激光原理及应用思考练习题答案
激光原理与应用答案(陈家壁主编)
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
[精品]《激光原理》思考题和练习1.doc
《激光原理》复习思考题第一章激光的基本原理SER英文名称的含义是什么?2・激光是什么时候发明的?发明激光的科学家和丁•稈师是谁?3.激光的基木物理基础是什么?4.激光的基木特性是什么?5.激光有哪些特征参量?6.激光器的主要组成部分有哪些?并描述备个部分的基木作用。
7.激光器有哪些类型?你如何对激光器进行分类。
8.激光的主要应用有哪些,请详细描述你所熟悉的激光应用。
9.什么是黑体辐射?请写出PLANCK公式,并说明它的物理意义。
10.什么是光波模式和光了状态?II.如何理解光的相干性?何谓相干时间,相干长度、面积和体积?12.光波模式、光了状态和光了的相格空间是同一概念吗?13.何谓光子的简并度?14.请描述能级的光学跃迁的三大过稈,并写出它们的特征和跃迁几率。
15.EINSTEIN系数和EINSTEIN关系的物理意义是什么?16.如何推导出EINSTEIN关系?17.产生激光几个必要条件是什么?18.什么是热平衡时能级粒子数的分布?19.什么是粒子数反转,如何实现粒子数反转?20.你如何理解“负温度”效应21.如何定义激光增益,什么是小信号增益?什么是增益饱和?22.什么是自激振荡?产生激光振荡的基木条件是什么?23.如何理解激光的模式:横模、纵模?24.如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强?第二章开放式光腔与高斯光束1.请描述激光谐振腔和激光镜片的类型?2.什么是谐振腔的谐振条件?3.如何计算纵模的频率、纵模间隔和纵模的数H?4.如何理解无源谐振腔的损耗和Q值?5.在激光谐振腔屮有哪些损耗因素?6.请熟悉射线矩阵光学,例如:(1)光束在白由空间的传播;(2)薄透镜变换;(3)凹面镜反射;(4)介质中传播等。
7.什么是激光谐振腔的稳定性条件?如何有谐振腔的矩阵光学推导出来?8・请曲出激光谐振腔的稳定性图,并标出几种典型的谐振腔型在图屮的位置。
9.你如何理解激光谐振腔衍射理论的自再现模?10.你理解菲涅耳■基尔赫夫方稈屮每一项的物理意义吗?11.你能写出圆形镜谐振腔前几个模式的光场分布函数吗?你理解它们毎一项的物理意义吗?12.为什么稳定腔的激光光束为高斯光束?什么是基横模?你能逝出前几个横模的光斑图形和光强分布图吗?13.在你同时考虑激光的横模和纵模时,激光谐振的条件是什么?14.请写出拉盖尔■高斯光束的行波场的表达式,并说明每一项的物理意义?15.你如何计算基模高斯光束的主要参最:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积等?16.什么是一般稳定球面腔与共焦腔的等价性,你如何理解它们?17.对于一般稳定球血腔,你如何计算它们的主要参量?18.什么是腔的菲涅耳数,它与腔的损耗有什么关系?19・你掌握高斯光束的三种表征方法吗?什么是它们的q参数?20.如何用ABCD方法来变换高斯光束?请熟悉儿种情况下的ABCD变换矩阵。
激光原理与技术习题答案
激光原理与技术习题答案激光是一种特殊的光,它具有高度的单色性、相干性、方向性和亮度。
激光技术是现代物理学的一个分支,广泛应用于通信、医疗、工业加工等多个领域。
为了更好地理解激光原理与技术,我们通常会通过习题来加深理解。
以下是一些激光原理与技术的习题答案,供参考。
习题1:解释激光的产生机制。
激光的产生基于受激辐射原理。
当原子或分子被外部能量激发到高能级后,它们会自发地返回到较低的能级,并在此过程中释放出光子。
如果这些光子能够被其他处于激发态的原子或分子吸收,就会引发更多的受激辐射,形成正反馈机制,最终产生相干的光束,即激光。
习题2:描述激光的三个主要特性。
激光的三个主要特性是:1. 单色性:激光的波长非常窄,频率非常一致,这使得激光具有非常纯净的光谱特性。
2. 相干性:激光束中的光波在空间和时间上具有高度的一致性,使得激光束能够保持稳定的光强和方向。
3. 方向性:激光束的发散角非常小,几乎可以看作是平行光束,这使得激光能够聚焦到非常小的点上。
习题3:解释激光在通信中的应用。
激光在通信中的应用主要体现在光纤通信。
光纤通信利用激光的高亮度和方向性,通过光纤传输信息。
光纤是一种透明的玻璃或塑料制成的细长管,激光在其中传播时损耗非常小,可以实现长距离、大容量的信息传输。
激光通信具有抗干扰性强、传输速度快等优点。
习题4:讨论激光在医疗领域的应用。
激光在医疗领域的应用非常广泛,包括激光手术、激光治疗和激光诊断等。
激光手术可以用于精确切除病变组织,减少手术创伤;激光治疗可以用于治疗皮肤病、疼痛管理等;激光诊断则可以用于无创检测和成像,提高诊断的准确性。
习题5:解释激光冷却的原理。
激光冷却是利用激光与原子或分子相互作用,将它们冷却到接近绝对零度的过程。
当激光的频率略低于原子或分子的自然频率时,原子或分子吸收光子后会向激光传播的反方向运动,从而损失动能。
这个过程被称为多普勒冷却。
通过这种方法,可以实现对原子或分子的精确控制和测量。
激光原理习题答案
激光原理习题答案激光是一种特殊的光源,它具有高度的单色性、相干性、方向性和亮度。
激光的产生基于受激辐射原理,即当原子或分子被激发到高能级状态后,受到外部光子的激发,以相同的频率、相位和方向释放出光子。
以下是一些激光原理习题的答案:1. 激光的产生条件:- 粒子数反转:在激光介质中,高能级上的粒子数必须大于低能级上的粒子数。
- 光学谐振腔:激光器内部需要有一个反射镜和一个半反射镜构成的谐振腔,以形成反馈机制。
2. 激光的分类:- 固体激光器:如红宝石激光器、Nd:YAG激光器等。
- 气体激光器:如氦氖激光器、CO2激光器等。
- 半导体激光器:也称为激光二极管,广泛应用于通信和数据存储。
3. 激光的特性:- 单色性:激光的波长非常窄,颜色非常纯净。
- 相干性:激光的光波具有相同的频率和相位。
- 方向性:激光束具有很好的方向性,发散角很小。
4. 激光的应用:- 医学:用于手术切割、治疗等。
- 工业:用于材料加工,如焊接、切割、打标等。
- 通信:光纤通信中使用激光作为信号载体。
5. 激光的安全问题:- 激光可能对眼睛造成损伤,使用时应采取适当的防护措施。
- 激光器应按照安全等级分类,并遵守相应的操作规程。
6. 激光器的工作原理:- 泵浦源提供能量,将介质中的粒子激发到高能级。
- 高能级粒子在受到外部光子的激发下,通过受激辐射释放出光子。
- 释放的光子在谐振腔中来回反射,不断被放大,最终形成激光束输出。
7. 激光的调制和调Q技术:- 调制:通过改变激光的参数(如频率、强度)来传输信息。
- 调Q:通过改变谐振腔的品质因数,实现激光脉冲的压缩和放大。
8. 激光的光谱特性:- 激光的光谱非常窄,通常用线宽来描述。
- 线宽越窄,激光的单色性越好。
9. 激光的相干长度:- 相干长度是激光在保持相干性的情况下能够传播的最大距离。
10. 激光的发散角:- 发散角是激光束在传播过程中的扩散程度,与激光的模式有关。
以上是一些基本的激光原理习题答案,希望能够帮助理解激光的基本原理和特性。
激光技术原理及应用的答案
激光技术原理及应用的答案激光技术原理激光(Laser)是指在受激辐射作用下产生的,具有高度一致性、单色性和方向性的光线。
它的原理基于激活物质(如气体、固体或液体)的原子或分子通过受激辐射释放出光子。
具体来说,激光技术原理包括以下几个方面:1.受激辐射:激光的原理是基于受激辐射过程。
当外界光或电子束等能量激发到激光介质中的原子或分子时,它们会处于高能级态,然后通过跃迁回到低能级态,同时发射出与入射能量一致的光子。
2.光放大:在激光器中,激光介质中的光子会与待激发的原子或分子作用,导致原子或分子处于高能级态。
通过引入一个辐射源,其能量很容易被激光介质吸收并转化为更多的光子,从而达到放大激光的效果。
3.光反馈:在激光器中,光放大过程可以被反馈回来,形成一个光学谐振腔。
这个腔体包含一个完全或部分反射镜和一个输出镜。
放大的光通过反射镜反射回来,然后经过多次反射和放大,在腔中形成更多的激光。
4.单色性:激光的光子是高度一致的,它们具有非常狭窄而单一的频率。
这是因为激光器中的光放大过程只允许某个特定的模式在腔中持续放大,其他模式的能量会很快耗散掉。
激光技术应用激光技术由于其独特的特性,在许多领域都有着广泛的应用。
以下是一些常见的激光技术应用:1.激光切割和焊接:激光切割和焊接技术在工业生产中得到了广泛应用。
激光切割可以实现高精度、高速度和无接触的材料切割,适用于金属、塑料和木材等材料。
激光焊接则可以实现高强度的焊接连接,适用于汽车制造和电子设备制造等领域。
2.激光医学:激光在医学领域具有重要应用。
例如,激光手术可以实现无创伤、高精度和快速的手术操作,适用于眼科、皮肤美容和神经外科等领域。
激光也可以用于医学成像,如激光扫描显微镜和激光共聚焦显微镜。
3.激光测距和测量:激光测距和测量技术广泛应用于工程和地理测量领域。
例如,激光测距仪可以测量远距离和高精度的距离,适用于建筑测量和地形测绘。
激光测量仪也可以测量物体的尺寸、形状和表面特征。
激光原理与技术答案 (4)
激光原理与技术答案
激光原理及技术相关的问题较为广泛,以下是一些可能的
答案:
1. 激光的原理是通过光的受激辐射产生一种高度单色、高
度方向一致并具有相干性的光。
这是通过将活性物质置于
一个光学腔中,通过激光器提供的能量,激发活性物质中
的电子跃迁,产生光子受激辐射,最终得到激光。
2. 激光技术在许多领域有广泛应用。
例如,医学领域中的
激光手术可以精确切割组织,减少出血和伤口,加速恢复。
在通信领域,激光器用于光纤通信系统中的信号传输。
此外,激光还用于测距、测速、材料加工、激光打印、光刻、激光雷达等领域。
3. 激光的主要特点包括聚焦度高、方向性好、单色性好和
相干性好。
这些特点使得激光可以用于精确控制光束的传
播方向、聚焦到非常小的区域以及进行高精度的测量和加工。
4. 激光器的种类包括气体激光器、固体激光器、半导体激光器和液体激光器等。
不同类型的激光器具有不同的工作原理和特点,适用于不同的应用领域。
5. 激光的产生和操作涉及多个关键技术,例如激光的泵浦方式、活性物质的选择、腔体的设计和模式控制等。
这些技术的发展和创新推动了激光技术的进步和应用的拓展。
6. 激光的安全问题也需要引起重视。
激光束具有很高的能量密度,如果不正确使用和操作,可能会对人体和环境造成危害。
因此,正确的激光防护和安全措施也是激光技术应用中必须注意的问题之一。
激光原理部分课后习题答案
µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e
激光原理及应用 章部分课后答案
激光原理及应用部分课后答案1-4为使He-Ne 激光器的相干长度达到1KM ,它的单色性0λλ∆应是多少?2-2当每个模式内的平均光子数(光子简并数)大于1时,以受激辐射为主。
2-3如果激光器和微波激射器分别在um 10=λm 500n =λ和z 3000MH =ν输出1W 连续功率,问美秒从激光上能级向下能级跃迁的粒子数是多少?2-4当一对激光能级为E2和E1(f1=f2),相应的频率为v (波长为λ),能级上的粒子数密度分别为n2和n1,q 求:(1)当v=3000MHZ ,T=3000K 时,n2/n1=?(2)当λ=1um ,T=3000K 时,n2/n1=?(3)当λ=1um ,n2/n1=0时,温度T=?解:2-5激发态的原子从能级E2跃迁到E1时,释放出λ=5um的光子,求这个两个能级的能量差。
若能级E1和E2上的原子数分别为N1和N2,试计算室温T=300K的N2/N值。
2-7如果工作物质的某一跃迁是波长为100nm的远紫外光,自发辐射跃迁概率1621s10-=A,试问:(1)改跃迁的受激辐射爱因斯坦系数B21是多少?(2)为使受激辐射跃迁概率比自发辐射跃迁概率大三倍,腔内的单色能量密度νρ应为多少?2-9某一物质受光照射,沿物质传播1mm的距离时被吸收了1%,如果该物质的厚度是0.1m,那么入射光中有百分之几能通过该物质?并计算该物质的吸收系数α。
2-10激光在0.2m 长的增益介质中往复运动过程中,其增强了30%。
求该介质的小信号增益系数0G 。
假设激光在往复运动中没有损耗。
3-2CO2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r1=0.985,r2=0.8.求由衍射损耗及输出损耗所分别引起的δ,τ。
3-4,分别按下图中的往返顺序,推导近轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(D A +21相等。
激光原理与应用课后题答案 陈家壁版
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h qn 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kT n n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kTh e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
激光原理及应用陈鹤鸣答案
激光原理及应用陈鹤鸣答案1、4.列车员说火车8点42分到站,8点42分指的是时间间隔.[判断题] *对错(正确答案)2、59.1911年,卢瑟福在α粒子散射实验的基础上,提出了原子核式结构模型。
下列关于这个模型的说法中正确的是()[单选题] *A.原子核位于原子的中心(正确答案)B.电子静止在原子核周围C.原子核带负电D.原子核占据了原子内大部分空3、2.运动员将足球踢出,球在空中飞行是因为球受到一个向前的推力.[判断题] *对错(正确答案)4、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像5、其原因错误的是()*A.使用的用电器总功率过大B.电路中有断路(正确答案)C.开关接触不良(正确答案)D.电路的总电阻过大(正确答案)6、关于家庭电路和安全用电,下列说法正确的是()[单选题]A.我国家庭电路电压为380VB.发生短路会导致家庭电路中总电流过大(正确答案)C.用湿布擦正在发光的台灯D.在未断开电源开关的情况下更换灯泡7、验电器是实验室里常常用验电器来检验物体是否带电。
用带正电的玻璃棒接触验电器的金属球,可以发现验电器原来闭合的两片金属箔张开一定的角度,如图61所示。
以下判断中正确的是()[单选题]A.金属球带正电,金箔片都带负电,它们因排斥而张开B.金属球带正电,金箔片都带正电,它们因排斥而张开(正确答案)C.金属球带负电,金箔片都带正电,它们因吸引而张开D.金属球带负电,金箔片都带负电,它们因吸引而张开8、54.如图所示,2019年4月10日人类首张黑洞照片的问世,除了帮助我们直接确认了黑洞的存在外,还证实了爱因斯坦广义相对论的正确性。
下列关于宇宙的描述中,不正确的是()[单选题] *A.地球是太阳系内的一颗行星B.太阳和太阳系最终会走向“死亡”C.宇宙处于普遍的膨胀之中D.太阳是宇宙的中心(正确答案)9、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力10、在图65的四种情境中,人对物体做功的是()[单选题]A.提着桶在水平地面上匀速前进B.举着杠铃保持杠铃静止C.用力搬石头但没有搬动D.推着小车前进(正确答案)11、23.三个质量相等的实心球,分别由铝、铁、铜制成,分别放在三个大小相同的空水杯中,再向三个空水杯中倒满水(物体都能浸没,水没有溢出,ρ铝<ρ铁<ρ铜),则倒入水的质量最多的是()[单选题] *A.铝球B.铁球C.铜球(正确答案)D.无法判断12、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害13、关于物质的密度,下列说法正确的是()[单选题] *A. 一罐氧气用掉部分后,罐内氧气的质量变小,密度不变B. 一只气球受热膨胀后,球内气体的质量不变,密度变大C. 一支粉笔用掉部分后,它的体积变小,密度变小D. 一块冰熔化成水后,它的体积变小,密度变大(正确答案)14、能量在转化过程中是守恒的,所以能源是“取之不尽,用之不竭”的[判断题] *对错(正确答案)答案解析:能量在转化和转移的过程中是有方向的,所以需要节能15、如图59所示,“蛟龙号”载人深潜器是我国首台自主设计、研制的作业型深海载人潜水器,设计最大下潜深度为级,是目前世界上下潜最深的作业型载人潜水器。
激光原理练习题及答案
激光原理练习题及答案一、选择题1. 激光的产生是基于以下哪种物理现象?A. 光电效应B. 康普顿散射C. 受激辐射D. 黑体辐射答案:C2. 激光器中的“泵浦”是指什么?A. 激光器的启动过程B. 激光器的冷却过程C. 激光器的增益介质D. 激光器的输出过程答案:A3. 以下哪种激光器不是按照工作物质分类的?A. 固体激光器B. 气体激光器C. 半导体激光器D. 脉冲激光器答案:D二、填空题4. 激光的三个主要特性是________、________和________。
答案:单色性、相干性和方向性5. 激光器中的增益介质可以是________、________或________等。
答案:固体、气体或半导体三、简答题6. 简述激光与普通光源的区别。
答案:激光与普通光源的主要区别在于激光具有高度的单色性、相干性和方向性。
普通光源发出的光波长范围较宽,相位随机,方向分散,而激光则具有单一的波长,相位一致,且能沿特定方向高度集中。
7. 解释什么是激光的模式竞争,并说明其对激光性能的影响。
答案:激光的模式竞争是指在激光腔中,不同模式(横模和纵模)之间争夺增益介质提供的增益资源。
模式竞争可能导致激光输出不稳定,影响激光的质量和效率。
通过优化腔体设计和使用模式选择器可以减少模式竞争,提高激光性能。
四、计算题8. 假设一个激光器的增益介质长度为10cm,泵浦效率为80%,增益系数为0.01cm^-1。
计算在不考虑任何损耗的情况下,激光器的增益。
答案:增益 = 增益系数× 增益介质长度× 泵浦效率 = 0.01× 10× 0.8 = 0.89. 如果上述激光器的输出镜的反射率为90%,计算腔内光强每通过一次腔体增加的百分比。
答案:增益百分比 = (1 - 反射率) × 增益 = (1 - 0.9) × 0.8 = 0.08 或 8%五、论述题10. 论述激光在医学领域的应用及其原理。
2023大学_激光原理及应用(陈家璧著)课后习题答案下载
2023激光原理及应用(陈家璧著)课后习题答案下载激光原理及应用(陈家璧著)课后答案下载绪论一、激光的发展简史二、激光的特点三、本课程的学习方法第1章光和物质的近共振相互作用1.1 电磁波的吸收和发射1.2 电磁场吸收和发射的唯象理论1.3 光谱线加宽1.4 激光器中常见的谱线加宽1.5 光和物质相互作用的近代理论简介思考和练习题第2章速率方程理论2.1 典型激光器的工作能级2.2 三能级系统单模速率方程组2.3 四能级系统单模速率方程组2.4 小信号光的介质增益2.5 均匀加宽介质的增益饱和2.6 非均匀加宽介质的增益饱和2.7 超辐射激光器思考和练习题第3章连续激光器的工作特性3.1 均匀加宽介质激光器速率方程3.2 激光振荡阈值3.3 均匀加宽介质激光器中的'模竞争3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性思考和练习题第4章光学谐振腔理论4.1 光学谐振腔的研究方法4.2 光学谐振腔的基本知识4.3 光学谐振腔的矩阵光学理论4.4 光学谐振腔的衍射积分理论4.5 平行平面腔的自再现模4.6 对称共焦腔的自再现模思考和练习题第5章高斯光束5.1 高斯光束的基本特点5.2 高斯光束的传输5.3 高斯光束的特性改善思考和练习题第6章典型激光器6.1 概述6.2 气体激光器6.3 固体激光器6.4 染料激光器6.5 半导体激光器6.6 其他激光器思考和练习题第7章激光的应用7.1 激光在基础科学研究中的应用 7.2 激光在通信及信息处理中的应用 7.3 激光在军事技术中的应用7.4 激光在生物及医学中的应用7.5 激光在材料加工中的应用7.6 激光在测量技术(计量学)中的应用7.7 激光在能源、环境中的应用7.8 激光在土木、建筑中的应用思考和练习题附录A.常用物理常数表B.常见激光器的典型技术参数C.常用电光晶体的典型技术参数D.常用光学非线性晶体的典型技术参数E.常用激光晶体的典型技术参数F.常见光功率计型号和厂家G.典型激光波长使用的光学零件及其材料性能参数H.常见光路和光学元件的传播矩阵参考文献激光原理及应用(陈家璧著):内容简介点击此处下载激光原理及应用(陈家璧著)课后答案激光原理及应用(陈家璧著):目录主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。
激光原理技术与应用习题解答
习题I1、He-Ne激光器,其谱线半宽度,问为多少?要使其相干长度达到1000m,它的单色性应是多少?解:2、He-Ne激光器腔长L=250mm,两个反射镜的反射率约为98%,其折射率=1,已知Ne原子处谱线的,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽约为多少?解:3、设平行平面腔的长度L=1m,一端为全反镜,另一端反射镜的反射率,求在1500MHz频率范围内所包含的纵模数目和每个纵模的频带宽度?解:4、已知CO2激光器的波长处光谱线宽度,问腔长L为多少时,腔内为单纵模振荡(其中折射率=1)。
解:,5、Nd3—YAG激光器的波长处光谱线宽度,当腔长为10cm时,腔中有多少个纵模?每个纵模的频带宽度为多少?解:6、某激光器波长,其高斯光束束腰光斑半径。
①求距束腰10cm、20cm、100cm时,光斑半径和波阵面曲率半径各为多少?②根据题意,画出高斯光束参数分布图。
解:对共焦腔有:7、He-Ne激光器波长,采用平凹腔,其中凹面反射镜R=100m 时:①分别计算当腔长为10cm、30cm、50cm、70cm、100cm时两个反射镜上光斑尺寸W平和W凹。
②根据题意,画出光斑尺寸W平和W凹随腔长L变化曲线。
解:8、比较激光振荡器和放大器的异同点。
解:不同:前者有谐振腔,有选模作用后者无谐振腔;相同:粒子数反转;9、试说明红宝石激光器的谱线竞争。
解:10、说明选单模(横、纵)的意义和方法。
解:选单横模的意义:提高光束质量,包括单色性、方向性、相干性、亮度等,重要的是获得稳定的锁模激光和好的激光聚焦光束,进行时间空间分辨应用。
精细激光加工:光斑直径=透镜焦距*发散角。
超强超快激光应用; 激光通信、雷达、测距等,希望作用距离大,发散角小。
选单横模的方法:加小孔光栏;谐振腔结构。
选单纵模意义:单频激光应用,稳频应用,高相干性和单色性,时间(时钟)标准等。
精密干涉测量,全息照相,高分辨光谱等要求单色性、相干性高的单频光源。
《激光原理及应用》习题参考答案仅供大家学习参考用
《激光原理及应用》习题参考答案思考练习题11.解答:设每秒从上能级跃迁到下能级的粒子数为n 。
单个光子的能量:λνε/hc h == 连续功率:εn p =则,ε/p n =a. 对发射m μλ5000.0=的光: )(10514.2100.31063.6105000.01188346个⨯=⨯⨯⨯⨯⨯==--hc p n λ b. 对发射MHz 3000=ν的光)(10028.51030001063.6123634个⨯=⨯⨯⨯==-νh p n 2.解答:νh E E =-12……………………………………………………………………..(a)TE E en nκ1212--=……………………………………………………………………….(b)λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得:112==-T h e n n κν(2)由(a ),(b ),(c)式可得: )(1026.6ln312K n n hcT ⨯=-=κλ3.解答:(1) 由玻耳兹曼定律可得TE E e g n g n κ121122//--=,且214g g =,202110=+n n 代入上式可得:≈2n 30(个)(2))(10028.5)(1091228W E E n p -⨯=-= 4.解答:(1) 由教材(1-43)式可得317336343/10860.3/)106000.0(1063.68200018q m s J m s J h q ⋅⋅=⋅⋅⋅⋅⋅⋅=⋅=---πλπρν自激 (2)9344363107.5921063.68100.5)106328.0(8q ⋅=⋅⋅⋅⋅⋅==---ππρλνh q 自激5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-⋅=cm ρ,发射波长m 6106943.0-⋅=λ,巨脉冲宽度ns T 10=∆则输出最大能量)(304.2)(106943.0100.31063.684.0102)(68342182J J hcL r E =⋅⋅⋅⋅⋅⋅⋅⋅⋅==--πλπρ 脉冲的平均功率: )(10304.2)(1010304.2/89W W T E p ⋅=⋅=∆=- (2)自发辐射功率)(10304.2)(10106943.0)84.0102(100.31063.6)(22621883422W W L r hc hcN Q ⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==---πλτπρλτ=自6.解答:由λν/c =,λλνd cd 2=及λρνρλd d v =可得1185-==kThcehcd d λνλλπλνρρ7.解答: 由0)(=ννρd d 可得: 31=-kTh kTh m m mee kTh υυυ;令x kTh m=υ,则)1(3-=x x e xe ;解得:82.2=x 因此:1182.2--=kh T m ν 同样可求得:96.4=kThcm λ 故c m m 568.0=λν8解答:)]4(2[)(11)](4[114)(04042)(4202000πτνππτπτπτνννπττννπτνπτνννπτ--==+=-+=∞-∞∞-=-∞⎰⎰⎰arctg A x arctg A dxx A d A d f xN 令又04πτν数量级在810,所以2~)4(0ππτν--arctg ,代入上式得:τ/1=A9解答:由教材的(1-26)式可得:t A e n t n 21202)(-=,令en t n 1)(202=,则 21211,1A A ==ττ 10解答:相对论四维波矢量为:),(cik k ωμ = 对沿x 方向的特殊洛伦兹变换,有).(,,),(1'3'32'221'1k k k k k c k k υωγωωυγ-===-= (1)其中2211c υγ-=假设波矢量k 与x 轴的夹角为θ,'k 与x 轴的夹角为'θ,有'''11cos ,cos θωθωck ck == (2)代入(1)式可得)cos 1('θνωγωc-= (3)若'∑为光源的静止参考系,则0'ωω=。
激光原理与应用的应用题
激光原理与应用的应用题一、激光的基本原理•激光是指由受激辐射产生的一种特殊的光,具有单色性、相干性和高亮度等特点。
•激光的产生需要通过激活外界能量,使得激活物分子达到激发态,并形成粒子的集体振动。
•激光的放大需要通过受激辐射作用,使得原子或者分子从高能级跃迁到低能级,放出原子或者分子光子。
•激光的放大倍数取决于激光器的增益介质,如半导体材料、固体材料或者气体等。
二、激光的应用领域1.医学领域–激光在医学领域中有广泛的应用,如激光手术、激光治疗、激光光谱分析等。
–激光手术可以用于切割、焊接、治疗、照射等操作,具有精确、无创伤、无血肉、恢复快的特点。
–激光治疗可以用于疾病的辅助治疗,如激光杀菌、激光修复、激光去疤等。
–激光光谱分析可以用于检测疾病、判断药物成分、分析生物样品等。
2.通信领域–激光通信是一种高速大容量的信息传输方式,利用光纤将激光信号通过光波传输的方式进行通信。
–激光通信具有高带宽、低损耗、抗干扰等优点,可以用于长距离的通信传输,如网络、电话、电视等。
3.制造领域–激光在制造领域中广泛应用于切割、焊接、打标、激光雕刻等工艺。
–激光切割可以用于金属材料、塑料材料、玻璃材料等的切割加工,具有精度高、速度快、热影响区小等特点。
–激光焊接可以用于金属材料、塑料材料等的焊接加工,具有焊接接头牢固、焊接速度快、焊接热变形小等特点。
–激光打标可以用于产品标志、防伪标志、二维码等的打标加工,具有标志清晰、耐久性强的特点。
–激光雕刻可以用于木材、石材、塑料等材料的雕刻加工,具有精度高、效果好的特点。
4.科学研究领域–激光在科学研究领域中有着广泛的应用,如激光光谱分析、激光成像、激光干涉等。
–激光光谱分析可以用于物质结构的研究、光谱信息的获取、物质性质的分析等。
–激光成像可以用于三维成像、高分辨率成像、红外成像等,对于微小物体或者远距离物体的成像有很好的效果。
–激光干涉可以用于测量物体的形状、曲率、表面质量等,具有高精度、非接触性、动态性等特点。
激光原理及应用思考练习题答案.
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
激光原理习题与思考题2解答
习题与思考题二解答1. 爱因斯坦提出的光与物质相互作用的三个过程是什么?激光运转属于哪个过程?该过程是如何实现的? 2. 证明:当每个模式内的平均光子数(光子简并度) 大于1时,以受激辐射为主。
证明如下:按照普朗克黑体辐射公式,在热平衡条件下,能量平均分配到每一个可以存在的模上,即γλγh n Tk h h E b ⋅=-=1ex p(n 为频率为γ的模式内的平均光子数)由上式可以得到:1ex p 1-⋅==Tk h h E n b γγ又根据黑体辐射公式:n c h T k h T k h c h b b ==-⇒-⨯=333381exp 11exp 18γπργγγπργγ根据爱因斯坦辐射系数之间的关系式2121338B A ch =γπ 和受激辐射跃迁几率公式γρ2121B W =,则可以推导出以下公式:212121212121338A W A B B A c h n ====γγγρργπρ如果模内的平均光子数(n )大于1,即12121>=A W n ,则受激辐射跃迁几率大于自发辐射跃迁几率,即辐射光中受激辐射占优势。
证明完毕3. 如果激光器和微波激射器分别在λ=10μm ,λ=500nm ,和ν=3000MHz 输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则 功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dt h dE n ⨯==功率每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====ss J h dt n N s J νν功率每秒钟发射的光子数根据题中给出的数据可知:zH m ms c13618111031010103⨯=⨯⨯==--λνzH m ms c1591822105.110500103⨯=⨯⨯==--λνzH 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N4. 设一对激光能级为E2和E1(f2=f1),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求:(1) 当ν=3000MHz,T=300K 时,n2/n1=? (2) 当λ=1μm ,T=300K 时,n2/n1=? (3) 当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:TK E E T k h f f n n b b )(ex p ex p 121212--=-=ν (统计权重21f f =)其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。
激光原理及应用的答案
激光原理及应用的答案1. 激光原理激光是指通过激活原子、分子或离子的能级从而形成一种具有高强度、高单色性和高相干性的电磁辐射的过程。
激光的产生基于以下几个原理:•受激辐射:当一个物质中某个能级的粒子被外界的激发所占据时,如果有一个辐射场作用于这些粒子,它们就可能跳到较低能级,从而向辐射场辐射出一个与外界辐射场的频率和相位相同的光子,这就是受激辐射。
•斯托克斯辐射:当一个粒子从一个高能级跃迁到一个低能级,同时放出一个光子,这个过程称为斯托克斯辐射。
斯托克斯辐射是激光产生过程中的重要原理之一。
•光增强:通过将一系列粒子激发到一个高能级,然后通过受激辐射放出一束光,然后再将该光束通过增强反射和光放大等技术放大,从而形成一束高强度的激光。
2. 激光的应用激光作为一种特殊的光源,具有许多重要的应用。
下面列举了一些主要的激光应用:•激光切割和焊接:激光切割和焊接技术广泛应用于金属加工、电子制造和汽车制造等领域。
激光切割和焊接具有高精度、高效率和无污染等优点,在工业生产中发挥着重要作用。
•激光医学:激光在医学领域有广泛的应用,如激光手术、激光治疗、激光诊断等。
激光手术使用高能激光在手术过程中进行切割、蒸发、烧灼等操作,具有创伤小、恢复快的优点。
激光治疗可以用于肿瘤治疗、皮肤美容等方面。
激光诊断可以用于眼科、皮肤病等疾病的检测和治疗。
•激光测距和测速:激光测距和测速技术被广泛应用于工程建设、地质勘探、安防监控等领域。
利用激光的高单色性和高相干性,可以实现精准的距离和速度测量。
•激光通信:激光通信技术是一种高速、大容量的无线通信技术。
激光通信利用激光器将信息通过光波传输,具有传输速度快、抗干扰能力强的优点,可以用于远距离的通信。
•激光显示:激光显示技术是一种新型的显示技术,具有高亮度、高对比度和高颜色纯度等特点。
激光显示可以用于电视、电影院、虚拟现实等领域,提供更好的显示效果和观看体验。
3. 激光的发展和前景激光技术的发展正在不断推动人类科技的进步。
激光原理及应用(第二版)课后习题答案(全)
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h qn 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n11.静止氖原子的3S 2→2P 4谱线的中心波长为0.6328μm ,设氖原子分别以±0.1c ,±0.5c 的速度向着接收器运动,问接收到的频率各为多少? 答:Hz cc cc 146801.010241.5106328.01039.01.19.01.111⨯=⨯⨯⋅=⋅=-+=-+λυυνν 同理可求:Hz c 141.010288.4⨯=-ν;Hz c 145.010211.8⨯=+ν;Hz c 145.010737.2⨯=-ν12.设氖原子静止时发出0.6328μm 红光的中心频率为4.74×1014Hz ,室温下氖原子的平均速率设为560m/s 。
求此时接收器接收频率与中心频率相差若干?答:Hzc 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν思考练习题21. (a)要制作一个腔长L =60cm 的对称稳定腔,反射镜的曲率半径取值范围如何?(b)稳定腔的一块反射镜的曲率半径R 1=4L ,求另一面镜的曲率半径取值范围。
答:(a )R R R ==21;cm R RLR L 301)1)(1(0≥⇒≤--≤ (b )L R L R R LR L R L 31)1(4301)1)(1(022221-≤≥⇒≤-⋅≤⇒≤--≤或 4. 稳定谐振腔的两块反射镜,其曲率半径分别为R 1=40cm ,R 2=100cm ,求腔长L 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为 1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
设红宝石直径0.8cm ,长8cm ,铬离子浓度为2×1018cm -3,巨脉冲宽度为10ns 。
求:(1)输出0.6943μm 激光的最大能量和脉冲平均功率;(2)如上能级的寿命τ=10-2s ,问自发辐射功率为多少瓦? 答:(1)最大能量Jch d r h N W 3.2106943.01031063.61010208.0004.0683461822=⨯⨯⋅⨯⋅⨯⨯⋅⋅⨯=⋅⋅⋅⋅=⋅=--πλρπν脉冲平均功率=瓦8961030.21010103.2⨯=⨯⨯=--t W (2)瓦自自自145113.2112002021=⎪⎭⎫⎝⎛-⨯==⎪⎭⎫⎝⎛-==⎰-e h N P e n dt e n N t A τνττ6.试证单色能量密度公式,用波长λ来表示应为5811hc kThc eλλπρλ=-证明:11811852322-⨯=⋅-⨯=⋅=⋅==kTh kT h e hc c e h c c dVd dw dVd dw νννλλπλλπλρλνλρ 7. 试证明,黑体辐射能量密度()ρν为极大值的频率m ν由关系112.82m T kh ν--=给出,并求出辐射能量密度为极大值的波长m λ与m ν的关系。
答:(1)由 33811hv kTh c eνπνρ=-可得:0))1(113(82323=⋅⋅--⋅+-=∂∂kT he e e c h kT h kT h kT h ννννννπνρ 令kTh x ν=,则上式可简化为:xx xe e =-)1(3解上面的方程可得:82.2≈x 即:1182.282.2--=⇒≈kh T kTh m mνν (2)辐射能量密度为极大值的波长m λ与m ν的关系仍为m m c λν=8.由归一化条化证明(1-65a)式中的比例常数1A τ=证明: 2202)2/1()(4)(τννπν+-=Af N ,由归一化条件且0ν是极大的正数可得: ⇒=+-⎰∞1)2/1()(402202ντννπd A ⇒=+-⎰∞1)2/1()(4202202ντννπνd A⇒='+'⎰∞1)41(120222νπτνπd A τπτνπτπ11]'4[4202=⇒=⋅⋅∞A arctg A9.试证明:自发辐射的平均寿命211A =τ,21A 为自发辐射系数。
证明:自发辐射时在上能级上的粒子数按(1-26)式变化:t A e n t n 21202)(-=自发辐射的平均寿命可定义为()dt t n n ⎰∞=2201τ式中()dt t n 2为t 时刻跃迁的原子已在上能级上停留时间间隔dt 产生的总时间,因此上述广义积分为所有原子在激发态能级停留总时间,再按照激发态能级上原子总数平均,就得到自发辐射的平均寿命。
将(1-26)式代入积分即可得出21121A dt etA ==⎰∞-τ10.光的多普勒效应中,若光源相对接收器的速度为c υ<<,证明接收器接收到的频率0ν=,在一级近似下为:0(1)cυνν≈+证明:0022021220)1()211)(1()1)(1(11υυυυυυυυυυυν⋅+≈⋅⋅++≈⋅-+=⋅-+=-c c c c c c c即证11.静止氖原子的3S 2→2P 4谱线的中心波长为0.6328μm ,设氖原子分别以±0.1c ,±0.5c 的速度向着接收器运动,问接收到的频率各为多少? 答:Hz c c c c 14681.010241.5106328.01039.01.19.01.111⨯=⨯⨯⋅=⋅=-+=-+λυυνν 同理可求:Hz c 141.010288.4⨯=-ν;Hz c 145.010211.8⨯=+ν;Hz c 145.010737.2⨯=-ν12.设氖原子静止时发出0.6328μm 红光的中心频率为4.74×1014Hz ,室温下氖原子的平均速率设为560m/s 。
求此时接收器接收频率与中心频率相差若干?答:Hzc 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν13.(1) 一质地均匀的材料对光的吸收为0.01mm -1、光通过10cm 长的该材料后,出射光强为入射光强的百分之几? (2) —光束通过长度为1m 的均匀激活的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
答;(1)368.01)0()()0()(10001.0===⇒=⋅--ee I z I eI z I Az(2)11693.02ln 2)0()()0()(-⋅==⇒==⇒=m G e I z I e I z I G Gz思考练习题21. 利用下列数据,估算红宝石的光增益系数n 2-n 1=5⨯1018cm -3,1/f (ν)=2×1011s -1,t 自发=211A -≈3⨯10-3s ,λ=0.6943μm ,μ=l.5,g 1=g 2。
答:)(8)(8)(8)()(222133321333212121νπμλννμνπμννπμννμνf A n f h c h c A n G c h B A f h c nB G ⋅⋅∆=⋅⋅∆=⇒⎪⎪⎭⎪⎪⎬⎫=∆=11122431871.010215.18)106943.0(1031105)(---=⨯⨯⨯⋅⨯⋅⨯=cm G πν 2. He-Ne 激光器中,Ne 原子数密度n 0=n 1+n 2=l012cm -3,1/f (ν)=15×109s -1,λ=0.6328μm ,t 自发=211A -=10-17s ,g 3=3,g 2=5,11μ≈,又知E 2、E 1能级数密度之比为4,求此介质的增益系数G 值。
答:11112211211112312210103141081021410⨯=-=∆⇒⎪⎩⎪⎨⎧⨯=⨯=⇒⎭⎬⎫=+=-n g g n n n n E E cm n n n 比能级数密度之比为和 332121333332121888νπνπνπμh c A B c h c h B A =⇒== 192617112212172.0105.118)106328.0(1010314)(8)()(--=⨯⨯⨯⨯⨯=∆=∆=cm f A n f h c nB G πνπλννμν 3. (a)要制作一个腔长L =60cm 的对称稳定腔,反射镜的曲率半径取值围如何?(b)稳定腔的一块反射镜的曲率半径R 1=4L ,求另一面镜的曲率半径取值围。
答:(a )R R R ==21;cm R RLR L 301)1)(1(0≥⇒≤--≤ (b )L R L R R LR L R L 31)1(4301)1)(1(022221-≤≥⇒≤-⋅≤⇒≤--≤或 4. 稳定谐振腔的两块反射镜,其曲率半径分别为R 1=40cm ,R 2=100cm ,求腔长L 的取值围。
答:cm L cm L L L R L R L 1401004001)1001)(401(01)1)(1(021≤≤≤≤⇒≤--≤⇒≤--≤或 5. 试证非均匀增宽型介质中心频率处的小讯号增益系数的表达式(2-28)。
证明:2102100021000210002100)ln2( 2)()2ln (2)()( )()( )(πννμνπννννμνννμνh c B n G f f h c B n G f h cB n G D D DD D D D D ∆∆=⇒⎪⎪⎭⎪⎪⎬⎫∆=∆=⇒∆= 即证。
6. 推导均匀增宽型介质,在光强I ,频率为ν的光波作用下,增益系数的表达式(2-19)。
证明:220022000)2)(1()()(])2()[()()(1 )()(ννννννννννν∆++-∆+-=+=s s I I G f f I I G G 而:())()(2)2()(12)()()(2)()( )()( )(0022000000002100002100ννπνννπννννννπνννμνννμνG G f f G f f h c B n G f h cB n G ∆∆+-∆==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫∆=∆=∆≈依据上面两式可得:220002)2)(1()()()2()(νννννν∆++-∆=s I I G G ;即证。