高考数学必备知识点及公式总结
高考数学知识点总结及公式
高考数学知识点总结及公式高考数学必考知识点第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出。
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
高考数学基础知识点公式
高考数学基础知识点公式数学作为高考的一门重要科目,占据了很大的比重。
在备考高考数学时,熟练掌握基础知识点和公式是非常重要的。
本文将介绍一些高考数学中常用的基础知识点和公式,供广大考生参考。
一、代数与函数部分1. 二次函数的顶点坐标公式对于一般的二次函数y = ax² + bx + c,它的顶点坐标可以通过以下公式求解:x = -b/2ay = -(b²-4ac)/4a2. 因式分解公式(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b) = a² - b²3. 二次根式化简公式√(a+b) = √a + √b (a≥0, b≥0)√(a-b) = √a - √b (a≥0, b≥0)(√a + √b)(√a - √b) = a - b4. 倍角公式sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θtan2θ = (2tanθ)/(1-tan²θ)二、几何部分1. 面积公式三角形的面积公式:S = (1/2)bh矩形的面积公式:S = lw平行四边形的面积公式:S = bh梯形的面积公式:S = (a+b)h/2圆的面积公式:S = πr²2. 三角形的正弦定理与余弦定理对于三角形ABC,边长分别为a,b,c,对应的角度分别为A,B,C:正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosC3. 圆的相关公式圆的周长公式:C = 2πr圆的弧长公式:L = 2πr(θ/360°) (其中θ为圆心角的度数) 圆的扇形面积公式:S = (πr²θ)/360°三、概率与统计部分1. 排列组合公式排列公式:An = n!组合公式:Cn = n!/(m!(n-m)!)2. 期望公式离散型随机变量X的期望:E(X) = ∑(xi*P(xi))连续型随机变量X的期望:E(X) = ∫(xf(x)dx)3. 方差公式离散型随机变量X的方差:D(X) = ∑(xi-E(X))²P(xi)连续型随机变量X的方差:D(X) = ∫(x-E(X))²f(x)dx四、数列与数学归纳法部分1. 等差数列的通项公式第n项:an = a1 + (n-1)d前n项和:Sn = (n/2)(a1 + an)2. 等比数列的通项公式第n项:an = a1 * r^(n-1)前n项和(无穷项和):Sn = (a1 * (r^n - 1))/(r - 1) (当|r| < 1)3. 斐波那契数列的通项公式Fn = F(n-1) + F(n-2) (n ≥ 3, F1 = 1, F2 = 1)以上仅是高考数学中的部分基础知识点和公式,掌握这些公式并熟练运用,对于考试会起到事半功倍的效果。
高考数学公式及知识点总结
高考数学公式及知识点总结高考数学是许多同学感到头疼的科目,但只要掌握了重点公式和知识点,就能在考试中取得更好的成绩。
以下是对高考数学中重要公式和知识点的详细总结。
一、函数1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则 f(x)为奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
3、常见函数的图像和性质一次函数:y = kx + b(k、b 为常数,k≠0),图像是一条直线。
二次函数:y = ax²+ bx + c(a≠0),图像是一条抛物线。
当 a>0 时,开口向上;当 a<0 时,开口向下。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0),图像是双曲线。
当 k>0 时,图像在一、三象限;当 k<0 时,图像在二、四象限。
二、三角函数1、三角函数的定义正弦函数:sinα =对边/斜边余弦函数:cosα =邻边/斜边正切函数:tanα =对边/邻边2、特殊角的三角函数值|角度|0°|30°|45°|60°|90°|||||||||sin|0|1/2|√2/2|√3/2|1||cos|1|√3/2|√2/2|1/2|0||tan|0|√3/3|1|√3|不存在|3、三角函数的基本关系式sin²α +cos²α = 1tanα =sinα/cosα4、三角函数的图像和性质正弦函数y =sin x 的图像,定义域为R,值域为-1,1,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ,0)(k∈Z)。
高考数学知识点总归纳公式
高考数学知识点总归纳公式数学作为一门重要的学科,不仅仅是高中阶段的学习内容,更是高考必考科目之一。
在高考数学中,掌握各种知识点和公式是非常重要的。
下面将对高考数学中的常见知识点进行总结和归纳,并列举一些常用的公式。
一、函数与方程1. 一次函数一次函数是指具有形如f(x)=kx+b的函数,其中k为一次项的系数,b为常数项。
在一次函数中,常用的公式有:- 直线的斜率公式:已知一点(x1, y1)和一次函数y=kx+b,斜率k可以通过斜率公式计算得到:k=(y2-y1)/(x2-x1)。
- 两直线的交点坐标公式:已知两条直线的方程,可以通过求解方程组的方式得到两条直线的交点坐标。
2. 二次函数二次函数是指具有形如f(x)=ax^2+bx+c的函数,其中a、b和c 为常数,而a不等于零。
在二次函数中,常用的公式有:- 顶点坐标公式:二次函数的顶点坐标为(-b/(2a), f(-b/(2a)))。
- 相关系数公式:对于二次函数ax^2+bx+c,相关系数为D=b^2-4ac。
通过相关系数可以判断二次函数的图像形态。
- 解二次方程公式:对于一元二次方程ax^2+bx+c=0,可以使用解二次方程公式求解,即x=(-b±√(b^2-4ac))/(2a)。
3. 指数与对数指数与对数是数学中的重要概念,高考中也经常涉及到。
在指数与对数中,常见的公式有:- 指数运算公式:a^m*a^n=a^(m+n), (a^m)^n=a^(mn),(ab)^m=a^m*b^m。
- 对数运算公式:log(a*b)=log(a)+log(b), log(a/b)=log(a)-log(b), log(a^m)=m*log(a)。
二、几何与三角1. 几何图形在高考数学中,涉及到许多几何图形,如直线、圆、多边形等。
与几何图形相关的公式有:- 直线的方程:直线的方程可以通过点斜式和一般式来表示。
- 圆的方程:圆的方程可以通过圆心坐标和半径来表示。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全《高考数学知识点总结及公式大全》一、函数与方程1. 一次函数- 方程:y = ax + b- 直线的斜率公式:a = Δy / Δx- 直线的截距公式:b = y - ax2. 二次函数- 方程:y = ax^2 + bx + c- 抛物线的顶点坐标公式:(h, k) = (-b / (2a), c - b^2 / (4a))3. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 三角函数间的关系:sin^2(x) + cos^2(x) = 14. 指数函数与对数函数- 指数函数:y = a^x- 对数函数:y = loga(x)- 对数运算法则:loga(m * n) = loga(m) + loga(n)5. 不等式- 线性不等式:ax + b > 0- 二次不等式:ax^2 + bx + c > 0二、解析几何1. 直线与曲线- 一次函数的图像是一条直线- 二次函数的图像是一个抛物线2. 二维坐标系- 直角坐标系:以x轴和y轴为基准构建的坐标系- 极坐标系:以原点O和角度θ为基准构建的坐标系3. 几何图形- 圆:由所有与一个点的距离相等的点所组成的图形- 圆柱体:由一个圆沿着一条平行于其平面的直线旋转一周形成的立体图形三、概率与统计1. 概率- 事件的概率:P(A) = n(A) / n(S)- 互斥事件:P(A ∩ B) = 0- 独立事件:P(A ∩ B) = P(A)P(B)2. 统计- 平均数:A = (x1 + x2 + ... + xn) / n- 方差:Var(X) = (x1^2 + x2^2 + ... + xn^2) / n - (A)^2- 标准差:σ = √[ (x1 - A)^2 + (x2 - A)^2 + ... + (xn - A)^2 / n ]四、解题技巧1. 代入法:将未知数用已知条件中的数进行代入,并求解方程。
关于高考数学知识点和公式
关于高考数学知识点和公式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!关于高考数学知识点和公式关于高考数学知识点和公式总结应该很多人想知道在高中数学的学习上有哪些需要背的知识点和公式,高考数学中必背的重点公式有哪些呢?以下是本店铺准备的关于高考数学知识点和公式,欢迎借鉴参考。
高考数学必备知识点及公式总结
高考数学必备知识点及公式总结高考数学是一门需要掌握一定的数学知识和公式的科目。
下面是高考数学常见的知识点及相关公式的总结。
一、函数与方程1.函数的定义与性质-函数的定义:对应关系、自变量、因变量、定义域、值域等。
-函数的性质:奇偶性、周期性、单调性、极值点、对称轴等。
2.一次函数与二次函数- 一次函数的表达式:y = kx + b。
- 二次函数的表达式:y = ax² + bx + c。
-一次函数与二次函数的性质与图像:斜率、判别式、顶点、对称轴等。
3.指数函数与对数函数-指数函数:y=a^x,其中a>0且a≠1- 对数函数:y = logₐx,其中 a > 0 且a ≠ 1-指数函数与对数函数的性质:指数函数的增减性、对数函数的定义域等。
4.三角函数-基本三角函数:正弦函数、余弦函数、正切函数等。
-三角函数的基本关系:辅助角公式、三角恒等式等。
5.方程与不等式-方程的解的情况:无解、唯一解、无穷多解。
-一元二次方程的求解法:配方法、根的性质、韦达定理等。
-一元二次不等式的解集表示:区间表示、集合表示等。
二、空间几何与向量1.平面几何-平面上点与线的位置关系:点与直线的距离、点到线段的距离等。
-直线的方程:一般式、点斜式、两点式等。
-圆的方程:标准方程、一般方程等。
2.空间几何-空间中点与线的位置关系:点与直线的距离、点到线段的距离等。
-空间中直线的方程:点向式、两点式等。
-空间中平面的方程:一般式、点法式等。
3.向量的运算-向量的定义与性质:向量的模、方向、共线关系等。
-向量的加法与减法:平行四边形法则、三角形法则等。
-向量的数量积与向量积:数量积的定义与性质、向量积的定义与性质等。
4.空间向量的应用-点到直线的距离:点到直线的单位法向量与点的坐标的内积。
-直线与平面的位置关系:直线与平面的夹角等。
三、概率与统计1.随机事件与概率-随机事件的定义与性质:必然事件、不可能事件、事件的互斥与对立等。
高考数学必背公式和知识点
高考数学必背公式和知识点在高中数学学习中,公式和知识点的记忆是非常重要的。
尤其在高考数学中,对于公式的熟悉程度直接决定了解题的效率和准确性。
下面将介绍一些高考数学必备的公式和知识点,希望能对大家备战高考有所帮助。
一、函数1. 一次函数的一般形式: y = kx + b,其中 k 表示斜率,b 表示截距。
2. 二次函数的一般形式: y = ax^2 + bx + c,其中 a 表示抛物线的开口方向,a>0 表示开口向上,a<0 表示开口向下。
二、直线和曲线1. 直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 直线的截距 b = y - kx,其中 (x, y) 是直线上的一个点。
3. 判定直线与坐标轴的交点: x 轴截距为 b1 = -b / k,y轴截距为 b2 = b。
4. 曲线的极限:当 x 趋近于 a 时,若存在一个常数 L,使得函数值 f(x) 趋近于 L,则称函数 f(x) 在 x=a 处有极限 L。
三、三角函数1. sinA = a / c,cosA = b / c,tanA = a / b,其中 c 表示斜边,a 表示对边,b 表示邻边。
2. 正弦定理:a / sinA = b / sinB = c / sinC。
3. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA。
四、平面几何1. 相似三角形的比例定理:设两个三角形 ABC 和 A'B'C',若有三个边对应成比例,则可以推出两个三角形对应的角相等。
2. 两条平行线与一条横截线的对应角相等,即内错角和外错角互为补角。
3. 圆的面积公式:S = πr^2。
五、立体几何1. 直线和平面垂直的判定:若直线的方向向量与平面的法向量相互垂直,则两者垂直。
2. 圆柱体的体积公式:V = πr^2h。
3. 球体的表面积公式:S = 4πr^2。
六、概率与统计1. 组合公式:C(n, m) = n! / (m!(n-m)!),表示从 n 个数中取出 m 个数的组合数。
高考数学知识点总结及公式大全(实用)
高考数学知识点总结及公式大全(实用)高考数学必备公式1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式b2-4ac=0 注:方程有两个相等的实根b2-4acgt;0 注:方程有两个不等的实根b2-4aclt;0 注:方程没有实根,有共轭复数根4、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)5、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a6、抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
agt;0时,抛物线开口向上;alt;0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
数学高考知识点及公式总结
数学高考知识点及公式总结在高中数学的学习过程中,我们需要掌握各种各样的知识点和公式。
这些知识点和公式是我们高考备考的重要基础,也是我们在数学考试中的得分点。
下面,我们就来总结一下数学高考中常见的知识点和公式,希望对大家备考有所帮助。
一、代数与函数1. 方程与不等式- 一元二次方程:$ax^2 + bx + c = 0$- 二次函数图像的特征:顶点、对称轴、开口方向- 一元二次不等式:$ax^2 + bx + c > 0$ 或 $< 0$ 的解集2. 数列与数列极限- 等差数列通项公式:$a_n = a_1 + (n-1)d$- 等比数列通项公式:$a_n = a_1 \cdot q^{n-1}$- 递推关系与通项公式的转化- 数列极限的概念与计算3. 函数与图像- 一次函数:$y = kx + b$- 二次函数:$y = ax^2 + bx + c$- 指数函数:$y = a^x\ (a > 0,\ a \neq 1)$- 对数函数:$y = \log_a{x}\ (a > 0,\ a \neq 1)$- 三角函数:正弦函数、余弦函数、正切函数等二、平面几何1. 图形的性质- 四边形性质:平行四边形、矩形、正方形、菱形等- 三角形性质:等边三角形、等腰三角形、直角三角形等- 圆的性质:圆的周长、面积、弦长、弧长等2. 相似与全等- 三角形相似的判定条件- 三角形全等的判定条件3. 向量与坐标- 向量的基本运算:加法、减法、数乘- 向量的模、平行、垂直等概念- 平面直角坐标系中的点与向量的关系三、空间几何1. 空间图形的性质- 空间几何体:球、圆柱、圆锥、棱柱、棱锥等- 空间图形的表面积和体积计算2. 空间直角坐标系- 空间直角坐标系的建立与应用- 斜率与二维、三维直线的关系3. 空间平面与直线- 空间平面的方程与性质- 空间直线的方程与性质四、概率与统计1. 随机事件与概率- 随机事件的概念与性质- 概率的基本性质及其计算方法- 排列与组合的概念与计算2. 数据处理与统计- 数据分布的统计指标:平均数、中位数、众数、极差等- 统计图表的绘制与分析以上就是数学高考中常见的知识点和公式的总结。
高考必备数学公式大全
高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
高考数学知识点总结及公式大全免费
高考数学知识点总结及公式大全免费高考数学重要知识点( 一 ) 导数第一定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x(x0+△x 也在该邻域内 ) 时,相应地函数取得增量△y=f(x0+△x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第一定义( 二 ) 导数第二定义设函数 y=f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x(x-x0 也在该邻域内 ) 时,相应地函数变化△y=f(x)-f(x0); 如果△y 与△x 之比当△x→0 时极限存在,则称函数 y=f(x) 在点 x0 处可导,并称这个极限值为函数 y=f(x) 在点 x0 处的导数记为 f'(x0), 即导数第二定义( 三 ) 导函数与导数如果函数 y=f(x) 在开区间 I 内每一点都可导,就称函数 f(x) 在区间 I 内可导。
这时函数 y=f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y=f(x) 的导函数,记作y',f'(x),dy/dx,df(x)/dx 。
导函数简称导数。
( 四 ) 单调性及其应用1. 利用导数研究多项式函数单调性的一般步骤(1) 求 f ¢ (x)(2) 确定 f ¢ (x) 在 (a , b) 内符号 (3) 若 f ¢ (x)0 在 (a , b) 上恒成立,则 f(x) 在 (a , b) 上是增函数 ; 若 f ¢ (x)0 在 (a , b) 上恒成立,则f(x) 在 (a , b) 上是减函数2. 用导数求多项式函数单调区间的一般步骤(1) 求 f ¢ (x)(2)f ¢ (x)0 的解集与定义域的交集的对应区间为增区间 ;f ¢ (x)0 的解集与定义域的交集的对应区间为减区间全国卷高考数学知识点必修一: 1 、集合与函数的概念 ( 这部分知识抽象,较难理解 )2 、基本的初等函数 ( 指数函数、对数函数 )3 、函数的性质及应用 ( 比较抽象,较难理解 ) 必修二: 1 、立体几何 (1) 、证明:垂直 ( 多考查面面垂直 ) 、平行 (2) 、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
数学高考公式知识点大全
数学高考公式知识点大全数学高考是每位中学生都将面临的重要考试,其中数学科目是很多学生认为最具挑战性的科目之一。
为了帮助大家更好地准备数学高考,本文将提供数学高考公式知识点大全,以帮助学生们复习和掌握重要的数学公式。
一、代数公式1. 两点间距离公式:设两点坐标分别为(x₁, y₁)和(x₂, y₂),则两点间距离d为:d = √((x₂ - x₁)² + (y₂ - y₁)²)2. 一元二次方程求根公式:对于一元二次方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac)) / 2a3. 因式分解公式:对于二次多项式ax² + bx + c,可以利用因式分解公式将其分解为两个一次多项式的乘积。
4. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为:(h, k),其中 h = -b / (2a),k = f(h)5. 等差数列通项公式:对于等差数列a₁, a₂, a₃, ...,其通项公式为:aₙ = a₁ + (n - 1)d,其中aₙ表示第n个数,a₁为首项,d为公差。
二、几何公式1. 矩形的周长和面积公式:设矩形的长为l,宽为w,则矩形的周长C为:C = 2(l + w),面积S为:S = lw2. 三角形的周长和面积公式:设三角形的三边长为a、b、c,其中s 为半周长,则三角形的面积A为:A = √(s(s-a)(s-b)(s-c)),周长P为:P = a + b + c3. 圆的周长和面积公式:设圆的半径为r,则圆的周长C为:C =2πr,面积A为:A = πr²4. 直角三角形勾股定理:对于直角三角形,设两直角边长为a和b,斜边长为c,则有a² + b² = c²5. 圆柱体体积公式:设圆柱体的底面半径为r,高度为h,则圆柱体的体积V为:V = πr²h三、概率公式1. 事件的概率公式:对于试验中的某一事件A,其概率P(A)表示事件A发生的可能性,计算公式为P(A) = n(A) / n(S),其中n(A)表示事件A的样本点数,n(S)表示样本空间中的样本点数。
高考必备数学公式知识点
高考必备数学公式知识点数学是高考中不可或缺的一门科目,难度较高但又可以通过熟悉一些必备的数学公式知识点来提高解题的效率。
本文将介绍一些高考必备的数学公式知识点,希望能够对广大考生有所帮助。
一、平面几何公式1. 长方形的面积公式:面积 = 长 ×宽。
2. 正方形的面积公式:面积 = 边长 ×边长。
3. 三角形的面积公式:面积 = 底边 ×高 / 2。
4. 直角三角形勾股定理:a² + b² = c²,其中a、b分别为直角边,c 为斜边。
5. 圆的面积公式:面积= π × 半径²,其中π取3.14或取3.1416。
二、立体几何公式1. 立方体的表面积公式:表面积 = 6 ×边长²。
2. 球的表面积公式:表面积= 4 × π × 半径²。
3. 棱柱的体积公式:体积 = 底面积 ×高。
4. 圆柱的体积公式:体积 = 底面积 ×高。
5. 锥体的体积公式:体积 = 底面积 ×高 / 3。
三、三角函数公式1. 正弦函数的定义:sinθ = 对边 / 斜边。
2. 余弦函数的定义:cosθ = 邻边 / 斜边。
3. 正切函数的定义:tanθ = 对边 / 邻边。
4. 余切函数的定义:cotθ = 邻边 / 对边。
5. 正割函数的定义:secθ = 斜边 / 邻边。
6. 余割函数的定义:cscθ = 斜边 / 对边。
四、排列组合公式1. 阶乘公式:n! = n × (n-1) × (n-2) × ... × 1。
2. 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中选取m个元素进行排列的方式数。
3. 组合公式:C(n, m) = n! / (m! × (n-m)!),表示从n个元素中选取m 个元素进行组合的方式数。
高数学公式和知识点笔记
高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。
以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。
一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。
函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。
2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。
(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。
极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。
2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。
二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。
高考数学常用知识点公式
高考数学常用知识点公式数学作为高考的一门重要科目,对于很多学生而言都是一座大山。
要想在高考中取得好的成绩,熟练掌握数学的基本知识点和公式是必不可少的。
本文将介绍一些高考数学中常用的知识点和公式,希望对广大考生有所帮助。
1. 复数运算复数在高考中出现的频率相对较高,因此对于复数的运算要熟练掌握。
其中,复数的加减乘除运算公式为:(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)×(c+di)=(ac-bd)+(ad+bc)i(a+bi)÷(c+di)=(ac+bd)/(c²+d²)+(bc-ad)/(c²+d²)i2. 指数和对数指数和对数是数学中的基本运算法则。
在高考中常见的指数与对数公式有:a^m × a^n = a^(m+n)a^(m-n)= a^m ÷ a^n(a^m)^n = a^(m×n)a^0 = 1loga (mn) = loga m + loga nloga (m/n) = loga m - loga nloga (m^n) = n × loga mloga 1 = 03. 三角函数三角函数是高考中经常涉及到的内容,特别是求解三角函数的基本关系式和导数是重点。
常用的三角函数公式包括:sin(α ± β)= sinα cosβ ± cosα sinβcos(α ± β)= cosα cosβ ∓ sinα sinβtan(α ± β)=(tanα ± tanβ)/(1 ∓ tanα tanβ)sin^2α + cos^2α = 1cot^2α + 1 = csc^2α1 + tan^2α = sec^2α4. 几何相关公式在解几何题时,不同几何图形的面积和体积公式是得出结论的关键。
高考数学知识点总结及公式大全 高考数学必考知识点总结
高考数学知识点总结及公式大全高考数学必考知识点总结
一、高中数学40条必备公式
1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,
周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为
x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
高考数学知识点总结及公式大全
高考数学知识点总结及公式大全高三数学公式整理1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°) /2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)数学圆锥公式知识点正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
高考数学基础知识点公式总结归纳
高考数学基础知识点公式总结归纳数学作为高考的一门重要科目,其基础知识点和公式的掌握对于学生的成绩至关重要。
下面将对高考数学中常见的基础知识点和公式进行总结和归纳,帮助同学们更好地备考。
一、代数运算1. 加法和减法法则:a+b=b+a,a-b=b-a。
2. 乘法法则:a*b=b*a,(a+b)*c=a*c+b*c。
3. 幂运算法则:a^n*a^m=a^(n+m),(a^n)^m=a^(n*m),(a*b)^n=a^n*b^n。
4. 分式运算法则:a/b=a*b^(-1),a/b/c=a/(b*c)。
二、方程与函数1. 一次方程:ax+b=0,x=-b/a。
2. 二次方程求根公式:x=(-b±√(b^2-4ac))/(2a)。
3. 直线方程:y=kx+b。
4. 函数求导:对于函数f(x),f'(x)=lim(h→0)[f(x+h)-f(x)]/h。
5. 反函数求导:如果f(x)和g(x)互为反函数,则g'(x)=1/f'(g(x))。
三、三角函数1. 三角函数定义:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。
2. 基本三角函数值:sin0=0,cos0=1,tan0=0,sinπ/6=1/2,cosπ/6=√3/2,tanπ/6=√3/3,sinπ/4=cosπ/4=√2/2,tanπ/4=1。
3. 三角函数的关系式:sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ,secθ=1/cosθ,cscθ=1/sinθ,cotθ=1/tanθ。
四、立体几何1. 圆的面积公式:S=πr^2。
2. 圆的周长公式:C=2πr。
3. 球的体积公式:V=(4/3)πr^3。
4. 圆柱体的体积公式:V=πr^2h。
5. 圆锥体的体积公式:V=(1/3)πr^2h。
6. 立方体的体积公式:V=a^3。
五、概率与统计1. 期望公式:E(X)=∑(x*p(x)),其中x为取值,p(x)为概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必备知识点及公式总结1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:(3)德摩根定律:4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
6.命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9.求函数的定义域有哪些常见类型?10.如何求复合函数的定义域?义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12.反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)13.反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;14.如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?∴……)15.如何利用导数判断函数的单调性?值是()A.0B.1C.2D.3∴a的最大值为3)16.函数fx具有奇偶性的必要(非充分)条件是什么?(fx定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17.你熟悉周期函数的定义吗?函数,T是一个周期。
)如:18.你掌握常用的图象变换了吗?注意如下“翻折”变换:19.你熟练掌握常用函数的图象和性质了吗?的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质!(注意底数的限定!)利用它的单调性求最值与利用均值不等式求最值的区别是什么?20.你在基本运算上常出现错误吗?21.如何解抽象函数问题?(赋值法、结构变换法)22.掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
)如求下列函数的最值:23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24.熟记三角函数的定义,单位圆中三角函数线的定义25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?(x,y)作图象。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29.熟练掌握三角函数图象变换了吗?(平移变换、伸缩变换)平移公式:图象?30.熟练掌握同角三角函数关系和诱导公式了吗?“奇”、“偶”指k取奇、偶数。
A.正值或负值B.负值C.非负值D.正值31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。
)具体方法:(2)名的变换:化弦或化切(3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。
)33.用反三角函数表示角时要注意角的范围。
34.不等式的性质有哪些?答案:C35.利用均值不等式:值?(一正、二定、三相等)注意如下结论:36.不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法、数学归纳法等)并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。
)38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始39.解含有参数的不等式要注意对字母参数的讨论40.对含有两个绝对值的不等式如何去解?(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。
)证明:(按不等号方向放缩)42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)43.等差数列的定义与性质0的二次函数)项,即:44.等比数列的定义与性质46.你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法解:[练习](2)叠乘法解:(3)等差型递推公式[练习](4)等比型递推公式[练习](5)倒数法47.你熟悉求数列前n项和的常用方法吗?例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:[练习](2)错位相减法:(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
[练习]48.你知道储蓄、贷款问题吗?△零存整取储蓄(单利)本利和计算模型:若每期存入本金p元,每期利率为r,n期后,本利和为:△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。
如果每期利率为r(按复利),那么每期应还x元,满足p——贷款数,r——利率,n——还款期数49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不50.解排列与组合问题的规律是:相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩则这四位同学考试成绩的所有可能情况是()A.24B.15C.12D.10解析:可分成两类:(2)中间两个分数相等相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况51.二项式定理性质:(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第表示)52.你对随机事件之间的关系熟悉吗?的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53.对某一事件概率的求法:分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;(2)从中任取5件恰有2件次品;(3)从中有放回地任取3件至少有2件次品;解析:有放回地抽取3次(每次抽1件),∴n=103而至少有2件次品为“恰有2次品”和“三件都是次品”(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:(2)决定组距和组数;(3)决定分点;(4)列频率分布表;(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56.你对向量的有关概念清楚吗?(1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:(8)平面向量基本定理(向量的分解定理)的一组基底。
(9)向量的坐标表示表示。
57.平面向量的数量积数量积的几何意义:(2)数量积的运算法则[练习]答案:答案:2答案:58.线段的定比分点※.你能分清三角形的重心、垂心、外心、内心及其性质吗?59.立体几何中平行、垂直关系证明的思路清楚吗?平行垂直的证明主要利用线面关系的转化:线面平行的判定:线面平行的性质:三垂线定理(及逆定理):线面垂直:面面垂直:60.三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。
)三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习](1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;②求异面直线BD1和AD所成的角;③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD 所成的锐二面角的大小。
(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)61.空间有几种距离?如何求距离?点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:(1)点C到面AB1C1的距离为___________;(2)点B到面ACB1的距离为____________;(3)直线A1D1到面AB1C1的距离为____________;(4)面AB1C与面A1DC1的距离为____________;(5)点B到直线A1C1的距离为_____________。