HPF湿法脱硫(知识参考)

合集下载

湿法脱硫工艺应用基本原理详细说明

湿法脱硫工艺应用基本原理详细说明

湿法脱硫工艺应用基本原理详细说明空气中的二氧化硫主要来自煤、石油、天然气等燃料的燃烧,所以在燃烧的过程中控制二氧化硫的排放是非常重要的。

目前,在我国可以采用三种方法脱硫:煤气脱硫、煤燃烧过程中进行脱硫处理、烟气脱硫。

湿法烟气脱硫技术主要是利用吸收剂或吸附剂去除烟气中的二轲化硫,并使其转化为稳定的硫化物或硫。

最早的烟气脱硫技术在本世纪初就已经出现。

近几十年来,国外工业烟气脱硫装置的应用发展很快,我国近年来也开展了烟气脱硫技术的研究,并取得了一定的成果。

脱硫设备的广泛应用,不仅可以有效的控制二氧化硫的排放量,还可以为我国建设和谐社会做出贡献。

本文主要针对湿法脱硫工艺原理进行说明介绍。

1、物理吸收的基本原理气体吸收可分为物理吸收和化学吸收两种。

如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收S02。

物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。

物理吸收的程度,取决于气-液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。

由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。

物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。

2、化学吸收法的基本原理若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收S02。

应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(Cao)烟气脱硫也是化学吸收。

在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。

增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。

因此,化学吸收速率比物理吸收速率大得多。

物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。

湿法脱硫1

湿法脱硫1

1.特点2.方法与区别3.运用4.解决问题5.相关词条中国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在21世纪相当长的时间内不会改变。

火电厂以煤作为主要燃料进行发电,煤直接燃烧释放出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加。

加强环境保护工作是我国实施可持续发展战略的重要保证。

所以,加大火电厂SO2的控制力度就显得非常紧迫和必要。

SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),湿法烟气脱硫被认为是最成熟、控制SO2最行之有效的途径。

湿法脱硫的工艺流程湿法烟气脱硫技术的特点是:整个脱硫系统位于烟道的末端,在除尘系统之后;脱硫过程在溶液中进行,吸附剂和脱硫生成物均为湿态;脱硫过程的反应温度低于露点,脱硫后的烟气一般需经再加热才能从烟囱排出。

湿法烟气脱硫过程是气液反应,其脱硫反应速率快,脱硫效率高,钙利用率高,在钙硫比等于1时,可达到90%以上的脱硫效率,适合于大型燃煤电站锅炉的烟气脱硫。

使用最广泛的湿法烟气脱硫技术,主要是石灰石/石灰洗涤法,占整个湿法烟气脱硫技术的36.7%。

它是采用石灰或石灰石的浆液在洗涤塔内吸收烟气中的SO2并副产石膏的一种方法。

其工艺原理是用石灰或石灰石浆液吸收烟气的SO2,分为吸收和氧化两个阶段。

先吸收生成亚硫酸钙,然后将亚硫酸钙氧化成硫酸钙即石膏。

湿式钙法通常有抛弃法、回收法和双循环湿式钙法等,抛弃法和回收法区别在脱硫产物是否再利用。

其中回收法的脱硫产物为二水石膏(CaSO4.2H2O),此法以日本应用最多。

石膏的主要用途是作为建筑材料,高质量石膏作为石膏板材的原料。

重庆珞磺电厂引进日本三菱公司的技术就是这种方法。

但是,在中国脱硫石膏很难找到大规模的用途。

对于湿法脱硫产物,值得注意的是,脱硫石膏应用途径可以参考磷肥工业中的石膏制硫酸过程。

在该过程中,石膏被C(无烟煤或焦碳)还原SO2和CaO。

煤气脱硫的操作与控制(HPF法)

煤气脱硫的操作与控制(HPF法)

学习单元2.3.2 脱硫工段操作工的职责与任务
二、操作工的职责与任务:
4、硫磺包装工职责与任务 (1)协助熔硫工做好熔硫操作; (2)负责本班的硫磺产品的包装、搬运贮存以及包装用 品的准备和保管。
学习单元2.3.2 脱硫工段操作工的职责与任务
三、操作工的具体操作任务
(1) 在值班长或工段长的领导下,负责本系统的生 产操作,设备维护保养及管理等工作。
1、操作参数
脱硫塔后煤气温度
30~35℃
进脱硫塔脱硫液温度 35-40℃
反应槽脱硫液温度
35-40℃
清液冷却器后脱硫液温度 ≤35℃
脱硫塔阻力
<1.5kPa
脱硫塔后煤气含H2S -200mg/m3
脱硫塔后煤气含HCN -300mg/m3
进再生塔压缩空气稳压 0.45-0.55MPa
学习单元2.3.1 脱硫工段主要生产操作参数
(2)认真执行中控室指示,及时调整和控制好各工 艺指标。
(3)负责各泵的开停车操作,调整压力和流量并稳 定各塔、贮槽的液位。
(4)预冷工和脱硫工分别负责预冷塔和脱硫塔的阻 力变化情况,超过规定时及时进行清扫。
(5)认真巡回检查,消除跑、冒、滴、漏现象,发 现问题及时处理。
(6)负责设备检修前的工艺处理和检修后的验收工 作。
思考题:
1、HPF法的脱硫液的组成是什么? 2、为什么要严格控制脱硫液中悬浮硫含量 ? 3、为什么要严格控制熔硫釜的底部操作温度 ? 4、脱硫工段主要生产操作参数
煤气脱硫的操作与控制(HPF法) 学习单元2.3.2 脱硫工段操作工的职责与任务
一、脱硫工段的岗位:
预冷工、脱硫工、熔硫工、硫磺包装工。
煤气脱硫的操作与控制(HPF法) 学习单元2.3.1 脱硫工段主要生产操作参数

HPF法脱硫资料

HPF法脱硫资料

悬浮硫 小于1.5g/L
副盐(以硫代硫酸氨和硫氰酸氨计) 小于250g/L 111.jpg (30.72 KB)
(NH4)2S2O3的浓度超过一定限度,会引起吸收过程中NH3/H2S的下降,影响脱硫效果,因此,生产
中应注意控制盐类的积累。
2.煤气及脱硫液温度 当脱硫液温度较高时,就会增大液面上的氨气分压,脱硫效率就
会随脱硫液中氨含量的降低而下降,但脱硫液的温度得以低也不利于再生反应的进行。因此,在
NH3 依据粗煤气中的H2S含量确定
对苯二酚 0.1~0.3g/L
PDS (8~12)x10-6
FeSO4 0.1~0.3g/L
该工艺是改进的PDS脱硫工艺,两者的区别在于所使用的催化剂:前者使用的苯二酚加PDS及硫
酸亚铁的复合催化剂(HPF),后者使用PDS催化剂。HPF法脱硫工艺就是将催化剂HPF配入脱硫
液(氨水)中,利用煤气中的氨作为碱源来脱除煤气中的H2S。这项工艺具有国内自主知识产权,
是由鞍山焦化耐火材料设计院和无锡焦化厂共同研制开发的。
的动力消耗。
5.再生空气量与再生时间 氧化1kgH2S的理论空气量不足2m3,在实际生产中,考虑到
浮选硫泡沫的需用,再生塔鼓风强度一般控制在100m3/(m2.h),再生时间在20min左右。
6.杂质对脱硫效率的影响 煤气中焦油和奈等杂质对煤气的脱硫效率有较大的影响,还会
泡沫槽液位 满流管以下
预冷塔及脱硫塔液位 必须低于煤气入口管底
溶硫釜内压力 不大于0.4MPa
脱硫循环液的组成
PH值 8.2~9
入脱硫塔脱硫循环液温度 35~40℃
脱硫循环液泵出口压力 不低于0.5MPa

HPF湿法脱硫

HPF湿法脱硫

HPF法脱硫第一节HPF法脱硫HPF法脱硫属液相催化氧化法脱硫,HPF催化剂在脱硫和再生全过程中均有催化作用,是利用焦炉煤气中的氨作吸收剂,以HPF为催化剂的湿式氧化脱硫,煤气中的H2S等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为元素硫。

HPF法脱硫选择使用HPF(醌钻铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。

一、HPF法脱硫的基本反应1、脱硫反应NH3+H2O NH4OHNH4OH +H2S NH4HS + H2ONH4OH + HCNNH4CN+H2ONH4OH+CO2 NH4HCO3NH4OH+NH4HCO3(NH4)2CO3+H2ONH4OH+ NH4HS +( x-1)SX(NH4)2 SX + H2O2NH4HS+(NH4)2CO3 +2( x-1)S2 (NH4)2 SX+ CO2+ H2ONH4++ NH4HCO3NH4HOO-+H2ONH4HS + NH4HCO3+( x-1)S(NH4)2SX+CO2+H2ONH4CN+(NH4)2 SX NH4CNS+ (NH4)2S(X-1)(NH4)2S(X-1) +S(NH4)2SX2、再生反应NH4HS+1/2O2 S↓+ NH4OH(NH4)2SX+1/2O2+H2O SX↓+2 NH4OHNH4CNS H2N-CS-NH2 H2N-CHS=NHH2N-CS-NH2+1/2O2 H2N-CO-NH2+S↓H2N-CO-NH2 +2H2O (NH4)2CO3 2 NH4OH + CO23、副反应2NH4HS+2O2 (NH4)2 S2O3+H2O2(NH4)2 S2O3+O2 (NH4)2 SO4+2S↓HPF脱硫的催化剂是由对苯二酚(H)、PDS(双环酞氰酤六磺酸铵)、硫酸亚铁(F)组成的水溶液其中还含有少量的ADA,硫酸锰,水杨酸等助催化剂,关于HPF脱硫催化剂的催化作用机理目前尚在进一步研究之中,各组分在脱硫溶液的参考浓度为:H(对苯二酚) 0.1~0.2g/l;PDS (4~10)×10-6(质量分数);F(硫酸亚铁) 0.1~0.2g/l ;ADA0.3~0.4g/l,其它组分的最佳含量仍在探索中。

HPF法煤气脱硫废液的处理方法

HPF法煤气脱硫废液的处理方法

生产实践表明,高温炼焦时煤中的硫约有40%进入焦炉煤气中,主要以硫化氢的形式存在。

硫化氢是具有刺激性臭味的无色气体,它及其燃烧产物二氧化硫对人体均有毒性。

含有硫化氢的煤气在处理和输送过程中,会腐蚀设备和管道,使生成的铁锈中含有硫化亚铁及硫。

当拆开煤气管道检修时,遇到空气会自燃产生二氧化硫,并放出大量热,危害生产安全。

若用未脱硫的焦炉煤气作为合成原料气,会造成催化剂中毒。

若用于冶炼,将影响冶炼优质钢的质量。

1 脱硫方法根据脱硫剂物理形态不同,可将脱硫方法分为干法和湿法两类。

干法脱硫根据煤气用途不同可采用不同的脱硫剂,包括氢氧化铁法、活性炭法、氧化锌法等。

湿法脱硫是以碱性溶液(碳酸钠溶液或氨水)进行化学吸收,包括改良蒽醌二磺酸钠法(改良ADA法)、拷胶法、PDS 法、HPF法等。

湿法脱硫具有处理能力大、脱硫与脱硫剂再生均能连续进行、劳动强度小、在脱除硫化氢的同时也能脱除氰化氢等优点。

但湿式脱硫法也存在脱硫液循环使用及脱硫废液再利用的问题。

HPF法脱硫是利用焦炉煤气中的氨作吸收剂,加入对苯二酚-双环酞氰钴六磺酸铵-硫酸亚铁(HPF)复合型催化剂的湿式氧化脱硫法。

首先把煤气中的硫化氢等酸性组分转化为硫氢化铵等酸性铵盐,再经空气氧化转化为元素硫。

本文以氨为碱源的HPF法脱硫为例探讨脱硫液的处理及应用。

2 HPF法脱硫废液处理2.1 HPF法脱硫简介以氨为碱源的HPF法煤气脱硫的主要反应如下。

NH3+H2O → NH4OHH2S+ NH4OH → NH4HS+H2ONH4OH+HCN → NH4CN+H2ONH4OH+CO2 → NH4HCO3NH4HS+ NH4HCO3+(x-1)S→ (NH4)2S x+CO2+ H2ONH4CN+(NH4)2S x→ NH4SCN+(NH4)2S x-1NH4HS+1/2O2→ S↓+NH4OH(NH4)2S x+1/2O2+H2O → xS↓+2NH4OH2NH4HS+2 (NH4)2S2O3+H2O2(NH4)2S2O3+ O2→ 2(NH4)2SO4+2S↓ HPF法脱硫时需要加入催化剂,以促进反应的进行,使用的催化剂是由对苯二酚、双环太氰钴六磺酸铵(PDS)、硫酸亚铁组成的水溶液,其中还含有少量的ADA、硫酸锰、水杨酸等助催化剂。

硫铵工段基本操作制度分析:HPF法脱硫的基本原理

硫铵工段基本操作制度分析:HPF法脱硫的基本原理

思考题:
1、HPF的意义。 2、HPF法脱硫的基本反应是什么? 3、HPF法的脱硫剂是什么?催化剂是什么?
主催化剂是什么? 4、HPF法脱硫的技术指标和规定。 5、 HPF法脱硫工艺的特点。
•预 冷 塔、 脱 硫 塔、 再 生 塔
△PH2S↑,
但液气比↑↑,动耗↑
4、再生空气量Q和再生时间t
理论 氧化1KgH2S 需空气量﹤ 2m2 浮选硫泡沫 一般Q控制100m3/㎡.h
Q↑,动耗↑ Q↓,浮选硫泡沫 ↓
再生时间t=20min
五、HPF法脱硫操作条件讨论
5、氨耗量:
氨损失率16.4%
(NH4)2S2O3 NH4CNS 尾气
学习单元2.2.1 HPF法脱硫的基本原理
一、基本反应
(2) 再生反应
NH4HS+1/2O2===S↓+NH4OH NH4CNS+1/2O2===S↓+NH4CNO NH4CNO+2H2O===(NH4)2CO3H=2=O=NH4OH+CO2
(3) 副反应 NH4HS+2O2===(NH4)2S2O3+H2O 2(NH4)2S2O3+O2===2 (NH4)2SO4 +2S (NH4)2Sx+NH4CN=== (NH4)2SCN + (NH4)2Sx-1+NH4CN
55 ℃ <= 35 ℃ 35~40℃
~1000m3/h单塔 >=0.4mPa
8~9
硫泡沫槽:
中压蒸汽 低压蒸汽 悬浮硫
>=0.6mPa >=0.4mPa <=1.5g/l
熔硫釜:
中压蒸汽 >=0.6mPa 低压蒸汽 >=0.4mPa 熔硫釜内压力 不大于0.4mPa 釜内外压差 不大于0.2mPa 外排清液温度 60~90 ℃

关于焦化厂HPF法脱硫工艺方案

关于焦化厂HPF法脱硫工艺方案

关于焦化厂HPF法脱硫工艺方案近年来,各焦化厂的煤气净化系统中普遍采用了流程短、投资省的HPF法脱硫工艺,但熔硫装置普遍运行不正常,甚至被迫改用板框压滤机生产硫膏。

通过对各厂生产实际的分析,在沙钢的设计中作了许多改进,通过1年的生产实践,成功地实现了连续熔硫。

1.HPF法煤气脱硫的现状已投产的4×55孔6m焦炉,年产焦炭220万t,煤气处理量10万m3/h,由2套5万m3/h的HPF法脱硫装置并联操作,备用设备共用。

第1套设备投产已1年,生产正常,可以连续熔硫,脱硫塔前煤气含硫量为8g/m3,脱硫塔后煤气含硫量,300mg/m3,硫磺纯度,80%,销路很好。

第2套设备已生产近半年,也很正常。

2.工艺改进及效果(1)初冷器分上下两段喷洒,以除煤气中的焦油和萘,有效避免了预冷塔的堵塞。

(2)增设了剩余氨水除焦油器,保证了蒸氨塔的正常运行,确保氨汽能连续进入预冷塔,使脱硫液碱度适宜。

(3)增加了预冷塔,保证脱硫塔入口温度在30,40?,系统温度稳定。

(4)增加清液回送冷却器,避免了由熔硫釜排出的温度较高的清液进入脱硫液系统。

(5)终冷塔上段加碱,进一步净化煤气,使塔后煤气含硫量,200mg/m3。

(6)增加泡沫槽回流管,有效防止了泡沫至熔硫釜的管道堵塞。

(7)熔硫釜硫磺出口管改为直管段,避免了堵塞,且易操作。

(8)脱硫塔底加1个直径133mm的清扫排液口,防止塔底沉积。

(9)脱硫液泵出口加1个直径50mm的管道至废液槽底部,一则防止废液槽堵塞,二则可冷却和稀释熔硫釜排出的清液。

3.注意事项(1)液气比(脱硫液与压缩空气的比例)对脱硫效率的影响。

增加液气比可使传质面迅速更新,同时可降低脱硫液中硫化氢的分压差,有利于提高吸收推动力。

但液气比不宜过大,否则,脱硫效率的增加不明显,还有可能造成脱硫液进入煤气管道。

(2)再生空气量。

氧化lkg硫化氢理论上需要的空气量虽不足2m3,但在实际生产中,考虑到浮选硫泡沫的需要,再生塔的鼓风强度比理论计算要高。

HPF湿法脱硫(知识参考)

HPF湿法脱硫(知识参考)

HPF法脱硫第一节HPF法脱硫HPF法脱硫属液相催化氧化法脱硫,HPF催化剂在脱硫和再生全过程中均有催化作用,是利用焦炉煤气中的氨作吸收剂,以HPF为催化剂的湿式氧化脱硫,煤气中的H2S等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为元素硫。

HPF法脱硫选择使用HPF(醌钻铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。

一、HPF法脱硫的基本反应1、脱硫反应NH3+H2O NH4OHNH4OH +H2S NH4HS + H2ONH4OH + HCNNH4CN+H2ONH4OH+CO2 NH4HCO3NH4OH+NH4HCO3(NH4)2CO3+H2ONH4OH+ NH4HS +( x-1)SX(NH4)2 SX + H2O2NH4HS+(NH4)2CO3 +2( x-1)S2 (NH4)2 SX+ CO2+ H2ONH4++ NH4HCO3NH4HOO-+H2ONH4HS + NH4HCO3+( x-1)S(NH4)2SX+CO2+H2ONH4CN+(NH4)2 SX NH4CNS+ (NH4)2S(X-1)(NH4)2S(X-1) +S(NH4)2SX2、再生反应NH4HS+1/2O2 S↓+ NH4OH(NH4)2SX+1/2O2+H2O SX↓+2 NH4OHNH4CNS H2N-CS-NH2 H2N-CHS=NHH2N-CS-NH2+1/2O2 H2N-CO-NH2+S↓H2N-CO-NH2 +2H2O (NH4)2CO3 2 NH4OH + CO23、副反应2NH4HS+2O2 (NH4)2 S2O3+H2O2(NH4)2 S2O3+O2 (NH4)2 SO4+2S↓HPF脱硫的催化剂是由对苯二酚(H)、PDS(双环酞氰酤六磺酸铵)、硫酸亚铁(F)组成的水溶液其中还含有少量的ADA,硫酸锰,水杨酸等助催化剂,关于HPF脱硫催化剂的催化作用机理目前尚在进一步研究之中,各组分在脱硫溶液的参考浓度为:H(对苯二酚) 0.1~0.2g/l;PDS (4~10)×10-6(质量分数);F(硫酸亚铁) 0.1~0.2g/l ;ADA0.3~0.4g/l,其它组分的最佳含量仍在探索中。

湿法烟气脱硫的概念

湿法烟气脱硫的概念

湿法烟气脱硫的概念湿法烟气脱硫是一种常见的烟气净化技术,用于去除烟气中的二氧化硫(SO2)等有害气体。

它通过与烟气中的湿化剂溶液反应,将SO2转化为可溶于水的硫酸盐或亚硫酸盐,从而达到去除SO2的目的。

本文将详细介绍湿法烟气脱硫的原理、工艺流程、优缺点和应用领域。

一、湿法烟气脱硫的原理湿法烟气脱硫的核心原理是将烟气中的SO2转化为溶于水的硫酸盐或亚硫酸盐,这一过程主要包括以下几个步骤:1. 氧化反应:湿法烟气脱硫中通常采用氧化剂(如空氧、过氧化氢等)将SO2氧化为亚硫酸气体(SO3),反应公式为:SO2 + 1/2O2 →SO32. 吸收反应:亚硫酸气体与水中的湿化剂(一般为氧化钙或氢氧化钠溶液)发生反应生成硫酸盐或亚硫酸盐,反应公式为:SO2 + H2O + CaO →CaSO3 + 1/2O2SO2 + H2O + NaOH →Na2SO33. 成核和粒径增长:湿法烟气脱硫中的烟气中含有微细颗粒物,如PM2.5,SO3会在气液界面上成核,并与颗粒物发生反应,形成硫酸盐或亚硫酸盐颗粒。

4. 结晶和沉淀:硫酸盐或亚硫酸盐颗粒在湿法烟气脱硫装置中沉淀下来,从而实现了烟气中SO2的去除。

二、湿法烟气脱硫的工艺流程湿法烟气脱硫一般包括烟气预处理、烟气吸收、氧化和结晶沉淀等过程。

主要的工艺流程如下:1. 烟气预处理:烟气进入脱硫装置前需要进行一些预处理工作,如除尘、降温等。

这些工作主要是为了减小脱硫装置的负荷和保护脱硫设备。

2. 烟气吸收:烟气进入脱硫装置后,与湿化剂接触发生吸收反应。

常用的湿化剂有氧化钙和氢氧化钠等。

烟气在吸收塔内与湿化剂充分接触,SO2被吸收生成硫酸盐或亚硫酸盐。

3. 氧化:湿法烟气脱硫装置通常采用氧化剂将亚硫酸气体(SO2)氧化成SO3。

氧化反应一般是在氧化塔中进行的,然后将氧化后的烟气送回吸收塔进行吸收反应。

4. 结晶沉淀:湿法烟气脱硫中生成的硫酸盐或亚硫酸盐颗粒物沉淀到底部的装置中进行结晶沉淀。

HPF法脱硫

HPF法脱硫
大气不但损失了氨,而且还会污染环境,故尾气必须进一步净化处理。系统中的
不凝性气体可经尾气洗净塔洗涤后放空。
8.硫渣
再生塔顶部硫泡沫进入熔硫工序,在熔硫过程中产生的硫渣,可送回熔硫釜
中熔硫,这样还可减轻硫渣对环境的污染。但是目前HPF法生产中一些熔硫釜的
运行操作情况不理想,硫渣和硫膏分离不好,而操作费用又高,现在一些厂均使
HCN,在理论上比较完善的方法。
②HPF法脱硫工艺,在年产焦炭30万吨规模焦化厂(煤气量15000m3/h左右)
于HPF脱硫催化剂的催化作用机理目前尚在进一步研究之中,各组分在脱硫溶液
的参考含量为:H(对苯二酚)0.1~0.2g/L;PDS(4~10)×10-6(质量分数);F
(硫酸亚铁)0.1~0.2g/L;ADA0.3~0.4g/L,其它组分的最佳含量仍在探索中。

二二
二、
、、
影响很大,当氨硫物质的量之比不小于7、煤气中焦油含量不大于50mg/m3、含
萘小于0.5g/m3时,操作温度适宜,即使一塔操作,其脱硫效率也可达90%左右,脱氰效率大于80%。当氨硫物质的量之比小于4时,即使采用双塔脱硫工艺,也
必须对操作参数适当调整后才能保证脱硫效率。当煤气含氮量小于3g/m3时,脱 硫效率就会明显下降。
NH4CN+(NH4)2Sx
NH4CNS+(NH4)2S(x-1)
(NH4)2S(x-1+S)
(NH4)2Sx
2.再生反应
NH4HS+1/2O2→S↓+NH4OH
(NH4)2Sx+1/2O2+H2O→Sx↓+2NH4OH NH4CNS

湿法脱硫学习

湿法脱硫学习

湿法脱硫学习湿法脱硫培训资料一、气体净化脱硫的意义及脱硫的方法1、原料气中的硫份无机硫H2S有机硫COS、CS2、HC N2、对后工序的危害:1)腐蚀设备管道2)破坏工艺,使触媒中毒(低变触媒除外)3)使产品变质3、意义:1)使后工序连续稳定生产2)净化环境4、方法:1)干法脱硫化学吸收法(H2S酸性)2)湿法脱硫物理吸收法(低温甲醇洗、高压水洗等)化学物理吸收法注:888催化剂分子大容易被焦油包裹失活栲胶便宜好买硫泡沫疏松PDS、五氧化二钒(V2O5)二、湿式氧化法脱硫工艺技术综述1、主要任务脱除H2S (栲胶+888还可脱除部分有机硫脱除效果可达到10~50%)2、工作原理:就是以碱性物质(纯碱或氨水)去吸收酸性气体H2S,(再生)同时选择适当的氧化催化剂将中和反应被吸收的H2S氧化成单质硫,(分离)将单质硫分离出去使溶液的再生循环使用。

溶液的再生:1)析出单质硫使碳酸氢钠(NaHCO3)变为碳酸钠(Na2CO3)2)催化剂的再生,将还原态催化剂氧化成氧化态的催化剂注:析出硫反应主要在脱硫塔的底部及循环槽内发生催化剂的好坏取决于催化剂的载氧能力3、湿法脱硫工艺技术特点(吸收、再生、回收三大环节)湿式氧化法脱硫其实质上就是一种伴有氧化反应的湿式中和反应过程第一步、中和反应碱液吸收H2S第二步、采用载氧体催化剂进行催化氧化还原反应,把负二价硫氧化成单质硫第三部、加入空气氧化失活的催化剂使其得到再生,同时将单质硫分离出去Na2CO3+H2S→NaHS+NaHCO32NaHS+O2→2NaOH+S↓三、我厂湿法脱硫工艺流程简介1、气体回炉煤气焦炉气→罗茨风机→1#脱硫塔→2#脱硫塔→甲醇气柜火炬2、溶液流程溶液配制槽→栲胶配置槽→→溶液储槽→溶液泵→再生塔1#2#催化剂活化槽→液封槽脱硫塔1#2#3、硫泡沫流程再生塔顶部→再生塔扩大部分→硫泡沫槽→离心机母液循环槽槽←地槽硫膏外销4、工艺流程特点1)采用湿式氧化法(碱式)双塔串联2级吸收2)催化剂为复式多元催化剂(栲胶+PDS+888)3)高塔鼓风再生工艺4)设计能力处理气量41300m3/h 余量20%设计压力300㎜H2O脱除H2S能力入口5.6g/m3出口20mg/m3四、湿法脱硫主要控制指标1)入口H2S含量5.6g/m32)出口H2S含量20mg/m33)入口焦油含量30mg/m34)入口苯含量≤400-700 mg/m35)萘含量<50 mg/m36)焦炉气压力>6KPa7)焦炉气入口温度25-40℃8)溶液组分总碱度0.4-0.6mol/L(20-30g/L)Na2CO3含量4-6g/LNaHCO3 含量14-26g/l栲胶含量2.5g/L (加PDS时1.0-1.5 g/L)V2O5含量0.5-0.8g/LPDS(888) 含量30ppm(复合使用时10-15ppm)9、溶液循环量750-850m3/h 单塔10、空气含量1000-1700 m3/h 单塔11、再生溶液温度30-40℃12、悬浮硫<0.5g/L 不得超过1.0 g/L13、副盐含量Na2S2O2 Na2SO4 NaCNS(硫氰酸钠)总量<250g/m314、PH值 8.2-8.815、点位栲胶 -180~230mvPDS 888 -150~-210mv几项主要指标的确定1)溶液循环量确定依据①吸收液气比﹥12L/m3②喷淋密度38-48m3/m3.h2)空气量的确定依据①1 H2S需要1.57m3空气实际比例为5-15倍②吹风强度 40-70 60-130m3/m3.h3)再生温度35-42℃>45℃副反应增长速度直线上升<30℃再生速度减慢,再生不完全吸收:增加压力,降低温度有利于吸收4)PH值(总碱度)8.2-8.8(20-30g/L)①NaHCO4/Na2CO4比4-6倍②脱硫催化剂的要求5)点位-150~-210mv观察再生效果,过高引起过度氧化副反应增多点位过高悬浮硫多Na2S2O3多(Na2S2O3硫代硫酸钠)2Na2S2O3+O2→2 Na2SO4+2S↓6)悬浮硫越低越好﹤150g/L 不得超过1.0过高会引起塔的堵塞6)副盐﹤150g/L HC n 0.5~1.5g/m3副盐多不但影响H2S的平衡分压而且由于它们在溶液中的累积降低了有效组分的浓度,且从溶液中的析出,破坏工艺生产条件增加原料碱的消耗降低硫膏的产量。

HPF脱硫工艺优化简析

HPF脱硫工艺优化简析

HPF 脱硫工艺优化简析摘要:介绍了HPF脱硫工艺,在配合煤硫分较高的情况下,脱硫系统优化调整策略,生产过程中脱硫塔阻力增高,如果有效进行冲塔降低脱硫塔阻力。

关键词:HPF脱硫工艺;脱硫塔前高硫化氢状态下系统优化调整;脱硫塔阻力增加冲塔方案。

HPF法脱硫工艺是焦化行业一种相对成熟、应用较广的湿法脱硫工艺。

HPF法脱硫工艺的原理: 以煤气中的氨为碱源,通过脱硫液再生、循环喷洒吸收煤气中的 H2S、HCN 等酸性组分,在再生塔底部鼓入空气,在氧的作用下将其转化为单质硫,通过空气的浮选作用,硫泡沫由再生塔塔顶溢出进入泡沫槽,进行硫磺产品的回收,使用的催化剂为对苯二酚、PDS、硫酸亚铁组成的醌钴铁类复合催化剂,简称为HPF,HPF 法脱硫工艺具有以下优缺点:1.优点1.脱硫效率高,单塔效率在75%-83%,双塔效率在98%以上(如果实际运行工况超过设计,该效率会明显下降);2.可以利用蒸氨后10%-12%的浓氨水作为碱源,合理利用资源;3.HPF催化剂在脱硫和再生过程中均有催化作用,活性高、消耗少、流动性好;4.脱硫装置设在洗氨、洗苯工段之前,可减轻后序设备腐蚀;5.一次性投资少,运行费用低。

2.缺点1)占地面积大,脱硫塔运行一段时间后要定期对填料进行更换;2)需要定期置换脱硫液,每天置换量在40m³左右。

1.HPF脱硫工艺流程焦炉煤气经预冷塔预冷后,焦炉煤气冷却至25-30℃,预冷后的焦炉煤气从底部进入脱硫塔,在脱硫塔内逆向与脱硫贫液进行接触,脱硫塔内设有四层波纹填料,焦炉煤气经过顶部捕雾段后进入下一工序,与焦炉煤气逆向接触后的脱硫富液经液封槽进入溶液循环槽,然后经过溶液循环泵输送至再生塔底部,溶液循环泵出口的部分脱硫液与溶液换热器进行换热降低脱硫液温度,确保夏季最高气温的情况下脱硫液温度不超过40℃,在再生塔底部鼓入压缩空气,压缩空气经分流后与脱硫液充分接触,氧化再生脱硫富液中的硫,氧化出的硫单质经压缩空气浮选后进入再生塔顶部扩大段,然后经溢流、自流入泡沫槽内,在泡沫槽经蒸汽盘管加热、搅拌机搅拌后由泡沫泵输送至板框式压滤机,经再生后的脱硫贫液由再生塔顶部U型溢流管溢流进入脱硫塔内,通过调节进入脱硫塔前的阀门开度控制再生塔液位,辅助调节溶液循环泵频率、压缩空气流量微调再生塔液位,确保最佳溢流效果。

HPF脱硫工艺流程图(知识参考)

HPF脱硫工艺流程图(知识参考)

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。

干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。

不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。

干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。

湿法脱硫又分为“湿式氧化法”和“胺法”。

湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。

目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。

胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。

湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。

当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。

HPF法脱硫工艺流程:来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。

来自冷凝工段的部分剩余氨水进行补充更新循环液。

多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。

脱硫后煤气进入下道工序进行脱氨脱苯。

脱硫基本反应如下:H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3NH4OH+NH4HCO3→(NH4)2CO3+ H2O吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。

来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。

HPF脱硫工艺介绍

HPF脱硫工艺介绍

HPF脱硫⼯艺介绍HPF脱硫⼯艺介绍HPF脱硫⼯艺是利⽤焦炉煤⽓中的氨作吸收剂,以HPF为催化剂的湿法氧化脱硫,⾸先把煤⽓中的H2S转化成硫氢铵盐,在空⽓的氧化下转化成元素硫,吸收液得到再⽣。

主要有(1) 吸收反应(2) 再⽣反应(3) 付反应。

HPF在脱硫和再⽣全过程中均有催化作⽤。

此⼯艺流程基本与ADA脱硫相同。

进⼊脱硫⼯段的煤⽓依次进⼊串联的空喷脱硫塔和填料脱硫塔,与脱硫液逆向接触,煤⽓脱除了H2S和HCN去脱氨;脱硫塔有⾃⼰独⽴的再⽣系统,吸收了H2S和HCN的脱硫液分别送⼊各⾃对应的再⽣系统,在空⽓作⽤下溶液得到再⽣,循环使⽤;硫泡沫⾃流⼊泡沫槽,经搅拌澄清分层,进⼀步熔融⽣成硫磺产品。

2 HPF脱硫的⼯艺特点(1) 脱硫装置在整个煤⽓净化⼯艺上放在吸氨,粗苯⼯段前,流程合理简单,煤⽓中HCN脱除率达到75 %,可取消黄⾎盐⼯艺,对改善终冷⽔排污对环境的污染、减轻管道设备的腐蚀有⼀定益处。

(2) 该脱硫⼯艺脱硫脱氰效果好,脱硫效率在满⾜⽣产条件下可⼤于99 %,,脱硫后煤⽓H2S含量在50 mg/m3以下(3) HPF具有极⾼的活性,对脱硫和再⽣过程均有催化作⽤。

同时还发现HPF 具有消除脱硫塔内挂壁硫的作⽤,使⽤HPF后,填料塔阻⼒逐渐降低,由原来的2 500 Pa降⾄1 200 Pa。

(4) 由于此脱硫⼯艺是利⽤煤⽓中的氨作碱源,⽆须另外加碱,煤⽓中氨含量越⾼,氨硫⽐越⼤,则脱硫效率也越⾼,详见图2。

(5)运⾏成本低,动⼒消耗少,经济效益好。

详见表4。

(6) 该⼯艺操作⽅便稳定,催化剂投加⽅式简单易⾏,⽽且在脱硫过程中,盐类等副产物增长速度缓慢。

3 HPF催化剂由对苯⼆酚PDS 硫酸亚铁组成4 HPF法脱硫液的控制指标是对苯⼆酚8-10 mg/L硫酸亚铁游离氨⼤于5g/L硫代硫酸氨⼩于250g/L悬浮流LPH 8-9⼏种脱硫脱氰技术的解读纵观国内外的脱硫脱氰技术,⽬前我国采⽤的典型脱硫脱氰技术主要有如下⼏种,即TH 法(通称湿式氧化法)、FRC 法( 通称催化氧化法)、HPF 法(通称催化氧化氨法)、AS法(通称氨硫联合洗涤法)、SARFEBAN 法(亦称MEA法)、VACA法(亦称真空碱法)、改良ADA 法。

关于焦化厂HPF法脱硫工艺方案

关于焦化厂HPF法脱硫工艺方案

工艺流程成熟
HPF法脱硫工艺已广泛应用于焦 化厂,技术成熟可靠,能够满足 焦化厂脱硫需求。
适应性强
HPF法脱硫工艺可根据焦化厂的 实际工况进行调整,适应性强, 能够应对不同情况下的脱硫要求 。
操作简便
HPF法脱硫工艺自动化程度高, 操作简便,能够减少人工干预, 降低操作难度。
经济可行性分析
01
02
HPF法脱硫工艺的原理和特点
原理
HPF法脱硫工艺是一种湿式氧化 法脱硫技术,通过碱性溶液吸收 硫化物并氧化生成硫酸盐。
特点
HPF法脱硫工艺具有脱硫效率高 、技术成熟可靠、操作简便等优 点,适用于焦化厂等高硫含量废 气的处理。
02
HPF法脱硫工艺流程
工艺流程概述
焦化厂HPF法脱硫工艺是一种高效、 环保的脱硫技术,主要用于降低焦炉 煤气中的硫化氢含量。
加强HPF法脱硫工艺的环 保监管和检测技术,确保 治理效果的稳定性和可靠 性。
ABCD
探索HPF法脱硫工艺与其 他烟气治理技术的联合应 用,以提高整体治理效果 。
开展HPF法脱硫工艺在焦 化厂实际运行中的案例研 究,为该工艺的推广应用 提供实践经验。
THANKS
谢谢您的观看
符合环保标准
HPF法脱硫工艺符合国家及地方环保标准,能够确保 达标排放。
有利于环保监管
HPF法脱硫工艺能够提高焦化厂的环保监管水平,促 进企业可持续发展。
04
HPF法脱硫工艺的优化建议
改进工艺流程
优化反应条件
通过实验研究,找到最佳的反应 温度、压力、pH值等条件,提高
脱硫效率。
改进反应器设计
设计新型反应器,提高气液传质效 率和反应速率,降低能耗和物耗。

HPF法脱硫课件

HPF法脱硫课件
• 当脱硫液温度较高时,就会增大溶液面上的氨气分压,脱硫效率就会随着溶液中氨含量的降低而下降,但 脱硫液的温度太低也不利于再生反应的进行。
• 煤气脱硫过程是脱硫液中氨与煤气中硫化氢反应来减少煤气中硫化氢含量。当脱硫液温度较高时,脱硫液 中氨含量降低,影响脱硫效果;温度太低,影响脱硫液的再生。同时煤气温度高时,与脱硫液接触时相应 提高脱硫液温度造成脱硫液中氨含量降低,降低脱硫效果。
• 操作中应及时均匀向系统中补加,不应过度集中,宜保持均衡连续。
• 催化剂添加方式的改进:
• 生产中一次向反应槽中添加,发现催化剂加入不久,会有大量催化剂在再生塔顶部被硫泡沫带出,一次性 加入,直接影响到系统中催化剂浓度的均匀度,正确做法是增设配有稀释搅拌装置的催化剂添加槽,待催 化剂在槽内充分溶解活化后,向反应槽连续滴加催化剂。
• 伴随着脱硫的吸收和再生反应过程,脱硫中的副盐含量会不断增加,当其含量超过250g/L时,就会减 缓脱硫反应速度,从而降低脱硫效率,为降低副盐含量,可以从以下几个方面入手:
• (1)控制脱硫反应温度,因为脱硫液温度越高,副盐的增长速度就越快,只有尽可能降低脱硫反应温度, 才能真正使脱硫液中的副盐含量得到控制。
• 为了促进吸收和氧化反应的进行,脱硫液催化剂的浓度宜提高至35ppm以上。
• 有多个资料显示可控制在30-50ppm。
• 催化剂的性能不仅直接影响煤气的脱硫效率,而且影响到脱硫的生产成本,选择质量稳定信誉好的催化剂 生产厂家很重要,目前催化剂生产厂家不少而性价比高的厂家不多,且用户缺少直接判断催化剂性能优劣 的检验方法。
• (2)每天置换脱硫废液,并用软水补充,以达到脱硫液中的副盐含量控制在250g/L以下的目的。
工艺操作要点
7、吸收过程液气比

湿法脱硫技术资料

湿法脱硫技术资料
• ②元素硫的析出:该反应设备为吸收塔,但在吸收塔内反应有少量 进行,主要在富液槽内进行。
2NaHS 4NaVO 3(氧化催化 ) H2O Na 2V4O9 4NaOH 2S
• ③氧化剂的再生。该反应在富液槽和再生槽中进行。
Na 2V4O9 2栲胶( 氧化) 2NaOH H2O 4NaVO 3 2栲胶( 还原)
2NNaa2VH4SO9 4N2a栲V胶 O 3((氧氧化化催)化 2)NaHO2HOHN2aO2V4O4N9 aV4ON3aOH2栲胶2S(还原)
第一节 脱硫方法
(2)栲胶法脱硫的反应条件
⑤ 液气比 液气比增大,溶液循环量增大,虽然可以提高气体的净化度,并 能防止硫磺在填料的沉积,但动力消耗增大,成本增加。因此液气比大 小主要取决于原料气硫化氢含量多少,硫容的大小,塔型等,生产一般 维持11L/m3左右即可。
第一节 脱硫方法
(2)氧化槽中(吸收液再生设备)的反应:还原态的ADA被空气 中的氧氧化恢复氧化态,其后溶液循环使用;
2ADA(还原态) O2 2ADA(氧化态) H2O
(3)副反应:气体中若有氧则要发生过氧化反应:
2NaHS 2O2 Na 2S2O3 H2O
与气体中的二氧化碳和氰化氢,有下列三个副反应发生。期中,除第 二个副反应所产生的NaHCO3对脱硫无害外, 其余均对脱硫过程有害, 应设法除去。
• (2)再生的基本原理与催化剂的选择
碱性吸收剂只能将原料气中的H2S吸收到溶液中,不能氧化为单质硫。因 此,需在溶液中添加催化剂作为载氧体,氧化态的催化剂将H2S氧化为单质硫, 其自身呈还原态。还原态催化剂在再生时被空气中的氧氧化后恢复氧化能力, 如此循环使用。过程如下:
载氧体(氧化态)+H2S=S+载氧体(还原态) 载氧体(还原态)+O2=H2O+载氧体(氧化态) 总反应式: H2S+O2(空气)=S↓+H2O 选择适宜的载氧催化剂是湿法氧化法的关键。载氧催化剂必须既能氧化硫 化氢又能被空气中的氧氧化。实际选择催化剂时考虑到催化剂氧化硫化氢, 一方面要充分氧化为单质硫,提高脱硫液的再生效果;另一方面又不能过度 氧化生成副产物硫代硫酸盐和硫酸盐,影响脱硫液的再生效果。同时,如果 催化剂的电极电位太高,氧化能力太强,再生时被空气氧化就越困难。因此, 常用有机醌类作催化剂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HPF法脱硫
第一节HPF法脱硫
HPF法脱硫属液相催化氧化法脱硫,HPF催化剂在脱硫和再生全过程中均有催化作用,是利用焦炉煤气中的氨作吸收剂,以HPF为催化剂的湿式氧化脱硫,煤气中的H2S等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为元素硫。

HPF法脱硫选择使用HPF(醌钻铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。

一、HPF法脱硫的基本反应
1、脱硫反应
NH3+H2O NH4OH
NH4OH +H2S NH4HS + H2O
NH4OH + HCN
NH4CN+H2O
NH4OH+CO2 NH4HCO3
NH4OH+NH4HCO3
(NH4)2CO3+H2O
NH4OH+ NH4HS +( x-1)SX
(NH4)2 SX + H2O
2NH4HS+(NH4)2CO3 +2( x-1)S
2 (NH4)2 SX
+ CO2
+ H2O
NH4++ NH4HCO3
NH4HOO-+H2O
NH4HS + NH4HCO3+( x-1)S
(NH4)2SX+CO2+H2O
NH4CN+(NH4)2 SX NH4CNS+ (NH4)2S(X-1)
(NH4)2S(X-1) +S
(NH4)2SX
2、再生反应
NH4HS+1/2O2 S↓+ NH4OH
(NH4)2SX+1/2O2+H2O SX↓+2 NH4OH
NH4CNS H2N-CS-NH2 H2N-CHS=NH
H2N-CS-NH2+1/2O2 H2N-CO-NH2+S↓
H2N-CO-NH2 +2H2O (NH4)2CO3 2 NH4OH + CO2
3、副反应
2NH4HS+2O2 (NH4)2 S2O3+H2O
2(NH4)2 S2O3+O2 (NH4)2 SO4+2S↓
HPF脱硫的催化剂是由对苯二酚(H)、PDS(双环酞氰酤六磺酸铵)、硫酸亚铁(F)组成的水溶液其中还含有少量的ADA,硫酸锰,水杨酸等助催化剂,关于HPF脱硫催化剂的催化作用机理目前尚在进一步研究之中,各组分在脱硫溶液的参考浓度为:H(对苯二酚) 0.1~0.2g/l;PDS (4~10)×10-6(质量分数);F(硫酸亚铁) 0.1~0.2g/l ;ADA0.3~0.4g/l,其它组分的最佳含量仍在探索中。

一、
HPF法脱硫工艺流程
1、工艺流程
HPF法脱硫工艺流程如图5-5所示,从鼓风冷凝工段来的煤气,温度约55℃,首先进入直接式预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至30~35℃;然后进入脱硫塔。

予冷塔自成循环系统,循环冷却水从塔下部用泵抽出送至循环水冷却器,用低温水冷却至20~25℃后进入塔顶循环喷洒。

采取部分剩余氨水更新循环冷却水,多余的循环水返回冷凝鼓风工段,或送往酚氰污水处理站。

预冷后的煤气进入脱硫塔,与塔顶喷淋下来的脱硫液逆流接触以吸收煤气中的硫化氢、氰化氰(同时吸收煤气中的氨,以补充脱硫液中的碱源)。

脱硫后煤气含硫化氢降至50mg/m3左右,送入硫铵工段。

吸收了H2S、HCN的脱硫液从塔底流出,经液封槽进入反应槽,然后用脱硫液循环泵送入再生塔,同时自再生塔底部通入压缩空气,使溶液在塔内得以氧化再生。

再生后的溶液从塔顶经液位调节器自流回脱硫塔循环再生。

浮于再生塔顶部扩大部分的硫磺泡沫,利用位差自流入泡沫槽,经澄清分层后,清液返回反应槽,硫泡沫用泡沫泵送入熔硫釜,经数次加热、脱水,再进一步加热熔融,最后排出熔融硫磺,经冷却后装袋外销。

系统中不凝性气体经尾气洗净塔洗涤后放空。

为避免脱硫液盐类积累影响脱硫效果,排出少量废液送往配煤。

自冷鼓送来的剩余氨水,经氨水过滤器除去夹带的焦油等杂质,进入换热器与蒸氨塔底排出的蒸氨废水换热后进入蒸氨塔,用直接蒸汽将氨蒸出。

同时向蒸氨塔上部加一些稀碱液以分解剩余氨水中的固定铵盐。

蒸氨塔顶部的氨汽经分缩器和冷凝冷却器冷凝成含氨大于10%的氨水送入反应槽,增加脱硫液中的碱源。

图5-5 HPF法脱硫工艺流程
1—硫磺接受槽;2~氨水冷却器;3~预冷塔循环水冷却器;4~水封槽;
5~事故槽;6~预冷塔;7~预冷塔循环泵;
8~脱硫塔;
9~反应槽;
10~再生塔;11~脱硫液循环泵;12~放空槽;13~放空槽液下泵;14~泡沫槽;
15~泡沫泵;16~熔硫釜;17~废液槽;18~清液泵;19~清液冷却器。

2、HPF法脱硫工艺具有以下特点:
(1)以氨为碱源,HPF为催化剂的焦炉煤气脱硫脱氰新工艺,具有较高的脱硫脱氰效率,(脱硫效率99%,脱氰效率80%),而且流程短,不需外加碱,催化剂用量少,脱硫废液处理简单,操作费用低,一次性投资省。

(2)脱硫塔中可填充聚丙烯填料(或波纹钢板网填料),不易堵塞,脱硫塔操作阻力较小。

(3)脱硫塔、再生塔、反应槽、泡沫槽、废液槽、事故槽等易腐蚀设备材质可用碳钢,内壁涂防腐涂料;输送脱硫液的泵类、管道、管件及阀门为耐腐蚀不锈钢。

(4)脱硫废液送往配煤,工艺简单,对周边环境无污染。

(5)再生塔采用空气与脱硫液预混再生,节省压缩空气,从而使再生过程排放的尾气量少,排放的尾气含氨量远远低于国家有关标准。

1、主要工艺操作控制指标
(1) 入脱硫塔煤气温度
30~35℃
(2) 入脱硫塔溶液温度
35~40℃
(3) 脱硫塔阻力
<1.5KPa
(4) 预冷塔阻力
<0.5KPa
(5)进再生塔溶液流量
~1000m3/h单塔
(6)进再生塔空气压力
≥0.4MPa
(7)熔硫釜内压力
≤0.41MPa
(8)釜内外压差
≤0.2MPa
(9)外排清液温度
60 ~90℃
(10)脱硫溶液组成:pH=8~9 游离氨:>5g/l
PDS含量:8~10mg/kg
对苯二酚:0.15~0.2 g/l
悬浮硫:<1.5 g/l
NH4CNS和(NH4)2S2O3总含量:<250 g/l。

三、HPF法脱硫操作条件讨论
1、脱硫液中盐类的积累
从反应过程可看出,脱硫过程中生成的脱硫溶液中(NH4)2 SX、NH4HS,在催化再生过程中与氧反应生成NH4OH后又重新参与脱硫反应,因此能降低脱硫过程中氨的消耗量。

由于再生反应可控制NH4CNS的生成,故脱硫液中NH4CNS的增长速度较为缓慢。

2、煤气及脱硫液温度
当脱硫液温度较高时,就会增大溶液表面上的氨气分压,使脱硫液中氨含量降低,脱硫效率随之下降。

但脱硫液的温度太低也不利于再生反应的进行,因此,在生产过程中宜将煤气温度控制在28~30℃,脱硫液温度应控制在30~35℃。

3、脱硫液和煤气中的含氨量
脱硫液中所含的氨由煤气供给,煤气中的含氨量对氨法HPF脱硫工艺操作的影响很太,当氨硫比不小于1、煤气中焦油含量不大于50mg/m3、含萘小于0.5g/m3时,即使一塔操作,其脱硫效率也可达99%左右,脱氰效率大于80%。

当氨硫比小于1时,即使采用双塔脱硫工艺,也必须对操作参数适当调整后才能保证脱硫效率。

当煤气含氨量小于3g/m3时,脱硫效率就会明显下降。

4、液气比对脱硫效率的影响
增加液气比可使传质面迅速更新,以提高其吸收推动力,有利于脱硫效率的提高。

因液气比达到一定程度后,脱硫效率的增加量并不明显,反而会增加循环泵的动力消耗,故液气比也不应太大,
5、再生空气量与再生时间
氧化Ikg硫化氢的理论空气用量不足2m3,在实际再生生产中,考虑到浮选硫泡沫的需要,再生塔的鼓风强度一般控制在100m3/m2·h。

由于HPF催化剂在脱硫和再生过程中均有催化作用,故可适当降低再生空气量。

但是,减少再生空气量后会影响硫泡沫的漂浮效果,因此在实际生产中不降低再生空气量,而是适当减少再生停留时间,再生生产操作控制在20min左右。

6、煤气中杂质对脱硫效率的影响
生产实践表明,煤气中焦油和萘等杂质不仅对煤气的脱硫效率有较大影响,还会使硫磺颜色发黑。

因此,氨法HPF脱硫工艺与其脱硫工艺一样要求进人脱硫塔的煤气中焦油含量小于50mg/m3,萘含量不大于0.5g/m3。

7、再生空气尾气。

相关文档
最新文档