做单位 波数: 表示, 波数:以σ表示,定义为波长的倒数,单位 表示 定义为波长的倒数, cm-1,其物理意义是每厘米长光波中波的数 目. σ=1/λ(cm)=104/λ(m)=υ/c 用波数表示频率的好处是比用频率要方便, 用波数表示频率的好处是比用频率要方便,且 数值小. 数值小. 一般用透光率 波数曲线或透光度-波长曲线 透光率-波数曲线 波长曲线来 一般用透光率 波数曲线或透光度 波长曲线来 描述红外吸收光谱. 描述红外吸收光谱.
第三章 红外吸收光谱分析
3.2 基本原理 3.2.1 产生红外吸收的条件
产生红外吸收的条件
1) 辐射光子具有的能量与发生振动 跃迁所需的跃迁能量相等. 跃迁所需的跃迁能量相等. 2)辐射与物质之间有耦合作用. )辐射与物质之间有耦合作用.
条件一: 条件一:辐射光子的能量应与振动跃 迁所需能量相等
红外光谱的特点-1 红外光谱的特点
紫外,可见吸收光谱常用于研究不饱和 紫外,可见吸收光谱常用于研究不饱和 有机物, 有机物,特别是具有共轭体系的有机化 合物; 红外光谱法主要研究在振动中 合物;而红外光谱法主要研究在振动中 伴随有偶极矩变化的化合物. 伴随有偶极矩变化的化合物. 因此,除了单原子和同核分子如Ne, , 因此,除了单原子和同核分子如 ,He, O2,H2等之外,几乎所有的有机化合物 等之外, 在红外光谱区均有吸收. 在红外光谱区均有吸收. 一般只要结构上不同, 一般只要结构上不同,就会有不同的红 外光谱图. 外光谱图.
红外光谱的特点-2 红外光谱的特点
红外谱图吸收带的位置与吸收谱带的强 红外谱图吸收带的位置与吸收谱带的强 度反映了分子结构上的特点, 度反映了分子结构上的特点,可以用来 定基团,定结构; 定基团,定结构; 谱带的强度与分子组成以及含量有关 与分子组成以及含量有关, 谱带的强度与分子组成以及含量有关, 可以用来进行定量分析及纯度的检查; 可以用来进行定量分析及纯度的检查; 红外光谱分析特征性强,气体, 红外光谱分析特征性强,气体,液体和 固体样品均可以测定,并且具有用量少, 固体样品均可以测定,并且具有用量少, 分析速度快和不破坏样品等特点. 分析速度快和不破坏样品等特点.

红外光谱(IR)分析copy

红外光谱(IR)分析copy

与红外光谱比较,Raman光谱用于有机化合 物分析有一定优点。
∗因Raman光谱与红外光谱的选择定则不同,
对红外吸收很弱的C≡C、C=C、C-S、S-S等 键的伸缩振动及其它对称振动,都有很强的 Raman散射光。
∗拉曼光谱的另一大优点是不要求样品具有
光透性,可以很容易地得到浑浊样品的拉曼光 谱。 Raman光谱制样简单,很多情况下样品不 需处理,粉、块、薄膜状的固体、液态、溶 液及溶液中的沉淀物均可直接得到散射光谱。 特别是FI-Raman光谱可用作合适的非破 坏现场测试方法,在有机化合物、高分子材 料、医学、文物保护和生物分子研究中的应用 具有其独到之处。
∗特别重要的是:可用水作溶剂。(水是弱的散射
体)因此有利于生物分子、络合物、水污染等问题 的研究。 水分子是一种极性分子,有十分明显的红外吸收 谱带,要得到含水样品的红外吸收光谱却很困难。 相反,水分子的拉曼光谱信号很弱,可以较容易 地得到含水样品的拉曼光谱。因此,拉曼光谱可被 广泛地用于研究含水分的生物体系中,作为一种鉴 别物质结构的分析测试手段。
(问题:键力常数K还表明了红外谱峰位置与什 么因素有密切的关系?)
1-2 多原子分子的振动 在多原子分子中,由于组成原子数目多,以 及分子中原子排布情况不同,故多原子分子的 振动光谱远比双原子分子复杂得多。
1-4 影响峰位变化的因素 虽然基团吸收峰的频率主要由原子的质量和 原子的力常数决定,但基团的特征吸收峰并不 能固定在一个频率位置上,而是在一定范围内 波动。 (为什么?) 分子内部结构和外部环境的改变都可使其频 率发生改变。
4. 空间效应: (1)环状化合物的环张力效应:环张力越大,羰 基νC=O频率越高。 环张力 四元环 > 五元环 > 六元环 (2)空间位阻效应:空间位阻使羰基与双键之间 的共轭受限制,故使νC=O频率增高。 5. 氢键效应:氢键的形成,通常可使伸缩振动 频 率向低波数方向移动。

第三章红外光谱IR

第三章红外光谱IR

烷烃吸收峰
正己烷的红外光谱图
2,2,4-三甲基戊烷的红外光谱图
2、不饱和烃
• 烯烃 • 炔烃 • 芳香烃
2、1 烯烃 烯烃双键的特征吸收
影响双键碳碳伸缩振动吸收的因素
• 对称性:对称性越高,吸收强度越低。 • 与吸电子基团相连,振动波数下降,吸
收强度增加。 • 取代基的质量效应:双键上的氢被氘取
代后,波数下降10-20厘米-1。质量效应 • 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
~3060cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~995,905cm-1: C=CH2 非平面摇摆振动
顺式和反式2,2,5,5-四甲基己烯红外光谱 a 顺式 b 反式
v~
=
1
——
K
2C M
M = m1 m2 m1 + m2
双原子分子红外吸收的频率决定于折合质量和键力常数。
C-H C-C C-O C-Cl C-Br C-I
-1 cm
3000
1200 1100
800
550
500
v cm-1
力常数/g.s-2
CC 2200~2100
12~18105
C=C 1680~1620
C-H面外弯曲振动吸收峰位置(cm-1) 670
770-730,710-690 770-735
810-750,710-690 833-810
780-760,745-705 885-870,825-805 865-810,730-675
810-800 850-840 870-855
870
各类取代苯的倍频吸收和面外弯曲振动吸收

有机波谱解析-第三章_红外光谱

有机波谱解析-第三章_红外光谱

由于红外光谱吸收强度受狭缝宽度、温度和溶剂等因素影 响,故不易精确测定,在实际分析中,只是通过与羰基等强吸 收峰对比来定性研究。
谱带强度与振动时偶极矩变化有关,偶极矩变化愈 基团极性 大,谱带强度愈大;偶极矩不发生变化,谱带强度为0, 即为红外非活性。 电子效应
红外吸收强度 偶极距变化幅度 振动偶合
伸缩振动(
as
)两种形式。
弯曲振动:原子垂直于化学键方向的运动。又可以分
它们还可以细分为摇摆、卷曲等振动形式。
为面内弯曲振动()和面外弯曲振动( )两种形式,
+和-表示垂直于纸面方向的前后振动。
亚甲基的振动形式
三、分子振动与红外吸收峰的关系
理论上具有特定频率的每一种振动都能吸收相应 频率的红外光,在光谱图对应位臵上出现一个吸收 峰。实际上,因种种原因分子振动的数目与谱图中
纵坐标为: 百分透过率(%) 横坐标为: 波长(µ m)或波 数(cm-1)。
环戊烷
也可用文字形式表示为:2955cm-1(s)为CH2的反对称伸缩振动 (υasCH2),2870cm-1(m)为CH2的对称伸缩振动(υsCH2) 1458cm-1(m) 为CH2的面内弯曲振动(δ面内CH2),895cm-1(m)为CH2的面外弯曲振动 (面外CH2)
诱导效应大于共轭效应, C=O 蓝移至 1735 cm-1
三、空间效应
(1)空间位阻 破坏共轭体系的共平面性,使共
轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2 O O O
CH3 CH3
CH3 CH(CH3)2
CH3
1663cm-1
1686cm-1
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。

IR-1第三章红外光谱-波谱分析课程

IR-1第三章红外光谱-波谱分析课程
光栅型分辨率:0.2cm-1重现性好 扫描速度快(<0.1s),可作快速反应动力学研究
, 并可与GC、LC联用。色散型:只能观测较窄的扫 描 一次需8、15、30s等。 杂散光不影响检测。 对温度湿度要求不高。 光学部件简单,不易磨损。
3.3 试样的处理和制备
3.3a 红外光谱法对试样的要求
薄膜法
高分子化合物可直接加热熔融后涂制或压制成膜。也可 将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶 剂挥发后成膜测定。
4 基团频率和特征吸收
1. 基团频率区和指纹区 2. 红外光谱的区域划分 3. 影响基团频率的因素
4.1基团频率区和指纹区 指纹区:1300 cm-1-600 cm-1
基团频率区 (官能团区或 特征区)
试样:液体、固体或气体
1 试样
– 单一组份的纯物质:纯度>95%或符合商业规格,便于与 纯物质的标准光谱进行对照
– 多组份混合试样:测定前先用分馏、萃取、重结晶或色谱 法进行分离提纯,否则各组份光谱相互重叠,难于判断
A-2 试样中不应含水分: 水有红外吸收(3500及 1640cm-1),严重干扰谱图;腐蚀吸收池的盐窗。
转动能级
△ E电子 △ E振动 △ E转动 红外吸收光谱由分子振动-转动能级跃迁引起的
1.2 红外光区的划分
红外光谱在可见光区和微波光区之间,波长范 围约为 0.75 ~ 1000µm,
1.3 红外光谱的测定过程
当样品受到频率连续变化的红外光照射时,分子 吸收了某些频率的辐射,并由其振动或转动运动 引起瞬时偶极矩的变化,产生分子振动和转动能 级从基态到激发态的跃迁,使相应吸收红外光区域 的透射光强度减弱。记录百分透射率与波数(或 波长)关系曲线,就得到红外光谱。

红外吸收光谱解析

红外吸收光谱解析
(CH2)n :1350~1192 cm-1 (间隔约 20 cm-1 )的谱带, 800~700 cm-1 ,弱吸收带
酸酐:两个羰基振动偶合产生双峰,波长位移60~80 cm-1。 酯:脂肪酯--~1735 cm-1 不饱和酸酯或苯甲酸酯--低波数位移约20 cm-1
羧酸:~1720 cm-1 若在第一区约 3000 cm-1出现强、宽吸收,可确认羧基 存在。
醛:在2850~2720 cm-1 范围有 m 或 w 吸收,出现1~2条谱 带,结合此峰,可判断醛基存在。
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰 仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
2012-9-17
19
3. C-H
烃类:3300~2700 cm-1范围,3000 cm-1是分界线。 不饱和碳(三键、双键及苯环)>3000 cm-1 饱和碳(除三元环外)<3000 cm-1
吸收峰,较为稀疏,容易辨认.
2012-9-17
17
特征区(4000-1400cm-1) ¾ 第一峰区(4000-2500cm-1)
X-H 伸缩振动吸收范围。 X:O、N、C、S 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H
醇与酚:游离态--3640~3610cm-1,峰形尖锐。 缔合--3300cm-1附近,峰形宽而钝
2012-9-17
25
3. N=O
硝基、亚硝基化合物:强吸收 脂肪族:1580~1540 cm-1,1380~1340 cm-1 芳香族:1550~1500 cm-1,1360~1290 cm-1 亚硝基: 1600~1500 cm-1
4. N-H (弯曲振动)

《波谱原理及解析》第三章课件

《波谱原理及解析》第三章课件

1
k
μ
= 1307
k
μ
正己烯vC=C =1652 cm-1
9.6 = 1307 = 1650cm −1 12 / 2
已知C=O键 k=12, 求 vC=O
-1 v = 1307 12×16 = 1725 cm
12
12+16
实际双原子分子并非理想的谐振子,化学键的势能曲线并 不对称,而是扭曲的 。
由曲线可知: (1)势能曲线是原子核间距离的函数 (2)原子振动较小时,可近似地用谐振子模型处理 (3)当振幅加大(核间距增大),则振动势能也相应增加。 (4)当振幅加到一定值时,势能为一常数,此时核间引力近 似为零,分子便离解成原子,势能即分子的离解能。
羰基双键性减弱,C-N双键性增强。
同时存在诱导和共轭效应, 应考虑两种效应总和的净结果。 规律:基团与吸电子基团共轭, 吸收频率升高; 基团与给电子基团共轭,吸收频率降低。 共轭的结果总是使吸收强度增加。
化合物 νC=0 /cm-1 R-CO-CR’ 1715 R-CO-OCR’ 1735 R-CO-NR’R” 1630-1690
第三章
红外吸收 光谱法
第一节 红外光谱分析 基本原理
一、引言 二、化学键的振动与频率 三、分子振动与红外光谱 四、影响峰位变化的因素
一 引言
1.红外光谱的发展
1947年 — 开始商品化,美国开始生产第一台双光束自 动记录的红外分光度计。 1950年 — 发表了谱峰表,仪器基本以棱镜为色散元件 的第一代红外光谱仪。分辨率和测定波长范围都受到限制 60年代 —第二代红外光谱仪,光栅代替棱镜作色散元 件。较高的分辨率,波长范围可延伸到近红外和远红外。 70年代 — 研制出第三代红外光谱仪(FTIR ),仪器 的测量和原理与色散型完全不同。 近来 — 已采用可调激光器作为光源来代替单色器,研 制成了激光红外光谱仪,即第四代红外光谱仪,具有更高 的分辨率和更广的应用范围。

材料分析方法第三章_红外光谱剖析

材料分析方法第三章_红外光谱剖析
~3080cm-1: 烯烃C—H伸缩振动;~1820:910cm-1倍频; ~1650cm-1: C=C伸缩振动;~993,910cm-1: C=CH2 非平面摇摆振动
烯烃类型对=C-H的面外弯曲振动的影响
对判断烯烃类 型非常有用
烯烃类型
R1CH=CH2 R1R2C=CH2 R1CH=CHR2(顺) R1CH=CHR2(反) R1R2C=CHR3
(4)分析时间短。一般红外光谱做一个样可在10~30分钟 内完成。如果采用傅里叶变换红外光谱仪在一秒钟以内 就可完成扫描。为快速分析的动力学研究提供了十分有 用的工具。
(5)所需样品用量少,且可以回收。红外光谱分析一次 用样量约1~5mg,有时甚至可以只用几十微克。
IR光谱表示法: 横坐标为吸收波长(m),或吸收频率(波数
1947年第一台实用的双光束自动记录的红外分光光度计 问世。这是一台以棱镜作为色散元件的第一代红外分光光 度计。
到了六十年代,用光栅代替棱镜作分光器 的第二 代红外光谱仪投入了使用。这种计算机化的光栅为分光 部件的第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FTIR)投入了使用,这就是第三代红外分光光度计。
断烯烃的存在 , 苯环 C-H 大于3000
初步判断烯烃结构 的存在
影响碳碳双键伸缩振动吸收的因素
对称性:对称性越高,吸收强度越低。 取代基:与吸电子基团相连,振动波数下
降。 取代基的质量效应:双键上的氢被氘取代
后,波数下降10-20 厘米-1。 共轭效应:使波数下降约30厘米-1 。
1-己烯的红外光谱图
吸收池和检测器
由于玻璃,石英等常规透明材料不能透过红外线, 因此红外吸收池必须采用特殊的透红外材料制作 如:NaCl,KBr,CsI,KRS-5等作为窗口。由于 该类材料均属于无机盐,很容易吸收水汽发生潮 解。固体粉体样品可以直接与KBr混合压片,直 接进行测定。

第三章-红外吸收光谱分析-1

第三章-红外吸收光谱分析-1
在倍频峰中,二倍频峰还比较强,三倍频峰以上,因 跃迁几率很小,一般都很弱,常常不能测到。
由于分子非谐振性质,各倍频峰并非正好是基频峰的 整数倍,而是略小一些。
HCl的基频峰和倍频峰
基频峰(V0→1) 二倍频峰( V0→2 ) 三倍频峰( V0→3 ) 四倍频峰( V0→4 ) 五倍频峰( 0→5 )
折合质量μ的影响
对于相同化学键的基团,波数与折合 质量μ平方根成反比。例如C-C、C-O、 C-N键的力常数相近,但折合质量不同。
μ : C-C < C-N < C-O 1430 cm-1 1330 cm-1 1280 cm-1
第三章 红外吸收光谱分析
3.2 基本原理 3.2.3 多原子分子振动
在红外吸收光谱上除基频峰外,还有振动能级由基 态( V =0)跃迁至第二激发态( V =2)、第三激 发态( V =3),所产生的吸收峰称为倍频峰。
除此之外,还有合频峰(1+2,21+2,),差 频峰( 1-2,21-2, )等,这些峰多数很弱, 一般不容易辨认。
倍频峰、合频峰和差频峰统称为泛频峰。
通过试样后的红外光在一些波数范围减弱,在 另一些波数范围内仍然较强,用仪器记录该试 样的红外吸收光谱,进行样品的定性和定量分 析。
第三章 红外吸收光谱分析
3.2 基本原理 3.2.2 双原子分子的振动
红外光谱是由于分子振动能级的跃迁(同时伴有转动能级跃迁) 而产生,即分子中的原子以平衡位置为中心作周期性振动,其振 幅非常小。这种分子的振动通常想象为一根弹簧联接的两个小球 体系,称为谐振子模型。这是最简单的双原子分子情况,如下图 所示。
EL=hL 产生红外吸收光谱的第一条件为:
EL =△Ev hL = △Vh 即 L= △V

第三章 红外吸收光谱法

第三章 红外吸收光谱法

3)远红外区: 400~25cm-1(25~1000 m),主要用 于研究分子的转动光谱以及重原子成键的振动等。
2
红外吸收光谱图的表示方法
横坐标为波数(σ/cm-1),纵坐标为透射比(T%) 吸收峰为倒峰。
3
3.2 红外吸收光谱的基本原理
1 产生红外吸收的条件
(1)红外辐射的能量等于分子振动能级跃迁所需要的能量。 ΔEν=Eν2- Eν1=hνa νa:红外光频率。
26

100 90 80
化合物的分子式为C6H14,IR光谱图如下如下,试推断其可 能的分子结构结构。
70 60 50 40 30 20 10 0 4000
饱和-CH3、CH2 对称与反对称 伸缩振动
CH3 H3C C H2 CH C H2 CH3
亚 甲 基 弯 曲 振 动
Transmittance %
RC CR’ (2190 2260 cm-1 ) R=R’ 时,无红外活性
(2)RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1 共轭 2220 2230 cm-1
(3)累积双键O=C=O
2349 cm-1
667cm-1
21
3. 双键伸缩振动区( 2000 1500 cm-1 )
羧酸的C=O
1820~1750 cm-1 ,
氢键,二分子缔合体;
23
(2)C=C,C=N和N=O 1680-1500 cm-1 RC=CR’ 1620 1680 cm-1 强度弱, R=R’(对称)时,无红外活性。 (3)单核芳烃 的C=C键伸缩振动(1600和1500 cm-1 )
习题6
24
σ = 22 π cc

第3章红外光谱法

第3章红外光谱法

Rayleigh散射:
激发虚态
弹性碰撞;无能
E1 + h0
h(0 - )
量交换,仅改变方向
Raman散射:
h0
非弹性碰撞;方
向改变且有能量交换 E1
E0 + h0
h0 h0 V=1
h0 +
E0
V=0
Rayleigh散射
Raman散射
h
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态;
发生振动能级跃迁需要能量的大小取决于键两端原子 的折合质量和键的力常数,即取决于分子的结构特征。
14.06.2019
分析化学研究所
第8页
分子中基团的基本振动形式
1.两类基本振动形式
伸缩振动
弯曲振动
亚甲基
14.06.2019
亚甲基
分析化学研究所
第9页
伸缩振动
甲基的振动形式
弯曲振动
对称 υ s(CH3) 2870 ㎝-1
频峰
14.06.2019
分析化学研究所
第13页
官能团区和指纹区
• 官能团区 4000~1300cm-1是基团伸缩振动出现的区域,对鉴定 基团很有价值
• 指纹区 1300~600cm-1是单键振动和因变形振动产生的复杂光 谱区,当分子结构稍有不同时,该区的吸收就有细微 的差异,对于区别结构类似的化合物很有帮助。
共轭效应:使共轭体系中的电子云密度平均化,使双键略有伸 长,因此,双键的吸收频率向低波数方向位移。
中介效应:当含有孤对电子的原子(如:O, N, S等)与具有多 重键的原子相连时,也可起类似的共轭作用,使吸收频率向低 波数方向位移。

第三章 红外吸收光谱完整版本ppt课件

第三章 红外吸收光谱完整版本ppt课件

解析完后,进行验证,不饱和度与计 算值是否相符,性质与文献值是否一致, 与标准图谱进行验证
谱图对照应注意:所用的仪器在分辨 率和精确度一致;测定的条件一致;杂质 引进的吸收带应仅可能避免。
.
三、红外光谱解析实例C8H16
例一:未知物分子式为C8H16,其红外图谱如 下图所示,试推其结构。
.
解:由其分子式可计算出该化合物不饱和度为1, 即该化合物具有一个烯基或一个环。
C C 2100
H 763 ,694(双峰)
CO 1638 C(C 芳环)1597 ,1495 ,1445
.

解:
U
2
29
1
7
7
可能含有苯环
2
1638cm1强吸收 为 CO 3270cm1有吸收 NH 1132353123003300ccccmmmm( ( 1111吸强 强收) ) C N含 含NHCCCH 13023608ccmm11 为CH H 1597 ,1495 和 1445cm(1 三峰) 为 C(C 芳环) 763 和 694cm(1 双峰) 为 H(单取代)
❖ 3387、3366 cm-1 :NH2的伸缩振动; ❖ 1624 cm-1 : NH2弯曲振动; ❖ 1274 cm-1 :C-N伸缩振动;
❖综合上述信息及分子式,可知该化合物为:
邻苯二胺
.
图谱解析实例 例1 某化合物,测得分子式为C8H8O,其红外
光谱如下图所示,试推测其结构式。
C8H8O红外光谱图
1查找基团时先否定以逐步缩小范围2在解析特征吸收峰时要注意其它基团吸收峰的干扰3350和1640cm1处出现的吸收峰可能为样品中水的吸收3吸收峰往往不可能全部解析特别是指纹区4掌握主要基团的特征吸收

【2024版】第三章-红外吸收光谱分析-4

【2024版】第三章-红外吸收光谱分析-4
CH 3
附图A1 固载氯烷基硅氧烷原料硅胶在常温时测 定的IR谱图
附图A2 固载氯烷基硅氧烷的硅胶中间体在常温 时测定的IR谱图
附图A3 氯烷基硅氧烷做偶联剂研制的杀菌剂产 品在常温时测定的IR谱图
附图A4 固载氯烷基硅氧烷原料硅胶在200℃时测 定的IR谱图
附图A6 固载氯烷基硅氧烷的硅胶中间体在 200℃时测定的IR谱图
MeO
MeO Si O SiCH 2CH2CH2Cl + MeOH
MeO
以硅胶为载体通过γ-氯丙基三甲氧基硅烷固载 季铵盐制备水不溶性杀菌剂
CH 3
Si
CH2Cl + N CnH2n+1
Si
CH 2
CH 3
叔胺可以是 N,N-二甲基-n 烷基胺,n 为 12-18。
CH 3 N + CnH2n+1Cl-
入封闭液体池中,液层厚度一般为 0.01~1mm。
液体和溶液试样
液体和溶液试样
(2)液膜法 ➢ 沸点较高的试样,直接滴在两片盐片之间,形成液膜。 ➢ 一些固体也可以溶液的形式进行测定。 ➢ 常用的红外光谱溶剂应在所测光谱区内本身没有强烈的
吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 如CS2(1350-600cm-1)和CCl4(4000-1350 cm-1) 等。
(3)试样的浓度和测试厚度应选择适当,以使光谱图中 的大多数吸收峰的透射比处于20%~80%范围内。
制样的方法
1 .气体样品 气态样品可在玻璃气槽内进行测定,它
的两端粘有红外透光的NaCl或KBr窗片。先 将气槽抽真空,再将试样注入。
气体样品
液体和溶液试样
(1)液体池法 沸点较低,挥发性较大的试样,可注

第三章 红外光谱

第三章 红外光谱

不特征

类别
键和官能团
C=O R-CHO C=O

1750-1680 2720

(cm-1)


醛、酮
羧酸
1770-1750(缔合时在1710) 气相在3550,液固缔合时在 3000-2500(宽峰) 1800 1860-1800 1735 1690-1650 3520,3380(游离)缔合降低100 2260-2210 1800-1750
1670(弱-无)
ห้องสมุดไป่ตู้

共轭烯烃
与烯烃同
向低波数位移,变宽
与烯烃同
吸收峰 振

化合物
C=C,CC,C=C-C=C C-H拉伸 (或伸缩) 苯环 3310-3300 一取代 对称 2140-2100弱 无
C-H弯析
炔烃
较强
非对称二取代2260-2190弱
700-600 强
芳烃
取代芳烃
3110-3010中
一、红外光谱的八个峰区
4000-1500cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1500-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的
吸收峰,其特点是谱带密集、难以辨认。
二、重要官能团的红外特征吸收
C-H拉伸(或伸缩)
1600中 1500强
1580弱 1450弱-无
670弱 倍频 2000-1650 一取代770-730, 710-690强 二取代
同芳烃
同芳烃
邻- 770-735强 间- 810-750强 710-690中 对- 833-810强
泛频 2000-1660

红外吸收光谱分析

红外吸收光谱分析

吸收峰位置σ(cm-1) 1429 1667 2222
2920
§4 分子振动的形式
多原子中基团的振动形式极为复杂,振动形式的总 数可如下计算
非直线型分形 子式 的 3原 = 总子 振 6数 动 直线型分子式 的3= 总 原振 子 5动 数形
非直线型分子以水分子为例
直线型分子以CO2为例
二、多原子分子的振动
合物
位置
1715 1805
1735 ~1740
1740 ~1770
~1680
1775
~1700
1710
1750
1750~ 1800
羧酸、酰卤、酸酐、 酰亚胺
羧酸与羧酸盐: 2700~3300、双峰 (1550~ 1620)+(1330~1420)
酰卤:
向高频移动
RCOF:1850 RCOCl:1795
900~600cm-1
应用:
1 (CH2)n:n≥4,722;n减小,吸收峰红移; 2 烯烃
RCH=CH2 890(较强)
RHC=CHR
顺式
反式
690(弱)
970(强)
CH3
3 C C H 3 :(1370~1380)+(1380~1385)双峰
4 苯环取代情况 苯环:1600、1580、1500cm-1处、两 到三个峰
当C=C与C=O共轭时,吸收强度较低; 苯环取代情况主要看700~900(强)和
1660~2000cm-1(弱) 单取代:~710和~750双强峰 四个相邻氢:770~735强峰 三个相邻氢:810~750强峰 两个相邻氢:860~800强峰 单独的氢 :900~800弱峰
C=N:1630~1690,强度不定 硝基化合物:~1350 与 ~1560 两强峰 C-O键(1070~1150,强)判断醚、醇、

红外吸收光谱分析(共27张PPT)

红外吸收光谱分析(共27张PPT)
这里弹簧的k值就的原子不是静止不动的,原子在其平衡位置做相 对运动,从而产生振动!原子与原子之间的相对运动无非有 两种情况,即:键长发生变化(伸缩振动),键角发生变化 (弯曲振动)
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其

红外光谱深度解析

红外光谱深度解析

环张力对红外吸收波数的影响: 环数减小,环的张力增大: 环外单键加强,吸收频率增大 环内双键减弱,吸收频率减小
1565cm-1 3060cm-1
35
空间位阻
36
跨环共轭效应
37
偶极场效应
• 偶极场效应(Field effect)是通过分子内空间相对位置 起作用的,只有在立体结构上互相靠近的基团之间才能 产生F效应,例如:
a 蒸气(134℃)b 液体(室温)
22
内部因素---质量效应
化学键
X-H 键的伸缩振动波数(cm-1)
波数(cm-1)
化学键
波数(cm-1)
C-H C=C-H Ar-H C三 C-H
3000 3100-3000 3100-3000
3300
F-H Cl-H
Br-H I-H
Si-H Ge-H
Sn-H
1947年第一台实用的双光束自动记录的红外分光光度计 问世。这是一台以棱镜作为色散元件的第一代红外分光光 度计。
4
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
O
Cl C Cl
C
C
H HH H
υC=O ( cm-1) 1755
O
Cl C H
C
C
H H H Cl
1742
O
HC H
C
C
Cl H H Cl
1728
38
羰基的α位上有卤素 ,因卤素相对位置(空间构型)不 同而引起υC=O的位移作用叫“α卤代酮”规律。

第三章 红外吸收光谱分析-3

第三章 红外吸收光谱分析-3

外部因素
外部因素主要指测定时物质的状态以及溶剂效应等因
素。 同一物质的不同状态,由于分子间相互作用力不同, 所得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到 伴随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时, 可能发生分子间的缔合或形成氢键,导致特征吸收带 频率、强度和形状有较大的改变。 例如,丙酮在气态时的C-H为1742 cm-1 ,而在液态时 为1718 cm-1 。
C=O :→降低
注意:有时在化合物中,I效应与M效应同时存在,如果二者方 向不一致,这时应考虑哪个效应起主导作用。例如,饱和酯的 C=O为1735cm-1,比酮(1715cm-1)高,就是由于I效应大于M效应, 二者的净效应使得电子云密度由氧移向双键中间,使键力常数增 加的缘故。
当含有孤对电子的原子(O、S、N等)与具有多重键
游离羧酸的co键频率出现在1760cm1左右在固体或液体中由于羧酸形成二聚体co键频率出现在1700cm1当两个振动频率相同或相近的基团相邻具有一公共原子时由于一个键的振动通过公共原子使另一个键的长度发生改变产生一个微扰从而形成了强烈的振动相互作用
第三章 红外吸收光谱分析
3.3 基团频率和特征吸收峰
利用指纹区中苯环的C-H面外变形振动吸收峰 和2000~ 1667cm-1区域苯的倍频或组合频吸收 峰,可以共同配合确定苯环的取代类型。下图为不 同的苯环取代类型在2000~ 1667cm-1和 900~600cm-1区域的光谱。
指纹区
变形振动- 亚甲基
指纹区
变形振动 - 甲基
对称δ s(CH3)1380㎝-1
共轭效应- C效应



共轭效应使共轭体系中的电子云密度平 均化。 双键略有伸长,单键略有缩短,即双键 电子云密度降低,化学键力常数变小, 伸缩振动频率向低频方向移动。 共轭效应常引起C=O双键的双键性降低, 伸缩振动频率向低波数位移。

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法(波普分析)

第三章红外光谱分析法紫外-可见吸收光谱常用于研究具有共轭体系的有机化合物,而红外吸收谱则主要研究在振动中伴随偶极矩变化的化合物。

通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可用以鉴定未知物结构组成或确定其化学基团。

由于红外光谱分析特征性强,对气体、液体、固体均可分析,是鉴定有机化合物的最常用的方法之一。

常用的范围是400 - 4000cm-1。

一、红外吸收光谱的基本原理红外吸收光谱产生应满足两个条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。

分子在振动过程中必须有瞬间偶极矩的改变。

对称分子:没有偶极矩,辐射不能引起共振,无红外活性。

如:N2、O2、Cl2 等。

非对称分子:有偶极矩,红外活性。

分子的振动可近似看为一些用弹簧连接的小球的运动。

分子的振动能级(量子化): E振=(V+1/2)hnV:化学键的振动频率;n:振动量子数。

任意两个相邻的能级间的能量差为:K化学键的力常数,与键能和键长有关, m为双原子的折合质量 m =m1m2/(m1+m2)发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征。

多原子分子的振动多原子分子的振动较双原子分子振动复杂得多。

其振动的基本类型有伸缩振动(ν)和弯曲振动(δ)两大类。

伸缩振动是指原子沿键轴方向伸缩,使键长发生周期性变化的振动。

由于振动偶合作用,3个原子以上的基团还可分为对称伸缩振动和不对称伸缩振动,表示为ν对称和ν不对称。

弯曲振动又叫变形或变角振动,指基团键角发生周期性变化的振动。

弯曲振动的力常数较小,因此常出现在低频区。

红外吸收峰的强度主要取决于吸收过程中偶极矩的变化。

变化越大,吸收越强。

通常两个原子的电负性相差越大,吸收越强。

如C=O吸收峰是大多数红外谱图中吸收最强的峰。

二、基团频率与特征吸收峰组成分子的各个基团均有其特定的红外吸收区域。

根据化学健的性质,可将其分为四个区:4000 - 2500 cm-1 氢键区;2500 - 2000 cm-1 参键区;2000 - 1500 cm-1 双键区;1500 - 1000 cm-1 单键区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章红外吸收光谱分析3.1概述3.1.1红外吸收光谱的基本原理红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。

当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。

如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。

图3-1为正辛烷的红外吸收光谱。

红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。

图中的各个吸收谱带表示相应基团的振动频率。

各种化合物分子结构不同,分子中各个基团的振动频率不同。

其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。

图3-1 正辛烷的红外光谱图几乎所有的有机和无机化合物在红外光谱区均有吸收。

除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。

吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。

吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。

也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

因此,红外吸收光谱在化学领域中的应用,大体上可分为两个方面,即分子结构的基础研究和用于化学组成的分析。

首先,红外光谱可以研究分子的结构和化学键。

利用红外光谱法测定分子的键长和键角,以此推断出分子的立体构型;利用红外光谱法测定分子的力常数和分子对称性等,根据所得的力常数就可以知道化学键的强弱;由简正频率来计算热力学函数等等。

其次,红外光谱可对物质的化学组成进行分析,这是它最广泛和最重要的应用。

用红外光谱法可以根据光谱中吸收谱带的位置、形状和强度来推断未知物结构,依照特征吸收谱带的强度来测定官能团和混合物中各组分的含量。

总之,红外吸收光谱法是物质结构研究、定性鉴定和定量分析中不可缺少的工具,在诸多科学研究领域发挥着重要作用。

3.1.2 红外吸收光谱法的特点红外吸收光谱反映的是物质的分子结构,属于分子光谱的范畴,与其他仪器分析法相比较,红外光谱法有如下特点:(1)红外光谱是依据样品在红外光区吸收谱带的位置、强度、形状、个数,并参照谱带与溶剂、聚集态温度、浓度等的关系求化学键的力常数、键长和键角,推测分子的空间构型,判断分子中某种官能团的存在与否,以及各官能团的连接次序,从而确定化合物结构。

(2)红外光谱适用范围广,几乎所有的有机和无机化合物在红外光谱区均有吸收。

无论是纯净物,还是混合物都可以进行分析,并且对任何状态的样品,如气体、液体、可研细的固体或薄膜物质等都适用,对不透光样品还可采用反射技术等等,测定方便,制样简单。

(3)红外光谱特征性高。

由于红外光谱信息多,可以对不同结构的化合物给出特征性的谱图,从“指纹区”就可以确定化合物的异同。

对于一些同分异构体、几何异构体和互变异构体也可以鉴定。

(4)分析时间短。

一般红外光谱做一个样可在10~30min内完成,傅里叶变换技术的采用更是为快速分析、在线分析和化学动力学研究提供了重要手段。

(5) 红外光谱所需样品用量少,一次用样量约1~5mg,有时甚至可以低到几十微克,而且不破坏样品,可以回收。

3.1.3 红外光谱法的应用根据仪器及应用不同,习惯上又将红外光区分为近红外光区、中红外光区、和远红外光区三个区域。

近红外光区的波长范围为12800~4000cm-1(0.78~2.5μm),该光区的吸收谱带主要是由低能电子跃迁、含氢原子团(如O-H、N-H、C-H)伸缩振动的倍频及组合频吸收产生的,可用来研究稀土和其他过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析,测量准确度及精密度与紫外、可见吸收光谱相当。

中红外光区波长范围为4000~200cm-1(2.5~50μm),绝大多数有机化合物和无机离子的基频吸收带都出现在中红外光区。

由于基频振动是分子中吸收最强的振动,所以该区最适于进行化合物的定性和定量分析。

随着傅里叶变换技术的出现,该光谱区也开始用于表面的显微分析,通过衰减全反射、漫反射以及光声测定法等对固体试样进行分析。

由于中红外光谱仪最为成熟、简单,而且已经积累了该区大量的标准谱图数据,因此它是应用最为广泛的光谱区。

通常所说的红外光谱就是指中红外区的光谱。

远红外光区波长范围为200~10cm-1(50~1000μm),气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、骨架振动以及晶体中的晶格振动都在此区。

由于低频骨架振动能灵敏地反映出结构的变化,所以对异构体的研究特别方便。

此外,由于参与金属-配位体振动的原子质量比较大或由于振动力常数比较低,使金属原子与无机及有机配体之间的伸缩振动和弯曲振动的吸收出现在<200cm-1的波长范围,故该区特别适合研究无机化合物,提供晶格能及半导体材料的跃迁能量;还能用于金属有机化合物(包括配合物)、氢键、吸附现象的研究。

但此区能量弱,应用受到了极大的限制。

然而随着傅里叶变换仪器的出现,这个区域的研究又变得活跃起来。

3.2 红外吸收光谱仪3.2.1 色散型红外光谱仪色散型红外光谱仪的基本结构和工作原理如图3-2所示,主要由光源、单色器、检测器、放大器和记录仪等部件组成。

图3-2 色散型光学零位平衡式红外光谱仪示意图作为红外光谱仪的光源,要求能发射出稳定的高强度的连续红外光,中红外区通常使用能斯特灯和硅碳棒。

能斯特灯是由氧化锆、氧化钇和氧化钍等粉末按一定比例混合压制成棒状,并在高温下烧结而成。

能斯特灯在室温下是非导体,加热到700℃以上才成为导体,因此.需由一个辅助加热器预热,当能斯特灯被点燃后,辅助加热器停止加热。

该灯的优点是发出的光强度高,使用寿命较长,可达2000h。

缺点是性脆易碎,且在光源线路上还需加一限制电流的稳流装置。

硅碳棒是由硅碳砂压制成型后经高温烧结而成,在室温下是一导体,工作前不需预热,工作温度为1000℃左右,成品坚固耐用,寿命比能斯特灯长,缺点是电极接触部分需用水冷却。

单色器是由色散元件(光栅或棱镜)、入射与出射狭缝以及准直反射镜等组成。

其功能是将连续光色散为一组波长单一的单色光,然后将单色光按波长大小依次由出射狭缝射出。

红外光谱仪中目前大多采用闪耀光栅,在进行光谱级次分离时采用滤光片或棱镜。

大部分的红外光学材料易吸湿(KRS-5除外),因此,红外光谱仪放置和使用环境应保持干燥。

红外光谱仪常用真空热电偶、高莱槽或测辐射热计等作检测器。

检测器受到红外光照射时,将产生的热效应转变为十分微弱的电信号经放大器放大后,带动伺服马达工作,记录红外吸收光谱,记录方式有光学零位式和比例记录式两类。

这些检测器具有对红外辐射接受灵敏度高,响应快,热容量小等特点。

3.2.2 傅里叶变换红外光谱仪傅里叶变换红外光谱仪(FTIR)是20世纪70年代出现的新—代红外光谱测量技术和仪器。

它没有色散元件,主要由光学检测系统和数据处理系统组成。

取代色散元件的是FTIR 的光学检测系统,由光源、主干涉仪、激光干涉仪、检测器和各种红外反射镜组成,其中主干涉仪是FTIR 的核心部分,最常用的是迈克尔逊干涉仪,包括分束器、定镜、动镜和动镜驱动结构,其结构和工作原理如图3-3所示。

1.动镜驱动机构;2.动镜;3.顶镜;4. 分束器;5. 光源;6.激光检测器;7.红外检测器图 3-3 FTIR 光谱仪和迈克尔逊干涉仪的结构示意图红外光源分束器激光二极管He-Ne 激光样品 动镜x 0 -x动镜移动产生可以预测的周期性信号 检测器迈克逊干涉仪的作用是获得样品干涉图,激光干涉仪的作用是实现干涉图的等间隔取样、动镜速度和移动距离的监控和采样初始位置的确定。

样品干涉图经计算机进行傅里叶变换而得到红外光谱图。

在FI'IR中常用的检测器有通用型的热释电检测器,如TGS(硫酸三甘肽)、DTGS(氘代TGS)、LATGS(L-丙氨酸TGS)、DLATGS(氘代LATGS)),高灵敏的光电导检测器,如MCT(汞镉碲)、锑化铟,和氦冷式热辐射计等。

计算机通过接口与光学测量系统电路相连,把检测器得到的信号经放大器、滤波器等处理,然后送到计算机接口,再经处理后送到计算机数据处理系统,计算结果输出给显示器或打印机。

另外,由键盘输入仪器控制指令,对干涉仪动镜等光学系统进行自动控制。

傅里叶变换红外光谱仪不用狭缝机构和分光系统,消除了狭缝对光谱能量的限制,使光能的利用率大大提高。

使仪器具有测量时间短、高通量、高信噪比、高分辨的特性。

与色散型仪器的扫描不同,傅里叶红外光谱仪能同时测量记录全波段光谱信息,使得在任何测量时间内都能够获得辐射源的所有频率的全部信息。

傅里叶变换红外光谱仪价格贵,环境要求高,但是它具有分辨率高,波数准确度高,扫描时间短,灵敏度高,测量范围宽、极低的杂散光等特点,使得它可用于快速化学反应的追踪、研究瞬间的变化,同时又特别适合与各种仪器联机,如与色谱仪联用的GC- FTIR,与超临界色谱联用的SFC- FTIR,与热重联用的FTIR-TGA,因而发展迅速,并逐步取代色散型红外光谱仪。

3.3 操作要领下面以美国热电公司Nexus470 FTIR为例介绍FTIR仪器的操作要领。

1. 开机:打开仪器光学台(主机)的电源开关;打开计算机的电源开关,双击OMNIC图标.打开OMNIC应用软件。

2. 检查光谱仪的工作状态在OMNIC窗口的Bench Status(光学台状态)指示显示绿色“√”,即为正常。

3. 设定光谱收集参数:在Collect命令下单击Experiment Setup,弹出如下菜单,按实验要求设置包括采集的波数范围、扫描次数、光谱分辨率、显示所收集数据的形式等参数,也可以在实验设置下拉列表框中选择已有的实验方法。

实验设置下拉列表框采集背景按钮采集样品按钮4. 采集试样的光谱图,按软件的提示,在确认光路中没有试样时,采集背景的干涉图;将制好的试样插入光路,采集试样的干涉图。

计算机将自动进行傅里叶变换和背景扣除处理,最后给出扣除背景后的试样红外光谱图。

5. 光谱处理:对试样光谱图进行基线校正、平滑和标峰等处理。

6. 从试样架上移走试样。

7. 结果的处理:建立或选取摸板,按要求填入谱图和其他必要信息,而后以报告的形式打印出来,或加入笔记本中保存。

相关文档
最新文档