广东省高考理科数学试卷
广东高考数学试题及答案2024

广东高考数学试题及答案2024一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若函数\( f(x) = x^2 - 4x + 3 \)的最小值是\( m \),则\( m \)的值为:A. 0B. 1C. 2D. 3答案:B2. 已知直线\( l_1 \)的方程为\( y = 2x + 1 \),直线\( l_2 \)的方程为\( y = -x + 3 \),则这两条直线的交点坐标为:A. (1, 3)B. (2, 3)C. (1, 2)D. (2, 1)答案:A3. 若复数\( z = 1 + i \),求\( z^2 \)的实部与虚部的和:A. 0B. 1C. 2D. 3答案:C4. 已知等差数列\( \{a_n\} \)的首项\( a_1 = 2 \),公差\( d = 3 \),求第10项\( a_{10} \)的值:A. 29B. 30C. 31D. 32答案:B5. 若三角形\( ABC \)的内角\( A \),\( B \),\( C \)满足\( A +B = 2C \),且\( \cos C = \frac{1}{2} \),则\( \sin A \)的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. \( \frac{\sqrt{6}}{3} \)答案:D6. 已知函数\( y = \ln(x+1) \)在点\( (0,0) \)处的切线斜率为:A. 1B. 0C. \( \frac{1}{e} \)D. \( \frac{1}{2} \)答案:A7. 若\( \sin \theta = \frac{3}{5} \),\( \theta \)为锐角,则\( \cos 2\theta \)的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{16}{25} \)D. \( \frac{9}{25} \)答案:B8. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)的离心率为\( \frac{\sqrt{3}}{2} \),且\( a = 4 \),则\( b \)的值为:A. 2B. 4C. 6D. 8答案:C二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生国统一考试数学理试题广东卷,含答案 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学理试题〔卷,含答案〕本套试卷一共4页,21小题,总分值是150分。
考试用时120分钟。
本卷须知:〔B 〕填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选做题时.请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题一一共10小题,每一小题5分,总分值是50分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.假设集合A={x|-2<x <1},B=A={x|0<x <2},那么集合A ∩B=A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1}2.假设复数z 1=1+i,z 2=3-i,那么z1`z1=A.4+2iB.2+iC.2+2iD.3+i3.假设函数f(x)=3x +3x -与g(x)=33x x --的定义域均为R ,那么A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.数列{n a }为等比数列,n s5是它的前n 项和,假设2a *3a =2a .,且4a 与27a 的等差中项为54,那么5s = A .35B .33 C .3lD .295.“14m <〞是“一元二次方程20x x m ++=有实数解〞的 6.如图1,ABC 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA 那么多面体'''ABC A B C -的正视图(也称主视图)是7.随机量X 服从正态分布N 〔3,1〕,且P 〔2≤X ≤4〕=0.6826,那么P(X >4)=A.0.1588B.0.1587 C8.为了迎接2021年亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙黄绿蓝中的一种颜色,且这个5个彩灯所闪亮的颜色各不一样,记住5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间是间隔均为5秒,假设要实现所有不同的闪烁,那么需要的时间是至少是二、填空题:本大题一一共7小题.考生答题6小题.每一小题5分,总分值是30分(一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是10.假设向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b =-2,那么x=11.a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,假设a =1,b =3,A +C =2B ,那么sin C =.12.假设圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,那么圆O 的方程是.13.某城缺水问题比较突出,为了制定节水管理方法,对全居民某年的月均用水量进展了抽样调查,其中n位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,假设1x ,2x ,分别为1,2,那么输出的结果s 为.选做题〔14、15题,考生只能从中选做一题〕14.〔几何证明选讲选做题〕如图3,AB,CD 是半径为a 的圆O 的两条弦,他们相交于AB 的中点P ,23aPD =,∠OAP=30°那么CP=15.〔坐标系与参数方程选做题〕在极坐标系〔ρ,θ〕〔02θπ≤<〕中,曲线2sin cos 1ρθρθ==-与的极坐标为.三、解答题:本大题一一共6小题,总分值是80分.解答须写出文字说明、证明过程和演算步骤.16.〔本小题总分值是l4分〕17.〔12分〕某食品厂为了检查一条自动包装流水线的消费情况,随机抽取该流水线上的40件产品作为样本称出它们的重量〔单位:克〕,重量的分组区间为〔490,495】,〔495,500】,……,〔510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
2021广东高考理科数学试卷及答案解析(word版)

普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D.{0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z= A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A 3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等B.虚半轴长相等C. 实半轴长相等D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20B. 100,20 C. 200,10D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为.(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为.'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba . 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab acaa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=.51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f,)2,0(πθ∈,求)43(θπ-f .55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则0022,CD 2,30,130,==1,213324,,,=,,,3,222333319322EG .,7,,4231933193193622,()()474747EHG D AF E DPC CDF CF CD DE CF CP EF DC DE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅⋅======⋅⋅∴====-=为二面角的平面角设从而∥即还易求得EF=从而易得故3,476347257cos .47319GH EHG EH ∴∠==⋅=12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431(,0),(ADF CP (3,1,0),2222AEF (x DP DC DA x y z DC A CF CP F DF CFF E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><-->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<<-<-∴-<-<-<-+<-+∴=-∞------+---+-+∞=>=-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--+>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<--+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x x kx x k kk g x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。
2020年广东高考(理科)数学试题及答案

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题).1.若z=1+i,则|z2﹣2z|=()A.0B.1C.D.22.设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x 的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+17.设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.209.已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=()A.B.C.D.10.已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB =BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π11.已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线1:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=0 12.若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试数学理试题(广东卷,含答案)

普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2022年广东省高考数学试卷(理科)含解析

2022年广东省高考数学试卷(理科)含解析Colin2912106572022年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每题5分,满分40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.) 1.(5分)(2022?广东)假设集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},那么M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D. 2.(5分)(2022?广东)假设复数z=i(3﹣2i)(i是虚数单位),那么=()2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 3.(5分)(2022?广东)以下函数中,既不是奇函数,也不是偶函数的是()xx A.B. C. D. y=x+e y=2+ y= y=x+ 4.(5分)(2022?广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为() 1 A.B. C. D. 5.(5分)(2022?广东)平行于直线2x+y+1=0且与圆x+y=5相切的直线的方程是() A.2x+y+5=0或2x+y﹣5=0 B. 2x+y+=0或2x+y﹣=0 2x﹣y+5=0或2x﹣y﹣5=0 C.D.2 x﹣y+=0或2x﹣y﹣=0 6.(5分)(2022?广东)假设变量x,y满足约束条件 4 A. 7.(5分)(2022?广东)已知双曲线C:那么双曲线C的方程为()A.B.﹣=1 ﹣=1 ﹣ =1的离心率e=,且其右焦点为F2(5,0),B. 6 C.,那么z=3x+2y的最小值为()D. 22C.﹣=1 D.﹣=1 8.(5分)(2022?广东)假设空间中n个不同的点两两距离都相等,那么正整数n的取值() A.至多等于3 B.至多等于4 C.等于5 D.大于5第1页(共18页)Colin291210657二、填空题(本大题共7小题,考生作答6小题,每题5分,满分30分.)(一)必做题(11~13题)49.(5分)(2022?广东)在(﹣1)的展开式中,x的系数为. 10.(5分)(2022?广东)在等差数列{an}中,假设a3+a4+a5+a6+a7=25,那么a2+a8= .11.(5分)(2022?广东)设△ABC的内角A,B,C的对边分别为a,b,c.假设a=C=,那么b= .,sinB=,12.(5分)(2022?广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答) 13.(5分)(2022?广东)已知随机变量X服从二项分布B(n,p),假设E(X)=30,D(X)=20,那么P= .14.(5分)(2022?广东)已知直线l的极坐标方程为2ρsin(θ﹣为A(2,),那么点A到直线l的距离为.)=,点A的极坐标15.(2022?广东)如图,已知AB是圆O的直径,AB=4,EC是圆O 的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,那么OD= .三、解答题16.(12分)(2022?广东)在平面直角坐标系xOy中,已知向量=(cosx),x∈(0,).,﹣),=(sinx,(1)假设⊥,求tanx的值;(2)假设与的夹角为第2页(共18页),求x的值.Colin29121065717.(12分)(2022?广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄 1 40 10 36 19 27 28 34 2 44 11 31 20 43 29 39 3 40 12 38 21 41 30 43 4 41 13 39 22 37 31 38 5 33 14 43 23 34 32 42 6 40 15 45 24 42 33 53 7 45 16 39 25 37 34 37 8 42 17 38 26 44 35 49 9 43 18 36 27 42 36 39 (1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)? 18.(14分)(2022?广东)如图,三角形△PDC 所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E 是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.219.(14分)(2022?广东)设a>1,函数f(x)=(1+x)e﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)假设曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤20.(14分)(2022?广东)已知过原点的动直线l与圆C1:x+y﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?假设存在,求出k的取值范围;假设不存在,说明理由.222x﹣1.第3页(共18页)Colin291210657 +21.(14分)(2022?广东)数列{an}满足:a1+2a2+…nan=4﹣(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=Sn<2+2lnn.,n∈N.+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足第4页(共18页)Colin2912106572022年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每题5分,满分40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.) 1.(5分)(2022?广东)假设集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},那么M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D.考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4}, N={x|(x﹣4)(x﹣1)=0}={1,4},那么M∩N=?.应选:D.点评:此题考查集合的基本运算,交集的求法,考查计算能力. 2.(5分)(2022?广东)假设复数z=i(3﹣2i)(i是虚数单位),那么=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法那么化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i,那么=2﹣3i,应选:A.点评:此题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力. 3.(5分)(2022?广东)以下函数中,既不是奇函数,也不是偶函数的是() xx A.B. C. D. y=x+e y=2+ y= y=x+ 考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2+x 是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f (﹣x)=﹣f(x),所以函数既不是奇函第5页(共18页)。
2021年广东省高考数学试卷(理科)含解析

2021年广东省高考数学试卷(理科)含解析Colin2912106572021年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2021?广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D. 2.(5分)(2021?广东)若复数z=i (3﹣2i)(i是虚数单位),则=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 3.(5分)(2021?广东)下列函数中,既不是奇函数,也不是偶函数的是() xx A.B. C. D. y=x+e y=2+ y= y=x+ 4.(5分)(2021?广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为() 1 A.B. C. D. 5.(5分)(2021?广东)平行于直线2x+y+1=0且与圆x+y=5相切的直线的方程是() A.2x+y+5=0或2x+y﹣5=0 B. 2x+y+=0或2x+y﹣=0 2x﹣y+5=0或2x﹣y﹣5=0 C.D.2 x﹣y+=0或2x﹣y﹣=0 6.(5分)(2021?广东)若变量x,y满足约束条件 4 A. 7.(5分)(2021?广东)已知双曲线C:则双曲线C的方程为() A.B.﹣=1 ﹣=1 ﹣=1的离心率e=,且其右焦点为F2(5,0),B. 6 C.,则z=3x+2y的最小值为()D. 22C.﹣=1 D.﹣=1 8.(5分)(2021?广东)若空间中n个不同的点两两距离都相等,则正整数n的取值() A.至多等于3 B.至多等于4 C.等于5 D.大于5第1页(共18页)Colin291210657二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)49.(5分)(2021?广东)在(﹣1)的展开式中,x的系数为.10.(5分)(2021?广东)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8= .11.(5分)(2021?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=C=,则b= .,sinB=,12.(5分)(2021?广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)(2021?广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .14.(5分)(2021?广东)已知直线l的极坐标方程为2ρsin(θ﹣为A(2 ,),则点A到直线l的距离为.)=,点A的极坐标15.(2021?广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= .三、解答题16.(12分)(2021?广东)在平面直角坐标系xOy中,已知向量=(cosx),x∈(0,).,﹣),=(sinx,(1)若⊥,求tanx的值;(2)若与的夹角为第2页(共18页),求x的值.Colin29121065717.(12分)(2021?广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄 1 40 10 36 19 27 28 34 2 44 11 31 20 43 29 39 3 40 12 38 21 41 30 43 4 41 13 39 22 37 31 38 5 33 14 43 23 34 32 42 6 40 15 45 24 42 33 53 7 45 16 39 25 37 34 37 8 42 17 38 26 44 35 49 9 43 18 36 27 42 36 39 (1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)? 18.(14分)(2021?广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G 分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.219.(14分)(2021?广东)设a>1,函数f(x)=(1+x)e﹣a.(1)求f (x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤20.(14分)(2021?广东)已知过原点的动直线l与圆C1:x+y﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.222x﹣1.第3页(共18页)Colin291210657+21.(14分)(2021?广东)数列{an}满足:a1+2a2+…nan=4﹣(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=Sn<2+2lnn.,n∈N.+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足第4页(共18页)Colin2912106572021年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2021?广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=() [0} ? A.{1,4} B. {﹣1,﹣4} C. D.考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4}, N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=?.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力. 2.(5分)(2021?广东)若复数z=i(3﹣2i)(i是虚数单位),则=() 2+3i 3+2i A.2﹣3i B. C. D. 3﹣2i 考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力. 3.(5分)(2021?广东)下列函数中,既不是奇函数,也不是偶函数的是() xxA.B. C. D. y=x+e y=2+ y= y=x+ 考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2+x是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函第5页(共18页)。
2023广东高考卷(理科数学)试题及详解

专业课原理概述部分一、选择题(每题1分,共5分)1. 设集合M={x|x²3x+2=0},则集合M的元素个数为()A. 0B. 1C. 2D. 32. 已知函数f(x)=2x3,则f(f(1))的值为()A. 5B. 3C. 1D. 33. 若向量a=(2,3),b=(1,2),则2a3b的模长为()A. 5B. 10C. 15D. 204. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 45. 若复数z满足|z1|=|z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 直线y=x上D. 直线y=x上二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是一个实数。
()2. 若函数f(x)在区间[a,b]上单调递增,则f'(x)≥0。
()3. 两个平行线的斜率相等。
()4. 在等差数列中,若m+n=2p,则am+an=2ap。
()5. 两个复数相等的充分必要条件是它们的实部和虚部分别相等。
()三、填空题(每题1分,共5分)1. 已知函数f(x)=x²+2x+1,则f(1)=______。
2. 若向量a=(3,4),则3a的坐标为______。
3. 在等差数列{an}中,若a1=1,公差d=2,则a5=______。
4. 若复数z=3+4i,则|z|=______。
5. 二项式展开式(2x3y)⁴的项数为______。
四、简答题(每题2分,共10分)1. 求函数f(x)=x²2x+1在x=2处的导数。
2. 已知等差数列{an}的通项公式为an=3n2,求前5项的和。
3. 求复数z=1+i的共轭复数。
4. 求解不等式2x3>0。
5. 简述平面直角坐标系中,两点间距离的公式。
五、应用题(每题2分,共10分)1. 已知函数f(x)=x²4x+3,求函数的最小值及对应的x值。
2. 已知向量a=(2,3),b=(1,2),求向量a和向量b的夹角。
2024年广东高考数学真题(含答案)

2024年广东高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
最新普通高等学校招生理科数学全国统一考试试题(广东卷)(含解析)

普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体地 体积公式()1213V S S h=,其中12,S S分别是台体地 上、下底面积,h 表示台体地 高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出地 四个选项中,只有一项是符合题目要求地 . 1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N =U ( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N =U {}2,0,2-,故选D .2.定义域为R 地 四个函数3y x =,2xy =,21y x=+,2sin y x=中,奇函数地 个数是( )A . 4B .3C .2D .1【解析】C ;考查基本初等函数和奇函数地 概念,是奇函数地 为3y x =与2sin y x =,故选C .3.若复数z 满足24iz i =+,则在复平面内,z 对应地 点地 坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,2 【解析】C ;2442iz i i+==-对应地 点地 坐标是()4,2-,故选C .4.已知离散型随机变量X 地 分布列为X123P35310110则X 地 数学期望EX = ( )A . 32B .2D .3【解析】A ;33115312351010102EX =⨯+⨯+⨯==,故选A .5.某四棱台地 三视图如图所示,则该四棱台地 体积是 ( )A . 4B .143C .163D .6【解析】B ;由三视图可知,该四棱台地 上下底面边长分别为正视图俯视图侧视图第5题图1和2地 正方形,高为2,故()2211412233V =⨯=,,故选B .6.设,m n 是两条不同地 直线,,αβ是两个不同地 平面,下列命题中正确地 是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D . 7.已知中心在原点地 双曲线C 地 右焦点为()3,0F ,离心率等于32,在双曲线C 地 方程是 ( )A . 2214x = B .22145x y -= C .22125x y -=D .2212x -=【解析】B ;依题意3c =,32e =,所以2a =,从而24a=,2225b c a =-=,故选B .8.设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确地 是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S∉,(),,x y w S ∈【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x<<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈. 二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题) 9.不等式220xx +-<地 解集为【解析】()2,1-;易得不等式220xx +-<地10.若曲线ln y kx x =+在点()1,k 处地 切线平行于x 轴,则k =______.【解析】1-;求导得1y k x'=+,依题意10k +=,所以1k =-.11.执行如图所示地 程序框图,若输入n 地 值为4,则输出s 地 值为______.【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.12. 在等差数列{}na 中,已知3810a a+=,则573a a +=_____.【解析】20;依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=.或:()57383220a aa a +=+=13. 给定区域D:4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()00{,T x y =是z x y =+在D 上取得最大值或最小值地地 点共确定______ 条不同地 直线.【解析】6;画出可行域如图所示,其中z x y =+取得最小值时地 整点为()0,1,取得最大值时地 整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同地 直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答地 ,只计前一题地 得分)14.(坐标系与参数方程选讲选做题)已知曲线C 地参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处地 切第15题图线为l ,以坐标原点为极点,x 轴地 正半轴为极轴建立极坐标系,则l 地 极坐标方程为_____________. 【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭C 地 普通方程为222xy +=,其在点()1,1处地 切线l 地 方程为x 极坐标方程为cos sin 2ρθρθ+=,即sin ρθ⎛⎝15. (几何证明选讲选做题)如图,AB 是圆O 地 直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 地 切线交AD 于E .若6AB =,2ED =,则BC =_________.【解析】ABC CDE∆∆:,所以AB BCCD DE=,又BC CD=,所以212BCAB DE =⋅=,从而BC =三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭地 值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭. 【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 17.(本小题满分12分)1 7 92 0 1 53 0第17题图某车间共有12名工人,随机抽取6名,他们某日加工零件个数地 茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值地 工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人地 概率.【解析】(Ⅰ) 样本均值为1719202125301322266+++++==; (Ⅱ) 由(Ⅰ)知样本中优秀工人占地 比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.C DOBE'AH(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E分别是,AC AB 上地 点,CD BE ==O为BC 地 中点.将ADE ∆沿DE 折起,得到如图2所示地四棱锥A BCDE '-,其中A O '=. (Ⅰ) 证明:A O '⊥平面BCDE; (Ⅱ) 求二面角A CD B '--地 平面角地 余弦值. 【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD =由翻折不变性可知A D '=,.CO BDE A CD OBE 'A图1图2所以222A OOD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =I ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 地 延长线于H ,连结A H ',因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--地 平面角.结合图1可知,H 为AC中点,故2OH =,从而A H '==所以cos 5OH A HO A H'∠==',所以二面角A CDB '--地 平面角地 向量法:以O 如图所示,则(A ',()0,3,0C -,()1,2,0D -所以(CA '=u u u r,(1,DA '=-u u u u r设(),,n x y z =r为平面A CD '地 法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩r u u u rr u u u u r,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =-r由(Ⅰ)知,(OA '=u u u r为平面CDB 地 一个法向量,所以cos ,5n OA n OA n OA '⋅'==='r u u u rr u u u r r u u u r ,即二面角A CD B '--地 平面角地19.(本小题满分14分)设数列{}n a 地 前n项和为nS .已知11a =,2121233n n S a n n n +=---,*n ∈N .(Ⅰ) 求2a 地 值;(Ⅱ) 求数列{}na 地 通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174na a a +++<L . 【解析】(Ⅰ) 依题意,12122133Sa =---,又111Sa ==,所以24a =;(Ⅱ) 当2n ≥时,32112233nn Sna n n n+=---, ()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133nn n a na n a n n n +=----+---整理得()()111nn n ana n n ++=-+,即111n na a n n +-=+,又21121a a-= 故数列na n ⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1地 等差数列, 所以()111na n n n =+-⨯=,所以2nan =.(Ⅲ) 当1n =时,11714a=<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111na n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L L11171714244n n =++-=-< 综上,对一切正整数n ,有1211174na a a +++<L . 20.(本小题满分14分)已知抛物线C 地 顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=地设P 为直线l 上地 点,过点P 作抛物线C 地 两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 地 方程;(Ⅱ) 当点()0,P x y 为直线l 上地 定点时,求直线AB地 方程;(Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅地 最小值.【解析】(Ⅰ) 依题意,设抛物线C 地 方程为24x cy=,2=0c >,解得1c =.所以抛物线C 地 方程为24xy=.(Ⅱ) 抛物线C 地 方程为24xy=,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 地斜率分别为112x ,212x , 所以切线PA 地 方程为()1112xy y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 地 方程为22220x x y y--=因为切线,PA PB 均过点()0,P x y ,所以1001220x xy y --=,2002220x x y y --=所以()()1122,,,x y x y 为方程0220x x yy --=地 两组解.所以直线AB 地 方程为0220x x y y--=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y=+,所以()()()121212111AF BF y yy y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y yx y y +-+=由一元二次方程根与系数地 关系可得212002y y x y +=-,2120y yy =所以()221212000121AF BF y yy y y x y ⋅=+++=+-+ 又点()0,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++⎪⎝⎭所以当012y=-时, AF BF ⋅取得最小值,且最小值为92.21.(本小题满分14分)设函数()()21xf x x ekx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 地 单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上地 最大值M.【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222xx x x f x ex e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x=当x 变化时,()(),f x f x '地 变化如下表:右表可知,函数()f x 地 递减区间为()0,ln 2,递增区间为(),0-∞,()ln 2,+∞. (Ⅱ)()()()1222xx x x f x ex e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2xk =,令()()ln 2g k k k =-,则()1110k g k k k-'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3max 0,max 1,1kM f f k k e k ==---令()()311kh k k ek =--+,则()()3kh k k ek '=-,令()3k k e k ϕ=-,则()330k k ee ϕ'=-<-< 所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>, 当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为17028h ⎛⎫=> ⎪⎝⎭,()10h =,所以()0h k ≥在1,12⎛⎤ ⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上地 最大值()31k M k e k =--.。
广东省2020年高考[理数]考试真题与答案解析
![广东省2020年高考[理数]考试真题与答案解析](https://img.taocdn.com/s3/m/be0efd5f30b765ce0508763231126edb6f1a7614.png)
A .B .10π97C .D .4π338.的展开式中x 3y 3的系数为25()()x x y xy ++A .5B .10C .15三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第每个试题考生都必须作答。
第已知A 、B 分别为椭圆E :(a >1)的左、右顶点,G 为E 的上顶点,2221x y a+=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为8AG GB ⋅=D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数.2()e x f x ax x =+-(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围.12(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正xOy 1C cos ,sin kkx t y t⎧=⎪⎨=⎪⎩(t )x 半轴为极轴建立极坐标系,曲线的极坐标方程为.2C 4cos 16sin 30ρθρθ-+=(1)当时,是什么曲线?1k =1C (2)当时,求与的公共点的直角坐标.4k =1C 2C 23.[选修4—5:不等式选讲](10分)已知函数.()|31|2|1|f x x x =+--(1)画出的图像;()y f x =(2)求不等式的解集.()(1)f x f x >+则.25cos ,|||5⋅==n m n m n m |所以二面角的余弦值为.B PC E --25519.解:(1)甲连胜四场的概率为.116(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为;116乙连胜四场的概率为;116丙上场后连胜三场的概率为.18所以需要进行第五场比赛的概率为.11131161684---=(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为.18比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为,,.1161818因此丙最终获胜的概率为.111178168816+++=20.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则,=(a ,–1).由=8得a 2–1=8,即a =3.(,1)AG a = GB AG GB ⋅所以E 的方程为+y 2=1.29x (2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线PA 的方程为y =(x +3),所以y 1=(x 1+3).9t9t直线PB 的方程为y =(x –3),所以y 2=(x 2–3).3t 3t可得3y 1(x 2–3)=y 2(x 1+3).由于,故,可得,222219x y +=2222(3)(3)9x x y +-=-121227(3)(3)y y x x =-++即①221212(27)(3)()(3)0.m y y m n y y n ++++++=将代入得x my n =+2219x y +=222(9)290.m y mny n +++-=所以,.12229mn y y m +=-+212299n y y m -=+代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++=解得n =–3(含去),n =.32故直线CD 的方程为,即直线CD 过定点(,0).3=2x my +32若t =0,则直线CD 的方程为y =0,过点(,0).32综上,直线CD 过定点(,0).3221.解:(1)当a =1时,f (x )=e x +x 2–x ,则=e x +2x –1.()f x '故当x ∈(–∞,0)时,<0;当x ∈(0,+∞)时,>0.所以f (x )在(–∞,()f x '()f x '0)单调递减,在(0,+∞)单调递增.(2)等价于.31()12f x x ≥+321(1)e 12x x ax x --++≤设函数,则321()(1)e (0)2xg x x ax x x -=-++≥32213()(121)e 22xg x x ax x x ax -'=--++-+-21[(23)42]e 2xx x a x a -=--+++.1(21)(2)e 2x x x a x -=----(i )若2a +1≤0,即,则当x ∈(0,2)时,>0.所以g (x )在(0,2)单调递12a ≤-()g x '增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈1122a -<<(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥.27e4-所以当时,g (x )≤1.27e 142a -≤<(iii )若2a +1≥2,即,则g (x )≤.12a ≥31(1)e 2xx x -++由于,故由(ii )可得≤1.27e 10[,)42-∈31(1)e 2x x x -++故当时,g (x )≤1.12a ≥综上,a 的取值范围是.27e [,)4-+∞22.解:(1)当k =1时,消去参数t 得,故曲线是圆心为坐标原点,1cos ,:sin ,x t C y t =⎧⎨=⎩221x y +=1C 半径为1的圆.(2)当k =4时,消去参数t 得的直角坐标方程为.414cos ,:sin ,x t C y t ⎧=⎪⎨=⎪⎩1C 1x y +=的直角坐标方程为.2C 41630x y -+=由解得.1,41630x y x y ⎧+=⎪⎨-+=⎪⎩1414x y ⎧=⎪⎪⎨⎪=⎪⎩故与的公共点的直角坐标为.1C 2C 11(,)4423.解:(1)由题设知13,,31()51,1,33, 1.x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪⎪+>⎪⎩的图像如图所示.()y f x =(2)函数的图像向左平移()y f x =的图像与()y f x =(y f x =+。
广东理科数学历年高考卷与答案解析

广东理科数学历年高考卷与答案解析(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设集合A={x|x^23x+2=0},则集合A的元素个数为()。
A. 0B. 1C. 2D. 32. 若复数z满足|z1|=1,则z的虚部的取值范围是()。
A. [1, 1]B. (1, 1)C. [1, 0) U (0, 1]D. (1, 0) U (0, 1)3. 已知函数f(x)=x^33x,则f'(x)的零点个数为()。
A. 0B. 1C. 2D. 34. 在等差数列{an}中,若a1=1,a3=3,则数列的公差d为()。
A. 1B. 2C. 3D. 45. 若向量a=(2, 3),向量b=(1, 2),则2a+3b的模长为()。
A. 5B. 7C. 9D. 116. 若函数y=cos(2xπ/3)的图像向右平移π/6个单位,则新函数的解析式为()。
A. y=cos(2xπ/6)B. y=cos(2x+π/6)C. y=sin(2xπ/6)D.y=sin(2x+π/6)7. 若不等式x^22ax+a^2+1>0对于所有实数x恒成立,则实数a的取值范围是()。
A. a<1B. a>1C. a≠0D. a∈R二、判断题(每题1分,共20分)8. 若函数f(x)在区间[0, 1]上单调递增,则f'(x)在[0, 1]上恒大于0。
()9. 若矩阵A为3阶方阵,且|A|=0,则A一定不可逆。
()10. 任何两个实数的和都是实数。
()11. 若直线l的斜率为0,则l与x轴平行。
()12. 若a, b为实数,且a≠b,则函数f(x)=(xa)(xb)的图像必过点(a, 0)和点(b, 0)。
()13. 若函数f(x)在x=0处可导,则f'(0)存在。
()14. 若数列{an}为等比数列,且a1=1,则数列的通项公式为an=q^(n1)。
()三、填空题(每空1分,共10分)15. 已知函数f(x)=x^22x+1,则f(x)的最小值为______。
广东高考理科数学试题含答案(Word版)

普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 . '5'0:530:5,5,35,530.x x x y y e y y x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DCDE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><-->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<-+<-∴-<--<-<-+-∴=-∞------+---+-+∞=>=-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<-+-+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x x kx x k k kg x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-<<-+---⋃---⋃-⋃-+-++<>从而综合题意欲使则即的解集为:上所述。
2022年广东省高考数学试卷(新高考I)(含答案)

2022年广东省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共45分)1. 若函数f(x) = x^2 4x + 3,则下列哪个选项是正确的?A. f(x)在x=1处取得最小值B. f(x)在x=2处取得最大值C. f(x)在x=3处取得最小值D. f(x)在x=4处取得最大值2. 若a > b > 0,则下列哪个选项是正确的?A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a/b > 13. 若等差数列{an}的前n项和为Sn,且S10 = 100,则a1 + a10的值为多少?A. 20B. 10C. 5D. 24. 若正弦函数y = sin(x)在x = π/4时的值为√2/2,则下列哪个选项是正确的?A. y在x = π/2时的值为1B. y在x = 3π/4时的值为√2/2C. y在x = π时的值为0D. y在x = 2π时的值为15. 若等比数列{bn}的公比为q,且b2 = 4,b3 = 8,则q的值为多少?A. 2B. 4C. 1/2D. 1/46. 若复数z满足|z 1| = 2,则z在复平面上的轨迹是什么?A. 圆心在(1,0),半径为2的圆B. 圆心在(1,0),半径为2的圆C. 圆心在(0,1),半径为2的圆D. 圆心在(0,1),半径为2的圆7. 若直线y = kx + b与曲线y = x^2相切,则k的值为多少?A. 1B. 1C. 2D. 28. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 + 3n,则a1的值为多少?A. 5B. 7C. 9D. 119. 若函数f(x) = log(x)在x = 1时的值为0,则下列哪个选项是正确的?A. f(x)在x = 10时的值为1B. f(x)在x = 0.1时的值为1C. f(x)在x = 100时的值为2D. f(x)在x = 0.01时的值为210. 若圆的方程为(x 2)^2 + (y + 3)^2 = 16,则圆的半径是多少?A. 4B. 2C. 8D. 111. 若正方形的对角线长度为2√2,则正方形的面积是多少?A. 4B. 2C. 8D. 112. 若函数f(x) = 2x 3,则下列哪个选项是正确的?A. f(x)在x = 1时取得最小值B. f(x)在x = 2时取得最大值C. f(x)在x = 3时取得最小值D. f(x)在x = 4时取得最大值为多少?A. 2B. 4C. 1/2D. 1/414. 若直线y = kx + b与曲线y = x^2相切,则k的值为多少?A. 1B. 1C. 2D. 215. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 + 3n,则a1的值为多少?A. 5B. 7C. 9D. 11二、填空题(每小题5分,共25分)16. 若函数f(x) = x^2 4x + 3,则f(x)的极值点为______。
高考数学(理)试卷及答案(广东省)

绝密★启用前 试卷类型:B普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.巳知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-= 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A .3个 B.2个 C.1个 D.无穷个1.解:}31|{≤≤-=x x M ,},5,3,1{ =N ,所以 }3,1{=N M 故,选B2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =A.8 B.6 C.4 D.22. 解:因为12-=i ,i i -=3, 14=i ,所以满足1=ni 的最小正整数n 的值是4。
故,选C3.若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =A.2log x B.12log x C.12xD.2x 3.解:由函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,可知x x f a log )(=,又其图像经过点)a ,即a a a=log ,所以a=21, x x f 21log )(=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:
1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式
V=Sh 其中S 为柱体的底面积,h 为柱体的高
线性回归方程$$y bx
a =+$中系数计算公式 ,其中,x y 表示样本均值。
N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)
一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -
2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,
且}y x =,则A B ⋂的元素个数为
A.0 B.1 C.2 D.3 3.若向量a,b,c满足a∥b且a⊥b,则()2a a b ⋅+= A.4 B.3 C.2 D.0
4.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数
B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数
5.在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪
≤⎨⎪
≤⎩给定。
若(,)M x y 为
D 上的动点,点A 的坐标为(2,1),则z OM ON =u u u u r u u u r
g
的最大值为 A .42 B .32 C .4 D .3 6.甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为
A .12
B .35
C .23
D .3
4
7.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为
8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有
;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是
A. ,T V 中至少有一个关于乘法是封闭的
B. ,T V 中至多有一个关于乘法是封闭的
C.,T V
中有且只有一个关于乘法是封闭的
D. ,T V 中每一个关于乘法都是封闭的
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
9.不等式130x x +--≥的解是
10. 7
2x x x ⎛
⎫- ⎪⎝
⎭的展开式中,4x 的系数是 (用数字作答)
11、等差数列{}a
α前9项的和等于前4项的和。
若141,0k a a a =+=,则
k=____________.
12、函数
2
()31f x x x =-+在x=____________处取得极小值。
13、某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm 。
因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm.
(二)选择题(14---15题,考生只能从中选做一题)
14、(坐标系与参数方程选做题)已知两面线参数方程分别
为
(0sin x y θθπθ⎧=⎪≤⎨
=⎪⎩<和25()4x t t R y t ⎧
=⎪∈⎨⎪=⎩,它们的交点坐标为___________.
15.(几何证明选讲选做题)如图4,过圆O 外一点p 分别作圆的切线和割线交圆于A ,B
且PB =7,C 是圆上一点使得BC =5,∠ BAC =∠ APB , 则
AB = 。
三.解答题。
本大题共6小题,满分80分。
解答需写出文字说明、证明过程和演算步骤。
16. (本小题满分12分)
已知函数f(x)=2sin(31x-6π
),x R
(1)求f(45π
)的值;
(2)设α,β [0,2π],f(3α+2π)=1310
,f(3β+2π)=56,求cos(α+β)的值。
四、(本小题满分13分)
17.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y 的含量(单位:毫克)。
下表是乙厂的5件产品的测量数据:
编号 1 2 3 4 5 x 169 178 166 175 180 y
75
80
77
70
81
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品总数。
(2)当产品中的微量元素x,y 满足x ≥175,y ≥75,该产品为优等品。
用上述样本数据估计乙厂生产的优等品的数量。
(3)从乙厂抽出的上述5件产品中,随机抽取2件,球抽取的2件产品中的优等品数 的分布列极其均值(即数学期望)。
18.(本小题满分13分)
在椎体P-ABCD 中,ABCD 是边长为1的棱形,且∠DAB=60︒,
2PA PD ==,PB=2, E,F 分别是BC,PC 的中点
(1)证明:AD ⊥平面DEF (2) 求二面角P-AD-B 的余弦值 19.(本小题满分14分)
设圆C 与两圆2222(5)4,(5)4x y x y ++=-+=中的一个内切,另一个外切。
(1)求圆C 的圆心轨迹L 的方程 (2)已知点M 3545
(
,),(5,0)55
F ,且P 为L 上动点,求MP FP -的最大值及此时P 的坐标. 20.(本小题共14分) 设b>0,数列{}n a 满足a1=b ,1
1(2)22
n n n nba a n a n --=≥+-。
(1)求数列{}n a 的通项公式;
(2)证明:对于一切正整数n ,1
112
n n n b a ++≤≤
21.(本小题共14分)
在平面直角坐标系xoy 上,给定抛物线L:y=2
14
y x =。
实数p ,q 满足240p q -≥,x1,x2是方程
20x px q -+=的两根,记{}12(,)max ,p q x x ϕ=。
(1)过点,2
0001(,
)(0)4
A p p p ≠,(p0≠ 0)作L 的切线教y 轴于点
B 。
证明:对线段AB 上任一点Q(p ,q)有0
(,)2
p p q ϕ=
; (2)设M(a ,b)是定点,其中a ,b 满足a2-4b>0,a ≠ 0。
过设M(a ,b)作L 的两条切线12,l l ,切点分别为22112211
(,),(,)44
E p p E p p ',12,l l 与y 轴分别交与F,。
线段
EF
上异于两端点的点集记为
X 。
证明:M(a,b)
∈X ⇔12P P >⇔(,)a b ϕ1
2
p =
(3)设D={ (x,y)|y ≤x-1,y ≥
14(x+1)2-5
4
}。
当点(p,q)取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ)。