基于DS18B20温度传感器的显示及报警系统
基于DS18B20的温度采集显示系统的设计
目录1.引言 (1)1.1绪论 (1)1.2课程设计任务书 (1)2.设计方案 (3)3.硬件设计方案 (3)3.1最小系统地设计 (3)3.2LED发光报警电路 (5)3.3DS18B20地简介及在本次设计中地应用 (5)3.3.1 DS18B20地外部结构及管脚排列 (5)3.3.2 DS18B20地工作原理 (6)3.3.3 DS18B20地主要特性 (7)3.3.4 DS18B20地测温流程 (8)3.3.5 DS18B20与单片机地连接 (8)3.4报警温度地设置 (8)3.5数码管显示 (9)3.5.1数码管工作原理 (9)3.5.2数码管显示电路 (10)3.6硬件电路总体设计 (11)4.软件设计方案 (12)4.1主程序介绍 (12)4.1.1主程序流程图 (12)4.1.2主流程地C语言程序 (13)4.2部分子程序 (17)4.2.1 DS18B20复位子程序 (17)4.2.2 写DS18B20命令子程序 (18)4.2.3读温度子程序 (20)4.2.4计算温度子程序 (22)4.2.5显示扫描过程子程序 (23)5.基于DS18B20地温度采集显示系统地调试 (25)6.收获和体会 (27)7.参考文献 (27)1.引言1.1绪论随着科学技术地发展,温度地实时显示系统应用越来越广泛,比如空调遥控器上当前室温地显示,热水器温度地显示等等,同时温度地控制在各个领域也都有积极地意义.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.本文介绍了基于DS18B20地温度实时采集与显示系统地设计与实现.设计中选取单片机AT89C51作为系统控制中心,数字温度传感器DS18B20作为单片机外部信号源,实现温度地实时采集.并且用精度较好地数码管作为温度地实时显示模块.利用单片机程序来完成对DS18B20与AT89C51地控制,最终实现温度地实时采集与显示.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.1.2课程设计任务书《微机原理与接口技术》课程设计任务书(二)题目:基于DS18B20地温度采集显示系统地设计一、课程设计任务传统地温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点.但由于其输出地是模拟量,而现在地智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂.硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵.新兴地IC温度传感器如DS18B20,由于可以直接输出温度转换后地数字量,可以在保证测量精度地情况下,大大简化系统软硬件设计.这种传感器地测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度地测量.DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量.本课题要求设计一基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块.所设计地系统可以从键盘输入设定温度值,当所采集地温度高于设定温度时,进行报警,同时能实时显示温度值.二、课程设计目地通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机地接口及DS18B20地编程;2)矩阵式键盘地设计与编程;3)经单片机为核心地系统地实际调试技巧.从而提高学生对微机实时控制系统地设计和调试能力.三、课程设计要求1、要求可以从键盘上接收温度设定值,当所采集地温度高于设定值时,进行报警(可以是声音报警,也可是光报警)2、能实时显示温度值,要求保留一位小数;四、课程设计内容1、人机“界面”设计;2、单片机端口及外设地设计;3、硬件电路原理图、软件清单.五、课程设计报告要求报告中提供如下内容:1、目录2、正文(1)课程设计任务书;(2)总体设计方案(3)针对人机对话“界面”要有操作使用说明,以便用户能够正确使用本产品;(4)硬件原理图,以便厂家生成产(可手画也可用protel软件);(5)程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序地名称及其功能);(6)调试、运行及其结果;3、收获、体会4、参考文献六、课程设计进度安排七、课程设计考核办法本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%.2.设计方案本次地课题设计要求是基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块和键盘输入模块及报警模块.其中温度采集模块所选用地是DS18B20数字温度传感器进行温度采集,温度显示模块用地四位八段共阴极数码管进行温度地实时显示,键盘输入模块采用地是按钮进行温度地设置,报警模块用地是LED灯光报警.具体方案见图2-1.图2-1 总体设计方案3.硬件设计方案3.1最小系统地设计本次设计单片机采用地是AT89C51系列地,它由一个8位中央处理器(CPU),4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个串行I/O口及中断系统等部分组成.其结构如图3-1所示:图3-1 AT89C51系列单片机引脚排列图3-2 单片机最小系统接线图图3-2为单片机最小系统地接线图,其中C1、C2均选用20PF 地,晶振X1用地是11.0592MHZXTAL1XTAL2 RST EA地.晶振电路中外接电容C1,C2地作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率地作用,一般选用10~30pF地瓷片电容.并且电容离晶振越近越好,晶振离单片机越近越好.晶振地取值范围一般为0~24MHz,常用地晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz 等.晶振地振荡频率直接影响单片机地处理速度,频率越大处理速度越快.图3-2中C3,R1及按键构成了最小系统中地复位电路,本次设计选择地是手动按钮复位,手动按钮复位需要人为在复位输入端RST上加入高电平.一般采用地办法是在RST端和正电源Vcc之间接一个按钮.当人为按下按钮时,则Vcc地+5V电平就会直接加到RST端.由于人地动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位地时间要求.在单片机最小系统中还要将EA地非接高电平,如图3-2也有体现出来.3.2 LED发光报警电路P1.7图3-3 LED发光报警电路图3-3为LED报警电路地接法,其中一根线接单片机地8号P1.7口,另外一根接地.当温度超过预设温度值时LED灯被接通发光报警.3.3 DS18B20地简介及在本次设计中地应用3.3.1 DS18B20地外部结构及管脚排列DS18B20地管脚排列如图3-4所示:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)图3-4 DS18B20地引脚排列及封装3.3.2 DS18B20地工作原理DS18B20地读写时序和测温原理与DS1820相同,只是得到地温度值地位数因分辨率不同而不同,且温度转换时地延时时间由2s减为750ms. DS18B20测温原理如图3-5所示.图中低温度系数晶振地振荡频率受温度影响很小,用于产生固定频率地脉冲信号送给计数器1.高温度系数晶振随温度变化其振荡率明显改变,所产生地信号作为计数器2地脉冲输入.计数器1和温度寄存器被预置在-55℃所对应地一个基数值.计数器1对低温度系数晶振产生地脉冲信号进行减法计数,当计数器1地预置值减到0时,温度寄存器地值将加1,计数器1地预置将重新被装入,计数器1重新开始对低温度系数晶振产生地脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值地累加,此时温度寄存器中地数值即为所测温度.图中地斜率累加器用于补偿和修正测温过程中地非线性,其输出用于修正计数器1地预置值.图3-5 DS18B20测温原理图3.3.3 DS18B20地主要特性(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;(2)独特地单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20地双向通讯;(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一地三线上,实现组网多点测温;(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管地集成电路内;(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;(6)可编程地分辨率为9~12位,对应地可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强地抗干扰纠错能力;(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作.3.3.4 DS18B20地测温流程图3-6 DS18B20地测温流程图3.3.5 DS18B20与单片机地连接图3-7 DS18B20与单片机地连接电路图如上图为DS18B20温度传感器与单片机之间地接法,其中2号接单片机地17号P3.7接口.DS18B20通过P3.7口将采集到地温度实时送入单片机中.3.4 报警温度地设置P2.5 P2.6 P2.7P3.7图3-8 报警温度地设置电路图3-8为报警温度地设置电路,其中K1,K2,K3分别接到单片机地P2.5,P2.6,P2.7口.其中K1用于报警温度设定开关,K2用于报警温度地设置时候地加温度(每次加一),K3用于报警温度地设置时地减温度(每次减一).实现了报警温度地手动设置.3.5 数码管显示3.5.1数码管工作原理图3-9 数码管地引脚排列及结构图3-9为数码管地外形及引脚排列和两种接法(共阴极和共阳极)地结构图.共阳极数码管地8个发光二极管地阳极(二极管正端)连接在一起.通常,公共阳极接高电平(一般接电源),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为低电平时,则该端所连接地字段导通并点亮.根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能吸收额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.共阴极数码管地8个发光二极管地阴极(二极管负端)连接在一起.通常,公共阴极接低电平(一般接地),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为高电平时,则该端所连接地字段导通并点亮,根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能提供额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.要使数码管显示出相应地数字或字符,必须使段数据口输出相应地字形编码.字型码各位定义为:数据线D0与a字段对应,D1与b字段对应……,依此类推.如使用共阳极数码管,数据为0表示对应字段亮,数据为1表示对应字段暗;如使用共阴极数码管,数据为0表示对应字段暗,数据为1表示对应字段亮.如要显示“0”,共阳极数码管地字型编码应为:11000000B(即C0H);共阴极数码管地字型编码应为:00111111B(即3FH).依此类推,可求得数码管字形编码如表3-5所示.表3-5数码管字符表显示地具体实施是通过编程将需要显示地字型码存放在程序存储器地固定区域中,构成显示字型码表.当要显示某字符时,通过查表指令获取该字符所对应地字型码.3.5.2数码管显示电路图3-10 四位八段数码管动态显示电路图3-10为本次设计所用到地四位八段数码管动态显示,其中段选接到单片机地P0口,位选接到单片机地P2口地低四位.其中P0口也接地有上拉电阻,图中未标示出来,会在下面地总体电路中标示出来.采用地是动态显示方式.3.6 硬件电路总体设计图3-11为本次设计地硬件总体设计图,其中利用K1,K2,K3处进行报警温度地设置,然后有DS18B20进行实时温度采集,并在数码管上同步显示,若采集到地温度达到或者超过预设地报警温度,则LED 灯会发光报警,若低于该报警温度,则不会报警.P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1P2.2 P2.3图3-11 硬件电路总体设计图4.软件设计方案4.1主程序介绍4.1.1主程序流程图本次设计首先对程序进行初始化,然后打开报警温度设定开关,对报警温度进行设定,确认设定值后,DS18B20温度传感器进行温度采集并送入单片机中,单片机将传感器所检测到地温度同步显示在数码管上,并且与设置地报警温度进行比较,若达到或者超过报警温度时,LED灯发光报警,如果没有达到,则继续进行温度采集.图4-1主程序流程图4.1.2主流程地C语言程序main (){ALERT=0。
基于DS18B20_的温度测量报警系统
0 引言温度测量方法较多,根据温度传感器的使用方式,通常可以把温度测量方法分为接触式法测温法和非接触式法测温法。
热敏电阻是最常用的接触式测温法之一,其广泛应用于工农业生产中。
传统的热敏电阻传感器需要搭配测量电路和其他电路进行信号处理,导致其可靠性、准确度和精确度降低[1]。
针对上述问题,美国DALLAS公司新推出了一种新型数字温度传感器-DS18B20,它具有功耗低、抗干扰能力强等优点[2]。
该文介绍了一种以DS18B20数字传感器和AT89C51系列单片机为核心的环境温度测量报警系统,该系统不仅可以实时测量温度,而且还可以根据用户需要,当环境温度出现异常时进行报警提醒。
同时,测得的温度数据会实时显示在输出设备上,为用户提供实时温度。
其硬件部分主要包括时钟电源电路、数码管显示电路、温度测量报警电路以及独立开关按键电路,软件部分主要包括独立按键触发检测程序、温度异常判决程序。
该系统结构简单、成本较低且抗干扰能力极高,可以应用于农业种植温室室温监测等场景,帮助相关产业提高工作效率,降低建设和维护所需的成本。
1 理论及方案设计DS18B20模块是一款由美国DALLAS半导体公司设计的数字温度传感器,它具有成本低廉、传输高效以及电路简单的特点。
该模块工作电压范围宽(3.0 V~5.5 V),并且当电源反接时不会立即烧毁。
DS18B20模块具有4种工作模式,对应4种不同的分辨率和转换时间。
通过改变配置寄存器中的R1位和R0位(R0\R1是配置寄存器中的2个数位)可以对DS18B20模块的工作模式进行设置,不同模式的工作参数见表1。
表1 工作效率参考数据分辨率/位最高转换时间/ms R1R0 993.750010187.500111375.001012750.0011整个测温系统分为的4个板块(如图1所示),通过与AT89C51系列单片机进行交互,共同完成环境温度监测报警工作。
时钟和电源为整个系统提供工作环境,独立按键可以帮助用户设置温度的上、下限,DS18B20模块将测得的实时温度发送给单片机,单片机将数据输出至显示模块(反馈给用户)。
设计一个温度监测和显示报警电路
设计一个温度监测和显示报警电路温度监测和显示报警电路是一种用于监测环境温度并在超出设定温度范围时发出声音或光提示的电路。
它广泛应用于各种需要对温度进行实时监测和控制的场合,例如工业生产、仓储管道、实验室等。
下面,我将详细介绍一个基于温度传感器、控制IC和蜂鸣器的温度监测和显示报警电路的设计方案。
设计材料准备:1.温度传感器(例如DS18B20)2.控制IC(例如LM35)3.蜂鸣器4.面包板5.连接线6.电阻7.LED电路连接:1.将温度传感器的三个引脚(VCC、GND、DATA)分别连接到面包板上的电源模块(+5V、GND)和数字引脚上。
2.将控制IC的电源引脚(VCC、GND)连接到面包板的电源模块上。
3.将蜂鸣器的两个引脚连接到面包板的数字引脚上。
4.将LM35的输出引脚连接到面包板的模拟引脚上。
5.将一个电阻连接到LED的负极,再将另一端连接到面包板上的数字引脚上。
电路原理:1.温度传感器和控制IC共同组成了温度检测模块。
温度传感器负责检测环境温度,并将温度值以数字信号传递给控制IC。
2.控制IC负责接收温度传感器的数据,并将其转换为模拟信号,通过模拟引脚输出。
3.模拟信号经过一个电阻划定电流范围,并将电流传递给LED,控制LED的亮度,实现温度的可视化显示。
4.如果温度超出设定的范围,控制IC将通过数字引脚控制蜂鸣器发出声音报警。
电路设计思路:1.首先,根据具体需求确定温度报警的上限和下限。
2.将温度传感器的引脚连接到面包板上。
3.根据温度传感器的规格书和控制IC的数据手册,确定它们的使用电压范围。
4.根据温度传感器和控制IC的电压需求,选择适当的电源模块供电。
5. 连接电路后,利用Arduino等开发板进行代码编写,实现温度的实时监测。
6.编写代码,让控制IC判断当前环境温度是否超出设定的温度范围。
7.根据超出设定温度范围与否的判断结果,控制蜂鸣器的状态。
在设计和搭建电路时需要注意的一些问题:1.确保连接的准确性,例如正确连接传感器的引脚。
DS18B20温度检测
目录1引言 (1)2系统描述 (2)2.1系统功能 (2)2.2系统设计指标 (2)3系统的主要元件 (3)3.1单片机 (3)3.2温度传感元件 (4)3.3LCD显示屏 (6)4硬件电路 (7)4.1系统整体原理图 (7)4.2单片机晶振电路 (7)4.3温度传感器连接电路 (8)4.4LCD电路 (9)4.5报警和外部中断电路 (10)5结论 (11)温度监测系统硬件设计摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。
同时提高了系统能够的抗干扰性,使系统更灵活、方便。
本系统主要实现温度的检测、显示以及高低温的报警。
也可以通过单总线挂载多个DS18B20实现多点温度的分布式监测。
关键词: DS18B20,单总线,温度,单片机1引言在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。
而单片机的发展和应用是其中的重要一方面。
单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。
其中,单片机在工业生产中的应用尤其广泛。
单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。
在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。
例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。
传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D 转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。
近年来,美国DALLAS公司生产的DS18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。
(完整版)基于DS18B20数字温度传感器的仿真与设计应用
第一章前言在人类的生活环境中,温度饰演着极其重要的角色,都无时无刻不在与温度打交道。
自 18 世纪工业革命以来,工业发展与能否掌握温度有着密切的联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,能够说几乎 %80的工业部门都不得不考虑着温度的要素。
温度关于工业这样重要,由此推动了温度传感器的发展。
1.1 传感器三个发展阶段:一是模拟集成温度传感器。
该传感器是采纳硅半导体集成工艺制成,所以亦称硅传感器或单片集成温度传感器。
此种传感器拥有功能单调 ( 仅丈量温度 ) 、测温偏差小、价钱低、响应速度快、传输距离远、体积小、微功耗等特色,适合远距离测温、控温,不需要进行非线性校准,且外头电路简单。
它是目前在国内外应用最为广泛的一种集成传感器,典型产品有 AD590、AD592、 TMP17、LM135等。
二是模拟集成温度控制器。
模拟集成温度控制器主要包含温控开关、可编程温度控制器,典型产品有 LM56、AD22105和 MAX6509。
某些加强型集成温度控制器 ( 比如TC652/653) 中还包含了A/D 变换器以及固化好的程序,这与智能温度传感器有某些相像之处。
但它自成系统,工作时其实不受微办理器的控制,这是两者的主要差别。
三是智能温度传感器。
智能温度传感器内部都包含温度传感器、A/D 变换器、信号办理器、储存器 ( 或寄存器 ) 和接口电路。
有的产品还带多路选择器、中央控制器 (CPU)、随机存取储存器 (RAM)和只读储存器 (ROM)。
智能温度传感器的特色是能输出温度数据及有关的温度控制量,适配各样微控制器 (MCU);并且它是在硬件的基础上经过软件来实现测试功能的,自然,其智能化程度也取决于软件的开发水平。
1.2 温度传感器的发展趋向进入 21 世纪后,温度传感器正朝着高精度、多功能、总线标准化、高靠谱性及安全性、开发虚构传感器和网络传感器、研制单片测温系统等高科技的方向快速发展。
1.3 传感器在温控系统中的应用目前市场主要存在单点和多点两种温度丈量仪表。
基于arduino的ds18b20温度传感器工作原理
基于arduino的ds18b20温度传感器工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于arduino的ds18b20温度传感器是一种数字式温度传感器,广泛应用于各种温度监控系统中。
基于DS18B20的温度传感器设计(课程设计)
摘要2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。
本文主要介绍了一个基于AT89C52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。
对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。
DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。
关键词:单片机AT89C51;DS18B20温度传感器;液晶显示LCD1602。
目录摘要 (I)第一章前言 (1)第二章设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)第三章课程设计方案及器材选用 (3)3.1设计总体方案 (3)3.1.1方案论证 (3)3.1.2 系统的具体设计与实现 (4)3.2器材选用分析 (5)3.2.1 DS18B20温度传感器 (5)3.2.2 AT89S52单片机介绍 (12)3.3 软件流程图 (15)3.3.1 主程序 (15)3.3.2读出温度子程序 (15)3.3.3 温度转换命令子程序 (15)3.3.4 计算温度子程序 (16)第四章硬件电路的设计 (17)4.1 proteus简介 (17)4.2 proteus仿真图 (17)第五章调试性能及分析 (19)总结 (20)参考文献 (21)附录1 源程序 (22)附录2 原理图 (26)第一章前言目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。
(完整版)基于DS18B20的温度检测系统毕业论文
第二章
温度检测系统有则共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。若采用一般温度传感器采集温度信号,则需要设计信号调理电路、AD转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。这样,由于各种因素会造成检测系统较大的偏差;又因为检测环境复杂、测量点多、信号传输距离远及各种干扰的影响,会使检测系统的稳定性和可靠性下降。所以多点温度检测系统的设计的关键在于两部分:温度传感器的选择和主控单元的设计。温度传感器应用范围广泛、使用数量庞大,也高居各类传感器之首。
附录二:电路原理图……………………………………………26
致谢 ………………………………………………………………30
摘要ቤተ መጻሕፍቲ ባይዱ
DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。
§3.1 电源以及看门狗电路………………………………………………………8
§3.2键盘以及显示电路………………………………………………………10
§3.2温度测试电路……………………………………………………………12
基于DS18B20温度传感器的温度计
基于DS18B20温度传感器的温度计设计摘要:以DS18B20温度传感器,4位7段数码管和AT89C52RC微控制器为主要部分实现数字温度计的设计,利用DS18B20本身具有的模数转换功能和暂时存储功能将模拟量——气温转换为微控制器可处理的数字量,并使用AT89C52RC的输入输出及定时器中断功能通过DS18B20的单线连接结构与DS18B20进行信息传输,读取温度值并用数码管显示出来。
1.设计选题的目的、意义通过数字温度计的设计进一步熟悉单片机微控制器及相关数字/模拟电路的原理和功能,熟悉单片机的程序设计,学会传感器的使用和相关文献的查找及学习。
2.硬件电路设计硬件部分主要包括微控制器、温度传感器模块和数码管显示模块三部分。
2.1 微控制器主要功能电路如下图,包括电源,接地,复位电路,时钟脉冲电路(11.0592MHz)。
2.2 温度传感器模块如下图,使用外部电源,可以减少程序复杂程度。
DS18B20特性:●独特的单线接口仅需一个端口进行通讯●简单的多点分布应用●无需外部器件●可通过数据线供电●零待机功耗●测温范围-55~+125℃●温度以12位数字量读出●温度数字量转换时间750ms(12位)●用户可定义的非易失性温度警报设置●报警搜索命令识别并超过程序限定温度(温度报警条件)的器件●应用包括温度控制、工业系统、消费品、温度计或任何热感测系统2.3 数码管显示模块如上图,由两片SN74HC573N八路透明锁存器分别控制共阳极数码管位和段的锁存,实现只用MCU的一组I/O口分别控制数码管位和段的选通。
3.软件电路设计软件同样包括三个部分:传感器控制,显示控制,主程序。
3.1 温度传感器控制A.DS18B20内部存储读写与控制原理右图是DS18B20内部9字节的暂存器的结构,向其传送读取命令后,暂存器会依次将9个字节的数据通过单线送出,每个字节都是低位在先。
在本课题,只需0字节和1字节,也就是温度LSB(低8位)和温度MSB(高8位)中的数据。
基于DS18B20的Mega16单片机温度采集系统
基于DS18B20的Mega16单片机温度报警系统陆和亮(2010800631)袁彦凯(2011110144)滕木(2011110111)王锐英(2011110132)设计思想:这次设计的是基于DS18B20的数字温度计,它具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。
1.设计中选用Mega16型单片机作为主控制器件。
2.采用DS18B20数字温度传感器作为测温元件,通过4位共阳极LED数码显示管并行传送数据,实现温度显示。
3.ADC0808和一个LF351运放构成电压放大器,实现温度和电压的转换。
工作流程:Mega16通过DS18B20直接读取被测温度值,送入单片机进行数据处理,之后单片机进行判断和比较并且输出6位LED数码管,并且将读取到的温度值进行比例运算输出ADC0808和运算放大器结合输出合适的温度。
最终完成了数字温度计的总体设计。
其系统构成简单,信号采集效果好,数据处理速度快,便于实际检测使用。
设计内容简介:本设计的内容主要对系统硬件部分的设计,包括温度采集电路和显示电路;再次对系统软件部分的设计,应用C语言实现温度的采集与显示。
并且附上部分源代码。
设计要求:温度报警器设计,具体要求如下:1.将被测温度(0~100摄氏度)转换为电压值;2.小于10摄氏度或大于30摄氏度,光报警(LED亮);3.可采用电阻组成测量电桥、具体方案:1、根据设计要求,选用Mega16单片机为核心器件;2、温度检测器件采用DS18B20数字式温度传感器,利用单总线式连接方式与单片机的串行接口PORTD.2引脚相连;3、显示电路采用6个LED数码管显示器接口和PORTD,PORTC口相连并行显示温度值一.单片机外围电路设计Mega16单片机系统包括晶体振荡电路、复位开关和电源部分。
下图为Mega16单片机的最小系统。
二.温度测量模块温度测量传感器采用DALLAS公司DS18B20的单总线数字化温度传感器,测温范围为-55℃~125℃,可编程为9位~12位A/D转换精度,测温分辨率达到0.0625℃,采用寄生电源工作方式,CPU只需一根口线便能与DS18B20通信,占用CPU口线少,可节省大量引线和逻辑电路三.显示报警模块显示部分选用4位Led数码管。
基于DS18B20的温室大棚温度检测报警系统
随 着 农 业产业 规 模 不 断 扩 大 , 温 室 大 棚 数 量 不 断 增 加 , 提 高大 棚 产量 是大 棚 经 营 者的 良 好 愿 望 , 而 温 度 控制 对 温 室 大 棚 的 产量 极 其 重 要 . 传统 的 温 度 测 量 技术 耗 费 人 力 物 力 过 大 , 因 此 亟 待 改 进 . 本 系 统 采用 单 片 微 型 计 算机 S T C 8 9 C 5 1与 D A L A S S 公 司 生产 的 D S 1 8 B 2 0型温度传感器,对温室大棚室内温度进行监 测 , 具 有 显示精 确 、 组 态 简 单 的 特 点 , 大 幅 度 提 高 了 测 量 精 度 , 节 省 了 人 力 物 力 , 适 宜 批 量 化 生产 . 1 系 统 的 整 体设计 温室 大 棚 检 测 报 警 系 统 以 S T C 8 9 C 5 1单 片 机 为 核心 , 采 用 D S 1 8 B 2 0 温 度 传 感 器, 使 用数码管 进 行 动 态 显 示, 并 可 设 定 适 宜 农 作 物 生 长的 温 度 浮 动 范 围 , 当 温 室 大 棚 室 温 低 于 或 超 过指定 温 度 范 围 时 , 蜂 鸣 器 与 L E D灯 报 警 . 在 检 测 中 , 也 可对 多 个 取 样 点 进 行 分 析 , 由 单 片 机 控制 各 温 度传感器分别单独进行采样,采样数据返 回单片机,经处理并且显示后进行温度比较.系统设计框图如图1所示. 2 硬 件 电 路 设计 单片机 S T C 8 9 C 5 1 通过 P 2 . 7口对 D S 1 8 B 2 0 温 度 传 感 器 进 行 初 始 化 操 作 , 而 后 控制 温 度 传 感 器 进 行 采 样 , 采 样数 据 再 由 P 2 . 7 口 返 回 , 单 片 机 经 一 系 列数 据 转 换处 理 后 , 从 P 1 口 输 出 数 据 , 通过 数 码 管 显 示 . 本 系 统 中 采用 4 个 8 位 共 阳 极 数 码 管 进 行 显示 , 其中 第 一 位 显示 为当 前 温 度 正 负 号 , 第二 、 三 、 四 位分 别 显示该 传 感 器 所 测 出 温 度 的 十 位 、 个 位 和小数 位 数 值 . 最 终 温 度值 与事 先设定 的 温 度 进 行 比较 : 当 温 度 大 于 设定 温 度 上 限 时 , 单 片 机 P 2 . 1 口 控制 蜂 鸣 器 发 出 高 频 报 警 声 ,P 1 . 0口控制 L E D 红 灯 闪 烁;当 温 度 小 于 设定 温 度 下 限 时 , 蜂 鸣 器 发 出 低 频 报 警 声 ,P 1 . 1 控制 L E D 绿 灯 闪烁 报 警 . 系 统 硬 件 电 路 原 理 图见图2. 3 D S 1 8 B 2 0 的 初 始 化 以 及操作 ) 单 总 线” 温 度 传 感 器,满 足 单 总 线 ( 通 信 协 议, D S 1 8 B 2 0为美国 D A L L A S公司 生 产 的 “ 1-w i r e b u s 仅 需 要一 条 口线 就 能 与 单 片 机进 行 数 据 传 输 以 及 指 令 的 执 行 , 测 温 范 围 广 且 精 确 , 每 片 D S 1 8 B 2 0传感器 具有唯一6 4位光刻 R OM 序列 号 , 可将 多 个 传 感 器 同 时 挂 在 单 一 口 线 上 , 读 写 不 同 点 温 度 时 , 先 读 取 需 测点传感器的 R 序列 号 , 确定 传 感 器 后 再 进 行 温 度 转 换 操 作 . OM 3 . 1 初 始 化 D S 1 8 B 2 0 ,然 后 释 放 总 线 进 入 接 受 信 息 状 态,当 单片机 P 2 . 7 口 发 出 复 位 脉 冲( 4 8 0μ s 6 0μ s的 低 电 平 信 号 ) ~9 , 接 着 发 出 存 在 脉 冲( ) 低 电 平 持续 6 D S 1 8 B 2 0 检 测 到 总 线 的上 升 沿 后 , 等 待 1 5μ s 0μ s 0μ s 4 0μ s . ~2 ~6 3 . 2 写 D S 1 8 B 2 0 单片机 P 2 . 7 口 从高 电 平 拉 至 低 电 平 时 产 生 写 时 隙 , 在 1 5μ s内 应 将 所 需 写 的 位 送 至 P 2 . 7 上, 同 时 D S 1 8 B 2 0 会 对 总 线 进 行 采 样 , 若 为 低 电 平 , 写 入 为 0, 若 为高 电 平 , 写 入基于 D S 1 8 B 2 0的温室大棚温度检测报警系统
基于DS18B20的温度报警器设计
基于DS18B20的温度报警器设计温度报警器是一种用于监测环境温度并在温度超过设定阈值时发出警报的设备。
基于DS18B20的温度报警器设计可以通过连接DS18B20数字温度传感器和微控制器来实现。
以下是一个基于DS18B20的温度报警器设计的详细描述。
1.硬件设计:-DS18B20温度传感器:DS18B20是一款数字温度传感器,其具有高精度、数字输出、单线传输等特点。
它可以直接与微控制器连接,并通过单线总线协议进行通信。
将其中一根引脚连接到微控制器的GPIO引脚上,并使用上拉电阻将其拉高,以实现简单的单线通信。
- 微控制器:选择一款适合的微控制器,例如Arduino、Raspberry Pi等。
微控制器应该具有足够的GPIO引脚用于连接其他外设,并具备相应的数据处理能力。
-报警器:可以选择蜂鸣器、发光二极管(LED)或其他适合的报警器作为报警设备。
这些设备应具有较大的声光输出,以便及时警示。
2.软件设计:-初始化:在程序中初始化设备的GPIO引脚,并设置它们的输入输出方式。
同时,初始化DS18B20传感器,启动单线总线通信。
-温度读取:通过发送相应的命令,从DS18B20传感器读取当前的温度值。
DS18B20的温度数据以二进制形式存储,并使用一定的协议进行传输。
通过解析二进制数据,并进行适当的计算,可以获得温度值。
-温度比较:将读取到的温度值与设定的阈值进行比较。
如果温度超过阈值,则触发报警。
-报警控制:当温度超过设定阈值时,触发报警器的开启。
该过程涉及控制报警设备的GPIO引脚,使其输出足够的声音或亮度,以引起用户的注意。
-报警复位:当温度降低到设定阈值以下时,关闭报警器。
通过控制报警设备的GPIO引脚,将其输出设置为低电平,以停止声音或亮度。
3.报警策略:-阈值设置:根据具体应用的需求,设定适当的温度阈值。
根据环境和使用要求,选择报警温度和报警时刻。
可以通过软件界面或外部调节器调整阈值。
-报警反馈:为了确保用户能够及时获得报警信息,可以通过增加报警设备的数量或设置报警通知的方式来提高报警反馈。
基于DS18B20温度传感器的无线报警系统
doi:10.3969/j.issn.1671-1041.2011.06.035基于DS18B20温度传感器的无线报警系统曾龙,陈泽锋,曾贤贵,曾健平(湖南大学物理与微电子科学学院,长沙410082)摘要:本系统选用DS18B20温度传感器采集温度信息,采用STC89C52单片机做为主控芯片,处理并显示实时温度值。
当温度超出预设范围便无线报警,可实现远程监控。
该系统具有硬件结构简单、成本低廉、灵敏度高等优点。
关键词:温度传感器;无线;报警;单片机中图分类号:TP29文献标志码:BBased on the digital temperature sensor DS18B20wireless alarm systemZENG Long,CHEN Ze-feng,ZENG Xian-gui,ZENG Jian-ping(College of Physics and Microelectronics Science,Hunan University,Changsha410082,China)Abstract:This system takes advantage of the digital temperature sensor DS18B20collecting ambient temperature to sin-gle-chip microcomputer of STC89C52as the core control components and throught digital display of thermomeler tem-perature.If the temperature is lower than the temperature we setting on wireless alarm device,then realize telecontrol.Therefore,this system has the hardware circuit structure is simple,low cost,high sensitivity and sighifican advantages.Key words:temperature sensor;wireless;alarm;single-chip microcomputer0引言随着国民经济的发展,对温度进行实时监控的场地逐渐增多。
DS18B20温度传感器和数码管显示例程
//DS18B20温度传感器和数码管显示//编程时间:连线表: CPU=stc89C52 SysClock=12MHz// LEDLE= 控制位高电平有效 LEDSEG=P2 KEYBOARD=P3 LEDWEI=,LED高到底//**********************************************************//DS18B20//**********************************************************//连线表: CPU=stc89C52 SysClock=12MHz *//单总线: TMDAT=////**********************************************************#include <>#define uchar unsigned char#define uint unsigned intuchar discount=0;//显示扫描位计数uchar last=0;//最终温度值uchar itcount=0x13;//定时器延时计数uchar seg[4];//数码管显示暂存uchar tem[2];//读取温度暂存uchar flag=0;//温度正负标志位/********************LED引脚定义********************/sfr LEDSEG=0x80;//P2sfr LEDWEI=0xA0;//P3/********************DS18B20引脚定义********************/sbit TMDAT=P1^0; //温度传感器数据位/********************DS18B20函数定义*******************/void dmsec(uint count);//延时(count)毫秒void tmreset(void); //产生复位信号void tmpre(void); //检测器件应答信号bit tmrbit(void); //从总线读一个bituchar tmrbyte(void); //从总线读一个字节void mwbyte(uchar dat);//向总线写一个字节void tmstart(void); //启动一次温度转换uchar tmrtemp(void); //读取温度数据/********************LED函数定义*******************/uchar * uchartodectoseg(uchar unm);//字符转换为十进制然后转换为数码管段表void disp(uchar *seg);//显示函数void delay_ms(uint t); //延时函数/************************************************/uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0xc6};/*************数码表*******0 1 2 3 4 5 6 7 8 9 无显示 C**************/ /************************************************/uchar * uchartodectoseg(uchar unm){uchar x00,xx,x0,x,n;x00=unm/100;//取百位xx=unm%100;//取余x0=xx/10;//取十位x=xx%10;//取余即取个位n=0;seg[n]=table[x00];n++;seg[n]=table[x0];n++;seg[n]=table[x];n++;seg[n]=table[11];//最后一位显示摄氏度符号Cif(flag==1)seg[0]=0x40;//显示负号‘-’if(seg[0]==table[0])seg[0]=table[10]; //如果百位为零则不显示if((seg[0]==table[0])&(seg[1]==table[0]))seg[1]=table[10];//如果百位为零且十位为零则十位不显示return seg;}/***************************************************/ /******DELAY***************************/void delay_ms(uint t){uint m,n;for(m=0;m<t;m++){for(n=0;n<950;n++);}}/******************************************//*********************显示LEDSEG*****************************/void disp(uchar *seg){uchar wei[]={0x08,0x04,0x02,0x01};//位扫描码//LEDSEG=seg[10];LEDWEI =wei[discount];LEDSEG = seg[discount];delay_ms(1);discount++;if(discount==4){ delay_ms(1);discount=0;//LEDSEG=seg[10];LEDWEI=wei[discount];LEDSEG=seg[discount];}//检测是否扫描完,扫描完的话则重新置初值}/*********************************************************//*****************DS18B20函数体定义****************/void dmsec(uint count) {uint i;while(count--){for(i=0;i<125;i++){} }}void tmreset(void){uint i;TMDAT=0;i=103;while(i>0) i--;TMDAT=1;i=4;while(i>0) i--;}void tmpre(void){uint i;while(TMDAT);while(~TMDAT);i=4;while(i>0) i--;}bit tmrbit(void){uint i;bit dat;TMDAT=0;i++;TMDAT=1;i++;i++;dat=TMDAT;i=8;while(i>0) i--;return(dat);}uchar tmrbyte(void){uchar i,j,dat;dat=0;for(i=1;i<=8;i++){ j=tmrbit();dat=(j<<7)|(dat>>1); }return(dat);}void tmwbyte(uchar dat) {uint i;uchar j;bit testb;for(j=1;j<=8;j++){ testb=dat & 0x01; dat=dat>>1;if(testb){ TMDAT=0;i++; i++;TMDAT=1;i=8;while(i>0) i--; }else{ TMDAT=0;i=8;while(i>0) i--; TMDAT=1;i++; i++;}}}void tmstart(void){tmreset();tmpre();dmsec(1);tmwbyte(0xcc);tmwbyte(0x44);}uchar tmrtemp(void){uchar y1,y2,y3;tmreset();tmpre();dmsec(1);tmwbyte(0xcc);tmwbyte(0xbe);tem[0]=tmrbyte();tem[1]=tmrbyte();if(tem[1]>127){tem[1]=(255-tem[1]);tem[0]=(255-tem[0]);flag=1;} //负温度求补码y1=tem[0]>>4;y2=tem[1]<<4;y3=y1|y2;return(y3);}/*********************************************************/void main(){TMOD=0X01;TL0=0XB0;TH0=0X3C;EA=1;ET0=1;TR0=1;dmsec(1);tmstart();while(1){uchartodectoseg(last);disp(seg);}}void time0() interrupt 1{TL0=0XB0;TH0=0X3C;//定时50msitcount--;if(itcount==0){last=tmrtemp();dmsec(1);tmstart();itcount=0x13;}}。
基于51单片机的DS18B20温度显示
基于51单片机的DS18B20温度显示本讲内容:了解温度传感器DS18B20的使用,并通过一个例程展示温度传感器DS18B20测温过程。
DS18B20简介:DS18B20 是单线数字温度传感器,即“一线器件”,其具有独特的优点:(1)采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与 DS18B20 的双向通讯。
单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络。
(2)测量温度范围宽,测量精度高。
DS18B20 的测量范围为-55 ℃ ~+ 125 ℃;在 -10~+ 85°C 范围内,精度为± 0.5°C 。
(3)多点组网功能多个 DS18B20 并联在惟一的单线上,实现多点测温。
DS18B20的存储器由一个高速暂存RAM 和一个非易失性、电可擦除(E2)RAM 组成。
配置寄存器:出场设置默认R0、R1为11。
也就是12位分辨率,也就是1位代表0.0625摄氏度。
DS18B20经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。
所以当我们只想简单的读取温度值的时候,只用读取暂存器中的第0和第1个字节就可以了。
简单的读取温度值的步骤如下: 1:跳过ROM 操作 2:发送温度转换命令 3:跳过ROM 操作 4:发送读取温度命令 5:读取温度值 DS18B20接口电路图:DS18B20的初始化:主机首先发出一个480-960微秒的低电平脉冲,然后释放总线变为高电平,并在随后的480微秒时间内对总线进行检测,如果有低电平出现说明总线上有器件已做出应答。
若无低电平出现一直都是高电平说明总线上无器件应答。
做为从器件的DS18B20在一上电后就一直在检测总线上是否有480-960微秒的低电平出现,如果有,在总线转为高电平后等待15-60微秒后将总线电平拉低60-240微秒做出响应存在脉冲,告诉主机本器件已做好准备。
基于DS18B20的温度控制系统的设计
统。
2 . 2温度采集电路的设计 该 系统采用半导体温度传感器作为敏感元件。 传感器我们采 用
图 3 键 控 单 元 硬 件 电路
了D S 1 8 B 2 0 单 总线可编程温度传 感器, 来 实现对温度 的采集 和转 换, 直接输 出数字量 , 可以直接 和单 片机进行通讯 , 大大简化 了电路
的复 杂度 。D S 1 8 B 2 0应 用广泛 ,性能 可 以满 足题 目的设 计要 求 。 D S 1 8 B 2 0的与单片机的接 口连接电路图如图 2 所示 。
稳定 的设定值 ( 在一定温 度误差范 围内) 。 2 . I 单 片 机 的选 择
图2 D S 1 8 B 2 0的与 单 片 机 的 接 口连 接 电 路 图
P r ¨
单 片机 采用 A T 8 9 C 5 1 作为 本控 制系统 的核心 器件 , A T 8 9 C 5 1 基本型单片机由 C P U系统( 8 位C P U 、 时钟电路、 总线控制) 、 存储系 统 ( 4 K B的程序 存 储器 、 i 2 8 B的数 据存 储 器 、特 殊 功 能寄 存 器 S F R ) 、 I / O 口( 4 个并行 I / O 口) 其他单元 ( 2 个1 6 位定时 / 计数 器 、 1
其测温电路的实现是依靠单片机软件 的编程实现 的。 当
D S I 8 B 2 0 接收到温度转换命令后 , 开始启动转换 。转换 完成后 的温 度值 就以 1 6 位带符号扩展的二进制补码形式存储在高速暂存存储 器的 0 , 1 字节 。单 片机可通 过单线接 口 读 到该 数据 , 读 取时低位在 前, 高位在后 , 数据格式以0 .0 6 2 5 ℃/ L S B 形式表示, D S I 8 B 2 0 完 成温度转换后 , 就把测得的温度值( r r ) 与设定值f fH ) 做 比较 , 若T > T H 或T < T L , 则将 该器件内的告警标志置位 , 并对主机发 出的报警搜索 图 4显 示单元的硬件 电路图 命令做出响应。 调节 、测试则是将独立三键以简单 的硬件 电路与软件程序结合 , 看 2 . 3 键控单元电路的设计 是否能实现其在程序设计 中的按键功能 。如图 3 所示 。 键控单元 电路是以独立 的三键方式实现对 系统 温度 的设 定与
基于DS18B20和ISD1420的温度监控报警系统
且精 确度 也不 够高 ,一般 只用 于温 度 比较 电路 或运
放 电路 中,所 以此 电路 不考 虑这种 温度 采集 方式 。
方 案 二 : 采 用DS 8 0 字 温 度 计 作 为 温 度 1 B2 数
采 集 模 块 ,其 精 度 可 达 N o0 2 摄 氏度 。它 具 有 .6 5 线路 简 单 ,体 积小 , 线 总线 的 特点 。因此用 它 来 一 组 成 一 个 测温 系统 ,具 有线 路 简 单 ,在 一 根 通 信 线 ,可 以挂很 多这 样 的数字 温度 计 ,十分 方便 。 14 远程 控 制模块 .
LI Ru dan’ L N Zh. i N — I i u q
,
( . 南医学 院 信息工程学院 ,赣州 3 1 0 ;2 江西应用技术职业学院 机械与 电子工程 系,赣州 3 1 0 ) 1赣 400 . 4 0 0 摘 要 :本设计以A 8 S 1 T 9 5 单片机为核心 ,采 用D 1 B 0 S 2 温度传感器来检 测温 度 ,通过 L D 8 O 实时显示当 前温度 ,并可通过射 频模块遥控检测点 。系统采 用ID 2 语音播报技术 。系 统在检测到温度 S1 0 4 上下限值 时通过语 音播报来报 警 ,同时 电路将 通过射 频收发模块 告知远处 的监控 室,监控人 员可通过射频遥控对其实施远程控制 。 关键 词 :D 1 B 0 S 1 2 ;单片机 ;温度监控 ;报警 S 2 ;ID 4 0 8
基于DS 2 和ID1 2 的温度 监控报 警系统 B0 S 0 1 8 4
The t em per ur cont ol ar y em s bas at e r al m s st ed on DS l 8b20 and I SD1420
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合课程设计报告报告题目:基于DS18B20温度传感器的温度显示及报警系统作者所在系部:机械工程系作者所在专业:测控技术与仪器作者所在班级: B09122 作者姓名:雷苏力作者学号: 20094012216 指导教师姓名:康会峰、赵保亚完成时间: 2013年1月3日北华航天工业学院教务处制基于DS18B20温度传感器的显示及报警系统摘要随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测与显示系统应用于诸多领域。
传统的温度检测以热敏电阻为温度敏感元件。
热敏电阻的成本低,需要外加信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。
与传统的温度计相比,这次设计的是基于DS18B20的数字温度计,它具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。
在本设计中选用STC89C52型单片机作为主控制器件,采用DS18B20数字温度传感器作为测温元件,通过4位共阳极LED数码显示管并行传送数据,实现温度显示。
通过按键设置温度上下限报警值,然后用不同颜色的LED灯报警。
本设计的内容主要分为两部分,一是对系统硬件部分的设计,包括串口下载电路、按键输入电路、温度采集电路和显示电路;二是对系统软件部分的设计,应用C语言实现温度上下限报警值的设定、温度的采集与显示。
通过DS18B20直接读取被测温度值,送入单片机进行数据处理,之后进行输出显示,最终完成该系统的总体设计。
其系统构成简单,信号采集效果好,数据处理速度快,便于实际监测使用。
关键词:单片机STC89C52;温度传感器DS18B20;LED数码管;数字温度计AbstractAlong with the present information technology's swift development and traditional industry transformation's gradual realization, able to work independently of the temperature detection and display system used in many other fields. Traditional temperature examination takes thermistor as temperature sensitive unit. Thermistor's cost is low, needs the signal processing electric circuit, moreover the reliability is relatively bad, the temperature measurement accuracy is low, the examination system also has certain error. Compares with the traditional thermometer, what this design is based on the DS18B20 digital thermometer, it has the reading to be convenient, the temperature measurement scope is broad, the temperature measurement is precise, the digit demonstrated that applicable scope wide and so on characteristics.Used in the design STC89C52MCU as the main control device, digital temperature sensor DS18B20 as the temperature components of the anode through the four LED digital display tube parallel transmission of data, to achieve temperature display. This design's content mainly divides into two parts; first, to system hardware part design, including temperature gathering electric circuit and display circuit; Second, to the system software part's design, realizes temperature gathering and the demonstration using the C language. DS18B20 measured by direct reading temperature values and transfer Data into MCU and output to show his is the design of the Digital Thermometer. Its system constitution is simple, the effect of signal gathering is good, the speed of data processing is quick at al it is advantageous for the actual examination use.Keywords: MCU STC89S52; DS18B20; LED; Digital Thermometer目录第一章绪论 (4)1.1课题背景及来源 (4)1.2课题内容及要求 (4)第二章系统整体设计 (5)2.1系统设计方案论证 (5)第三章系统的硬件选择及设计 (6)3.1主控制器的设计 (6)3.2温度采集电路的设计 (6)3.3温度显示电路的设计 (10)第四章系统的软件设计 (12)4.1概述 (13)4.2程序流程图 (13)4.3 控制源程序 (15)第五章系统调试 (15)结论 (37)致谢 (37)参考文献 (38)第一章绪论1.1课题背景及来源单片机自1976年由Intel公司推出MCS-48开始,迄今已有三十多年了。
由于单片机集成度高、功能强、可靠性高、体积小、功耗低、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。
单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域,对各个行业的技术改造和产品更新换代起着重要的推动作用。
众所周知,环境温度一直是生物能否较适宜生存的一个重要因素,而人们对环境温度的感知也从单纯的身体感官的感受发展到用各种温度计来对环境温度进行准确的测量。
但是受限于技术等原因,温度计通常都有体积较大,精度不高等各种缺陷。
而数字温度测量芯片的出现则解决了这些问题,其中的一款芯片DS18B20是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此,用它来组成一个测温系统,具有线路简单,在一根通信线上可以挂载很多这样的数字温度芯片,十分方便。
目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。
1.2课题内容及要求本设计主要介绍了用单片机和数字温度传感器DS18B20相结合的方法来实现温度的采集,以单片机STC89C52芯片为核心,辅以温度传感器DS18B20和LED数码管及必要的外围电路,构成了一个多功能单片机数字温度计;并且可以通过按键设置上下限报警值,超过限值是通过LED报警。
该装置适用于人民的日常生活和工、农业生产的温度测量与报警,实现对温度的监测。
其主要研究内容包括两方面,一是对系统硬件部分的设计,包括温度采集电路和显示电路;二是对系统软件部分的设计,应用C语言实现温度的采集与显示。
通过对本课题的设计能够熟悉数字温度计的工作原理及过程,了解各功能器件(单片机、DS18B20、LED)的基本原理与应用,掌握各部分电路的硬件连线与程序编写,最终完成对数字温度计的总体设计。
其具体的要求如下:1、根据设计要求,选用STC89C52单片机为核心器件;2、温度检测器件采用DS18B20数字式温度传感器,利用单总线式连接方式与单片机的串行接口P2.2引脚相连;3、显示电路采用4个LED数码管显示器接P0口并行显示温度值,数码管由P3口(P3.4~P3.7)选通,动态显示。
第二章系统整体设计2.1 系统设计方案论证2.1.1 方案一由于本设计实现的是测温电路,首先我们可以使用热敏电阻之类的器件,利用其感温效应,将其随被测温度变化的电压或电流值采集过来,进行A/D转换后,就可以用单片机进行数据的处理,通过显示电路就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。
因此,我们引出第二种方案。
2.1.2 方案二我们可以采用技术成熟、操作简单、精确度高的温度传感器,在此,可以选用数字温度传感器DS18B20,根据它的特点和测温原理,很容易就能直接读取被测温度值并进行转换,这样就可以满足设计要求。
从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故在本设计中采用了方案二。
通过方案二设计的温度计总体设计方框图如图 2.1所示,控制器采用单片机STC89C52,温度传感器采用DS18B20,用4位LED数码管以串口并行输出方式传送数据实现温度显示。
系统硬件电路图见附录A。
图2.1总体设计方框图第三章系统的硬件选择及设计3.1主控制器的设计3.1.1 STC89C52的简介STC89C52是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4kbytes的可编程的Flash只读程序存储器,兼容标准8051指令系统及引脚,并集成了Flash 程序存储器,既可在线编程(ISP),也可用传统方法进行编程,因此,低价位STC89C52单片机可应用于许多高性价比的场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。
单片机STC89C52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
3.2温度采集电路的设计由于传统的热敏电阻等测温元件测出的一般都是电压,再转换成对应的温度,需要比较多的外部元件支持,且硬件电路复杂,制作成本相对较高。