高考数学总复习经典练习题--集合·(理)

合集下载

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解一、选择题1.(09·全国Ⅱ)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}[答案] C[解析] M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},故选C.2.(2010·烟台二中)已知集合M ={y |y =x 2},N ={y |y 2=x ,x ≥0},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .[0,+∞)D .[0,1][答案] C[解析] M ={y |y ≥0},N =R ,则M ∩N =[0,+∞),选C.[点评] 本题极易出现的错误是:误以为M ∩N 中的元素是两抛物线y 2=x 与y =x 2的交点,错选A .避免此类错误的关键是,先看集合M ,N 的代表元素是什么以确定集合M ∩N 中元素的属性.若代表元素为(x ,y ),则应选A.3.设集合P ={x |x =k 3+16,k ∈Z },Q ={x |x =k 6+13,k ∈Z },则( )A .P =QB .P QC .P QD .P ∩Q =∅[答案] B[解析] P :x =k 3+16=2k +16,k ∈Z ;Q :x =k 6+13=k +26,k ∈Z ,从而P 表示16的奇数倍数组成的集合,而Q 表示16的所有整数倍数组成的集合,故P Q .选B.[点评] 函数值域构成的集合关系的讨论,一般应先求出其值域.如果值域与整数有关,可将两集合中的元素找出它们共同的表达形式,利用整数的性质求解或用列举法讨论.4.(文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2C .3D .4[答案] B[解析] 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或{a 1,a 2,a 4}.(理)(2010·湖北理,2)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1[答案] A[解析] 结合椭圆x 24+y 216=1的图形及指数函数y =3x 的图象可知,共有两个交点,故A ∩B 的子集的个数为4.5.(2010·辽宁理,1)已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7(或5),则∁U B 中无7(或5),即B 中有7(或5),则与A ∩B ={3}矛盾,故选D.6.(文)(2010·合肥市)集合M ={x |x 2-1=0},集合N ={x |x 2-3x +2=0},全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{-1}C .{1}D .∅[答案] B[解析] ∵M ={1,-1},N ={1,2},∴M ∩N ={1}, 故阴影部分表示的集合为{-1}.(理)(2010·山东省实验中学)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I CD .(A ∩∁I B )∩C[答案] D[解析] 阴影部分在A 中,在C 中,不在B 中,故在∁I B 中,因此是A 、C 、∁I B 的交集,故选D.高考总复习含详解答案[点评] 解决这类题的要点是逐个集合考察,看阴影部分在哪些集合中,不在哪些集合中,注意不在集合M 中时,必在集合M 的补集中.7.已知钝角△ABC 的最长边长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是( )A .2B .4C .π-2D .4π-2[答案] C[解析] 由题中三角形为钝角三角形可得①a 2+b 2<22;②a +b >2;③0<a <2,0<b <2,于是集合P 中的点组成由条件①②③构成的图形,如图所示,则其面积为S =π×224-12×2×2=π-2,故选C.8.(文)(2010·山东滨州)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)P ={α|α=(-1,1)+m (1,2),m ∈R },Q ={β|β=(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( )A .{(1,-2)}B .{(-13,-23)}C .{(1,-2)}D .{(-23,-13)}[答案] B[解析] α=(m -1,2m +1),β=(2n +1,3n -2),令a =β,得⎩⎪⎨⎪⎧ m -1=2n +12m +1=3n -2 ∴⎩⎪⎨⎪⎧m =-12n =-7∴P ∩Q ={(-13,-23)}.9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x 、y ∈M },则N 中元素的个数为( )A .9B .6C .4D .2[答案] C[解析] N ={(0,0),(1,0),(1,1),(2,1)},按x 、y ∈M ,逐个验证得出N .10.(文)已知集合{1,2,3,…,100}的两个子集A 、B 满足:A 与B 的元素个数相同,且A ∩B 为空集.若n ∈A 时,总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A .62B .66C .68D .74[答案] B[解析] 若24到49属于A ,则50至100的偶数属于B 满足要求,此时A ∪B 已有52个元素;集合A 取1到10的数时,集合B 取4到22的偶数,由于A ∩B =∅,∴4,6,8∉A ,此时A ∪B 中将增加14个元素,∴A ∪B 中元素个数最多有52+14=66个.(理)设⊕是R 上的一个运算,A 是R 的非空子集.若对任意a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集[答案] C[解析] A :自然数集对减法,除法运算不封闭, 如1-2=-1∉N,1÷2=12∉N .B :整数集对除法运算不封闭,如1÷2=12∉Z .C :有理数集对四则运算是封闭的.D :无理数集对加法、减法、乘法、除法运算都不封闭. 如(2+1)+(1-2)=2,2-2=0,2×2=2,2÷2=1, 其运算结果都不属于无理数集. 二、填空题11.(文)已知集合A ={x |log 12x ≥3},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是(-∞,c ],其中的c =______.[答案] 0[解析] A ={x |0<x ≤18},∵A ⊆B ,∴a ≤0,∴c =0.(理)(2010·江苏苏北四市、南京市调研)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.[答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B ,∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.高考总复习含详解答案12.(2010·浙江萧山中学)在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,则1x∈A ”的概率是________.[答案]331[解析] 集合M 的非空子集有25-1=31个,而满足条件“对∀x ∈A ,则1x ∈A ”的集合A 中的元素为1,2或12,且12,2要同时出现,故这样的集合有3个:{1},{12,2},{1,12,2}.因此,所求的概率为331.13.(文)(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1.(理)A ={(x ,y )|x 2=y 2} B ={(x ,y )|x =y 2},则A ∩B =________. [答案] {(0,0),(1,1),(1,-1)}.[解析] A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x 2=y2x =y 2={(0,0),(1,1),(1,-1)}. 14.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题15.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. [解析] (1)A ={1,2},∵A ∩B ={2},∴2∈B , ∴4+4(a +1)+(a 2-5)=0,∴a =-1或-3. (2)∵A ∪B =A ,∴B ⊆A ,由Δ=4(a +1)2-4(a 2-5)=8(a +3)=0得,a =-3. 当a =-3时,B ={2},符合题意;当a <-3时,Δ<0,B =∅,满足题意; 当a >-3时,∵B ⊆A ,∴B =A ,故⎩⎪⎨⎪⎧2(a +1)=-3a 2-5=2,无解. 综上知,a ≤-3.16.(2010·广东佛山顺德区质检)已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0},若∁U (A ∪B )⊆C ,求实数a 的取值范围.[解析] A ={x |-2<x <3},B ={x |x <-4,或x >2},A ∪B ={x |x <-4,或x >-2}, ∁U (A ∪B )={x |-4≤x ≤-2},而C ={x |(x -a )(x -3a )<0} (1)当a >0时,C ={x |a <x <3a },显然不成立. (2)当a =0时,C =∅,不成立.(3)当a <0时,C ={x |3a <x <a },要使∁U (A ∪B )⊆C ,只需⎩⎪⎨⎪⎧3a <-4a >-2,即-2<a <-43.综上知实数a 的取值范围是⎝⎛⎭⎫-2,-43. 17.(文)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1y =ax 2-ax +a 有正整数解,消去y 得, ax 2-(a +2)x +a +1=0(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.(理)(2010·厦门三中)已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0,n ∈N *). (1)求证数列{a n }是等比数列,并求a n ;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.[解析] (1)①当n =1时,∵(a -1)S 1=a (a 1-1),∴a 1=a (a >0)高考总复习含详解答案②当n ≥2时,由(a -1)S n =a (a n -1)(a >0)得, (a -1)S n -1=a (a n -1-1)∴(a -1)a n =a (a n -a n -1),变形得:a na n -1=a (n ≥2),故{a n }是以a 1=a 为首项,公比为a 的等比数列, ∴a n =a n .(2)①当a ≥1时,A ={x |1≤x ≤a },S 2=a +a 2>a ,∴S 2∉A , 即当a ≥1时,不存在满足条件的实数a . ②0<a <1时,A ={x |a ≤x ≤1} ∵S n =a +a 2+…+a n =a1-a (1-a n ),∴S n ∈[a ,a1-a),因此对任意的n ∈N *,要使S n ∈A ,只需⎩⎪⎨⎪⎧0<a <1a 1-a ≤1,解得0<a ≤12,综上得实数a 的取值范围是(0,12].。

2020年高考总复习理科数学题库第一章《集合》CI

2020年高考总复习理科数学题库第一章《集合》CI

2020年高考总复习 理科数学题库第一章 集合学校:__________题号 一 二 三 总分 得分第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.已知集合A ={|}x x a <,B ={|12}x x <<,且R ()A B R =U ð,则实数a 的取值范围是( ) A .2a ≤ B . a<1C .2a ≥D .a>2(2007福建理科3)2.对于复数a,b,c,d ,若集合{}S=a,b,c,d 具有性质“对任意x,y S ∈,必有xy S ∈”,则当22a=1b =1c =b ⎧⎪⎨⎪⎩时,b+c+d 等于 ( ) A .1B .-1C .0D .i (2010福建理)3.设集合{,}A a b =,{,,}B b c d =,则A B =U ( ) A 、{}b B 、{,,}b c d C 、{,,}a c d D 、{,,,}a b c d4.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是A.N ⊆MB.M ∪N=MC.M ∩N=ND.M ∩N={2}5.集合{}|25A x R x =∈-≤中最小整数位 .6.集合{1,2,3,4,5,6},U =}5,4,1{S =,{2,3,4},T =则()U S T I ð等于( )(A)}6,5,4,1{ (B) {1,5} (C) {4} ( D) {1,2,3,4,5}(2011安徽文2) 7.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 (A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅8.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)(2011北京理1)9.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞)10.设集合P ={m |-1<m ≤0},Q ={m ∈R|mx 2+4mx -4<0}对任意实数x 恒成立},则下列关系中成立的是 ( ) A.P QB.Q PC.P =QD.P ∩Q =Q (2004湖北10)剖析:Q ={m ∈R|mx 2+4mx -4<0对任意实数x 恒成立},对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得m <0.综合①②知m ≤0,∴Q ={m ∈R|m ≤0}.11.已知集合A ={1,2,3,4},那么A 的真子集的个数是( ) A .15 B .16C .3D .4(2000广东1)12.已知全集I =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =4n ,n ∈N },则( )A .I =A ∪B B .I =(IC A )∪BC .I =A ∪(I C B )D .I =(I C A )∪(I C B )(1996全国理,1)13.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。

2020年高考总复习理科数学题库第一章《集合》NR

2020年高考总复习理科数学题库第一章《集合》NR

2020年高考总复习 理科数学题库第一章 集合学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞)2.若集合{},,M a b c =中的元素是ABC ∆的三边长,则△ABC 一定不是 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形3.若集合{}1213A x x =-≤+≤,20,x B xx-⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( ) A.{}10x x -≤< B.{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤(2011江西理2)【精讲精析】选B.由题意得A={}{}x 12x 13x 1x 1,-≤+≤=-≤≤{}x 2B x 0x 0x 2x ⎧-⎫=≤=<≤⎨⎬⎩⎭{}{}{}A B x 1x 1x 0x 2x 0x 1.==⋂-≤≤⋂<≤<≤所以4.已知集合2{|1},{}P x x M a =≤=,若P M P =U ,则a 的取值范围是( ) (A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞U (2011北京理1)【思路点拨】先化简集合P ,再利用M 为P 的子集,可求出a 的取值范围. 【精讲精析】选C.[1,1]P =-.由P M P =U 得,M P ⊆,所以[1,1]a ∈-.5.设f (n )=2n +1(n ∈N),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N|f (n )∈P },Q ∧={n ∈N|f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}(2005浙江理) 6.已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =U ( )(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤(2008浙江文) (1)7. i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈(2011福建理)8.若集合{}20A x x x =|-<,{|03}B x x =<<,则A B I 等于( )A .{}01x x |<<B .{}03x x |<<C .{}13x x |<<D .∅(2008福建文)(1)9.满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a =I 的集合M 的个数是( ) A .1 B .2 C .3 D .4(2008山东理) 1.(文科1)10.定义集合运算*{,,},{1,2},{0,2}A B Z Z xy x A y B A B =|=∈∈==设,则集合*A B 的所有元素之和为( )。

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习01 集合(解析版)

高考数学复习压轴题型专题讲解与练习专题01 集合一、单选题1.(2021·上海杨浦·高三期中)非空集合A ⊆R ,且满足如下性质:性质一:若a ,b A ∈,则a b A +∈;性质二:若a A ∈,则a A -∈.则称集合A 为一个“群”以下叙述正确的个数为( )①若A 为一个“群”,则A 必为无限集;②若A 为一个“群”,且a ,b A ∈,则a b A -∈;③若A ,B 都是“群”,则A B 必定是“群”;④若A ,B 都是“群”,且A B A ≠,A B B ≠,则A B 必定不是“群”;A .1B .2C .3D .4【答案】C【分析】根据性质,运用特例法逐一判断即可.【详解】①:设集合{}1,0,1A =-,显然110,101,101-+=-+=-+=,符合性质一,同时也符合性质二,因此集合{}1,0,1A =-是一个群,但是它是有限集,故本叙述不正确; ②:根据群的性质,由b A ∈可得:b A -∈,因此可得a b A -∈,故本叙述是正确; ③:设A B C =,若c C ∈,一定有,c A c B ∈∈,因为A ,B 都是“群”,所以,c A c B -∈-∈,因此c C -∈,若d C ∈,所以,d A d B ∈∈,c d C +∈,故本叙述正确;④:因为A B A ≠,A B B ≠,一定存在a A ∈且a B ∉,b A ∉且b B ∈,因此a b A +∉且a b B +∉,所以()a b A B +∉,因此本叙述正确,故选:C【点睛】关键点睛:正确理解群的性质是解题的关键.2.(2021·贵州贵阳·高三开学考试(文))“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G *∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群【答案】B【分析】对于选项A,C,D 分别说明它们满足群的定义,对于选项B, 不满足④,则(),G ⨯不为一个群,所以该选项错误.【详解】A. G Q =,两个有理数的和是有理数,有理数加法运算满足结合律,0为G 的单位元,逆元为它的相反数,满足群的定义,则(),+G 为一个群,所以该选项正确;B. G R =,1为G 的单位元,但是1a b b a ⨯=⨯=,当0a =时,不存在唯一确定的b ,所以不满足④,则(),G ⨯不为一个群,所以该选项错误;C. {}1,1G =-,满足①②,1为G 的单位元满足③,1-是-1的逆元,1是1的逆元,满足④,则(),G ⨯为一个群,所以该选项正确;D. G ={平面向量},满足①②,0→为G 的单位元,逆元为其相反向量,则(),+G 为一个群,所以该选项正确.故选:B3.(2022·上海·高三专题练习)设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中,R a b ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集,对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集【答案】B【分析】运用集合的子集的概念,令1m P ∈,推得2m P ∈,可得对任意a ,1P 是2P 的子集;再由1b =,5b =,求得1Q ,2Q ,即可判断B 正确,A ,C ,D 错误.【详解】解:对于集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,可得当1m P ∈,即210m am ++>,可得220m am ++>,即有2m P ∈,可得对任意a ,1P 是2P 的子集;故C 、D 错误当5b =时,21{|50}Q x x x R =++>=,22{|250}Q x x x R =++>=,可得1Q 是2Q 的子集;当1b =时,21{|10}Q x x x R =++>=,22{|210}{|1Q x x x x x =++>=≠-且}x R ∈,可得1Q 不是2Q 的子集,故A 错误.综上可得,对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集.故选:B.4.(2022·浙江·高三专题练习)设3124a M a a a =+,其中1a ,2a ,3a ,4a 是1,2,3,4的一个组合,若下列四个关系:①11a =;②21a ≠;③33a =;④44a ≠有且只有一个是错误的,则满足条件的M 的最大值与最小值的差为( )A .233B .323C .334D .454【答案】C【分析】因为只有一个错误,故分类讨论,若①错,有两种情况,若②错则互相矛盾,若③错,有三种情况,若④错,有一种情况,分别求解M 即可得结果.【详解】若①错,则11a ≠,21a ≠,33a =,44a ≠有两种情况:12a =,24a =,33a =,41a =,3124324111a M a a a =+=⨯+= 或14a =,22a =,33a =,41a =,3124342111a M a a a =+=⨯+=; 若②错,则11a =,21a =,互相矛盾,故②对;若③错,则11a =,21a ≠,33a ≠,44a ≠有三种情况:11a =,22a =,34a =,43a =,31244101233a M a a a =+=⨯+=;11a =,23a =,34a =,42a =,312441352a M a a a =+=⨯+=; 11a =,24a =,32a =,43a =,31242141433a M a a a =+=⨯+=; 若④错,则11a =,21a ≠,33a =,44a =只有一种情况:11a =,22a =,33a =,44a =,31243111244a M a a a =+=⨯+= 所以max min 11331144M M -=-= 故选:C 5.(2021·福建·福州四中高三月考)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( )A .0B .1C .2D .3【答案】D【分析】根据条件可得集合B 要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.【详解】由{}2|0A x x x =+=,可得{}1,0A =-因为22()(1)0x ax x ax +++=等价于20x ax 或210x ax ++=,且{}1,0,1A A B =-*=,所以集合B 要么是单元素集,要么是三元素集.(1)若B 是单元素集,则方程20x ax 有两个相等实数根,方程210x ax ++=无实数根,故0a =;(2)若B 是三元素集,则方程20x ax 有两个不相等实数根,方程210x ax ++=有两个相等且异于方程20x ax 的实数根,即2402a a -=⇒=±且0a ≠.综上所求0a =或2a =±,即{}0,22S =-,,故()3C S =, 故选:D .【点睛】关键点睛:本题以A B *这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合B 要么是单元素集,要么是三元素集,即方程方程20x ax 与方程210x ax ++=的实根的个数情况,属于中档题.6.(2020·陕西·长安一中高三月考(文))在整数集Z 中,被4除所得余数k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0,1,2,3k =.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误,而242-=+,故[]22-∈,故②正确.若整数a ,b 属于同一“类”,设此类为[]{}()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故,a b 除以4的余数相同,故a ,b 属于同一“类”, 故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确.由“类”的定义可得[][][][]0123Z ⊆,任意c Z ∈,设c 除以4的余数为{}()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确.故选:C.【点睛】方法点睛:对于集合中的新定义问题,注意根据理解定义并根据定义进行相关的计算,判断两个集合相等,可以通过它们彼此包含来证明.7.(2021·全国·高三专题练习(理))在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345Z =;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】 根据“类”的定义逐一进行判断可得答案.【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确; ②[][][][][][]012345{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确; ④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.8.(2021·浙江·路桥中学模拟预测)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈ ,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是( )A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【分析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【详解】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-, 由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈, 当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =-,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.9.(2021·广东番禺中学高一期中)设{}1,2,3,4I =,A 与B 是I 的子集,若{}1,2A B =,则称(),A B 为一个“理想配集”.规定(),A B 与(),B A 是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是( )A .4B .6C .8D .9【答案】D【分析】对子集A 分{}1,2A =,{}1,2,3A =,{}1,2,4A =,{}1,2,3,4A =四种情况讨论,列出所有符合题意的集合B 即可求解.【详解】{}1,2,3,4I =,A 与B 是I 的子集,{}1,2A B =, 对子集A 分情况讨论:当{}1,2A =时,{}1,2B =,{}1,2,3B =,{}1,2,4B =,{}1,2,3,4B =,有4种情况;当{}1,2,3A =时,{}1,2B =,{}1,2,4B =,有2种情况; 当{}1,2,4A =时,{}1,2B =,{}1,2,3B =,有2种情况; 当 {}1,2,3,4A =时,{}1,2B =,有1种情况; 所以共有42219+++=种, 故选:D.10.(2020·上海奉贤·高一期中)对于区间(1,10000)内任意两个正整数m ,n ,定义某种运算“*”如下:当m ,n 都是正偶数时,n m n m *=;当m ,n 都为正奇数时,log m m n n *=,则在此定义下,集合(){},4M a b a b =*=中元素个数是( ) A .3个 B .4个 C .5个 D .6个【答案】C 【分析】分别讨论a ,b 都是正偶数时,4b a b a *==,a ,b 都是正奇数时,log 4a a b b *==,所以4a b =,再由,(1,10000)a b ∈即可求出集合M ,进而可得集合M 中的元素的个数. 【详解】因为当m ,n 都是正偶数时,n m n m *=; 当m ,n 都为正奇数时,log m m n n *=,所以当a ,b 都是正偶数时,4b a b a *==,可得2a b ==; 当a ,b 都是正奇数时,log 4a a b b *==,所以4a b =, 因为,(1,10000)a b ∈, 所以3a =,81b =;5a =,625b =; 7a =,2401b =;9a =,6561b =;所以()()()()(){}2,2,3,81,5,625,7,2401,9,6561M =, 所以集合M 中的元素有5个, 故选:C.11.(2021·全国·高三专题练习)设X 是直角坐标平面上的任意点集,定义*{(1X y =-,1)|(x x -,)}y X ∈.若*X X =,则称点集X“关于运算*对称”.给定点集{}22(,)|1A x y x y +==,{}(,)|1==-B x y y x ,(){},|1|||1=-+=C x y x y ,其中“关于运算 * 对称”的点集个数为( )A .0B .1C .2D .3【答案】B 【分析】令1y X -=,1x Y -=,则1y X =-,1x Y =+,从而由A ,B ,C 分别求出*A ,*B ,*C ,再根据点集X “关于运算*对称”的定义依次分析判断即可得出答案. 【详解】解:令1y X -=,1x Y -=, 则1y X =-,1x Y =+,22{(,)|1}A x y x y =+=,*{(A X∴=,22)|(1)(1)1}Y Y X ++-=,故*A A ≠;{(,)|1}B x y y x ==-,*{(,)|111B X Y X Y ∴=-=+-,即1}Y X =-,故*B B ≠;{(,)||1|||1}C x y x y =-+=,*{(,)||11||1|1C X Y Y X ∴=+-+-=,即|||1|1}Y X +-=,故*C C =;所以“关于运算 * 对称”的点集个数为1个. 故选:B.12.(2021·黑龙江·哈师大附中高一月考)设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,那么称0x 为集合X 的聚点.则在下列集合中,以0为聚点的集合是( ) A .{|0}1nn Z n n ∈≥+, B .{|0}x x x ∈≠R ,C .221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣D .整数集Z【答案】B 【分析】根据给出的聚点定义逐项进行判断即可得出答案. 【详解】 A 中,集合{|0}1n n Z n n ∈≥+,中的元素除了第一项0之外,其余的都至少比0大12, 所以在102a <<的时候,不存在满足0x a <<的x ,0∴不是集合{|0}1nn Z n n ∈≥+,的聚点;故A 不正确;B 中,集合{|0}x x x ∈≠R ,,对任意的a ,都存在(2a x =实际上任意比a 小的数都可以),使得02a x a <=<,所以0是集合{|0}x x x ∈≠R ,的聚点;故B 正确;C 中,因为2211n n+>,所以当01a <<时,不存在满足0x a <<的x ,0∴不是集合221,0n n Z n n ⎧⎫+∈≠⎨⎬⎩⎭∣的聚点,故C 不正确;D ,对于某个1a <,比如0.5a =,此时对任意的x ∈Z ,都有00x -=或者01x -≥,也就是说不可能满足000.5x <-<,从而0不是整数集Z 的聚点.故D 不正确. 综上得以0为聚点的集合是选项B 中的集合. 故选:B .二、多选题13.(2020·广东广雅中学高三月考)设整数4n ≥,集合{}1,2,3,,X n =.令集合{(,,),,S x y z x y z X =∈,且三条件,x y z <<,y z x <<z x y <<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项不正确的是( ) A .(),,y z w S ∈,(),,x y w S ∉ B .(),,y z w S ∈,(),,x y w S ∈ C .(),,y z w S ∉,(),,x y w S ∈ D .(),,y z w S ∉,(),,x y w S ∉【答案】ACD 【分析】根据集合S 的定义可以得到,,x y z 和,,z w x 的大小关系都有3种情况,然后交叉结合,利用不等式的传递性和无矛盾性原则得到正确的选项. 【详解】因为(,,)x y z S ∈,则,,x y z 的大小关系有3种情况,同理,(,,)z w x S ∈,则,,z w x 的大小关系有3种情况,由图可知,,,,x y w z 的大小关系有4种可能,均符合(,,)y z w S ∈,(,,)x y w S ∈,所以ACD 错, 故选:ACD. 【点睛】本题考查新定义型集合,涉及不等式的基本性质,首先要理解集合S 中元素的性质,利用列举画图,根据无矛盾性原则和不等式的传递性分析是关键.14.(2021·河北·石家庄二中高三月考)若集合A 具有以下性质:(1)0A ∈,1A ∈;(2)若x 、y A ,则x y A -∈,且0x ≠时,1A x∈.则称集合A 是“完美集”.下列说法正确的是( )A .集合{}1,0,1B =-是“完美集” B .有理数集Q 是“完美集”C .设集合A 是“完美集”,x 、y A ,则x y A +∈D .设集合A 是“完美集”,若x 、y A 且0x ≠,则yA x∈ 【答案】BCD 【分析】利用第(2)条性质结合1x =,1y =-可判断A 选项的正误;利用题中性质(1)(2)可判断B 选项的正误;当y A 时,推到出y A -∈,结合性质(2)可判断C 选项的正误;推导出xy A ∈,结合性质(2)可判断D 选项的正误.【详解】对于A 选项,取1x =,1y =-,则2x y A -=∉,集合{}1,0,1B =-不是“完美集”,A 选项错误;对于B 选项,有理数集Q 满足性质(1)、(2),则有理数集Q 为“完美集”,B 选项正确; 对于C 选项,若y A ,则0y y A -=-∈,()x y x y A ∴+=--∈,C 选项正确; 对于D 选项,任取x 、y A ,若x 、y 中有0或1时,显然xy A ∈; 当x 、y 均不为0、1且当x A ∈,y A 时,1x A -∈,则()11111A x x x x -=∈--,所以()1x x A -∈,()21x x x x A ∴=-+∈,()()2222221111122A xy xy xy x y x y x y x y ∴=+=+∈+--+--,xy A ∴∈, 所以,若x 、y A 且0x ≠,则1A x∈,从而1yy A x x=⋅∈,D 选项正确. 故选:BCD. 【点睛】本题考查集合的新定义,正确理解定义“完美集”是解题的关键,考查推理能力,属于中等题.15.(2022·全国·高三专题练习)(多选)若非空数集M 满足任意,x y M ∈,都有x y M +∈,x y M-∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD 【分析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解. 【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈,,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈, 则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉,所以B 不正确; 对于C 中,任取,x A y B ∈∈,可得,x y A B ∈, 因为A B 是优集,则,x y A B x y A B +∈-∈, 若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆; 若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆, 所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集; 或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确. 故选:ACD. 【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.16.(2020·山东·高三专题练习)已知集合()(){}=,M x y y f x =,若对于()11,x y M ∀∈,()22,x y M ∃∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:(){}21,1M x y y x ==+;(){2,M x y y ==;(){}3,xM x y y e ==;(){}4,sin 1M x y y x ==+.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【分析】根据题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥,结合函数图象即可判断. 【详解】由题意知,对于集合M 表示的函数图象上的任意点()11,P x y ,在图象上存在另一个点P ',使得OP OP '⊥.在21y x =+的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以1M 不是“互垂点集”集合;对y = 所以在2M 中的任意点()11,P x y ,在2M 中存在另一个P ',使得OP OP '⊥, 所以2M 是“互垂点集”集合;在x y e =的图象上,当P 点坐标为(0,1)时,不存在对应的点P ', 所以3M 不是“互垂点集”集合;对sin 1y x =+的图象,将两坐标轴绕原点进行任意旋转,均与函数图象有交点, 所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题主要考查命题的真假的判断,以及对新定义的理解与应用,意在考查学生的数学建模能力和数学抽象能力,属于较难题.第II 卷(非选择题)三、填空题17.(2021·上海市进才中学高三期中)进才中学1996年建校至今,有一同学选取其中8个年份组成集合{}1996,1997,2000,2002,2008,2010,2011,2014A =,设i j x x A ∈、,i j ≠,若方程i j x x k -=至少有六组不同的解,则实数k 的所有可能取值是_________.【答案】{}3,6,14 【分析】根据i j x x k -=,用列举法列举出集合A 中,从小到大8个数中(设两数的差为正),相邻两数,间隔一个数,间隔二个数,间隔三个数,间隔四个数,间隔五个数,间隔六个数的两数差,从中找出差数出现次数不低于3的差数即可. 【详解】集合A 中,从小到大8个数中,设两数的差为正: 则相邻两数的差:1,3,2,6,2,1,3; 间隔一个数的两数差:4,5,8,8,3,4; 间隔二个数的两数差:6,11,10,9,6; 间隔三个数的两数差:12,13,11,12; 间隔四个数的两数差:14,14,14; 间隔五个数的两数差:15,17; 间隔六个数的两数差:18;这28个差数中,3出现3次,6出现3次,14出现3次,其余都不超过2次, 故k 取值为:3,6,14时,方程i j x x k -=至少有六组不同的解, 所以k 的可能取值为:{}3,6,14, 故答案为:{}3,6,1418.(2021·北京·高三开学考试)记正方体1111ABCD A B C D -的八个顶点组成的集合为S .若集合M S ⊆,满足i X ∀,j X M ∈,k X ∃,l X M ∈使得直线i j k l X X X X ⊥,则称M 是S 的“保垂直”子集. 给出下列三个结论:①集合{}1,,,A B C C 是S 的“保垂直”子集;②集合S 的含有6个元素的子集一定是“保垂直”子集;③若M 是S 的“保垂直”子集,且M 中含有5个元素,则M 中一定有4个点共面. 其中所有正确结论的序号是______. 【答案】② 【分析】首先弄清楚可取其中的5,6,7,8个点时,符合M 是S 的“保垂直”子集,且正方体的两条体对角线不垂直,然后根据定义逐项判断可得答案. 【详解】对于①,当取体对角线1AC 时,找不到与之垂直的直线,①错误; 对于②,当8个点任取6个点时,如图当M 集合中的6个点是由上底面四个点和下底面两个点;或者由上底面两个点和下底面四个点构成时,必有四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 当M 集合中的6个点是由上底面三个点和下底面三个点构成时,如{}111,,,,,M B C A C A B =,则存在11,,,B A A B 四点共面,根据正方体的性质,符合M 是S 的“保垂直”子集; 如{}111,,,,,M B C A C A D =,取,B A 存在11BC A D ⊥,取,B C 存在11BC C D ⊥,取,C A 存在1AC BD ⊥,符合M 是S 的“保垂直”子集,所以②正确;对于③,举反例即可,如{}11,,,,M B C D C A =,③错误.故答案为:②.19.(2021·江苏扬州·模拟预测)对于有限数列{}n a ,定义集合()1212,110k i i i k a a a S k s s i i i k ⎧⎫+++⎪⎪==≤<<<≤⎨⎬⎪⎪⎩⎭,,其中k ∈Z 且110k ≤≤,若n a n =,则()3S 的所有元素之和为___________.【答案】660【分析】可得()3S 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭,得出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,求出每个数字被选中的次数即可求解.【详解】()1231233,1103i i i a a a S s s i i i ⎧⎫++⎪⎪==≤<<≤⎨⎬⎪⎪⎩⎭ 123123,1103i i i s s i i i ⎧⎫++==≤<<≤⎨⎬⎩⎭, 则()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,1,2,,10每个被选出的次数是相同的,若()110i i ≤≤被选中,则共有29C 种选法,即1,2,,10每个被选出的次数为29C ,则()3S 的所有元素之和为()()29101109812102266033C ⨯+⨯⨯⋅+++==. 故答案为:660.【点睛】关键点睛:解决本题的关键是判断出()3S 中的每个元素就是从1,2,,10中挑选3个出来求平均值,再求出每个数字被选中的次数.20.(2021·北京东城·一模)设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ≠∅,则12A A 具有性质P ; ③若12,A A 具有性质P ,则12A A 具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②④【分析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈,所以12A A 具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A ∈,23A ∈,但1223A A +∉,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④正确;故答案为:①②④【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。

集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

 集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()

高考集合练习题

高考集合练习题

高考集合练习题一、选择题1. 集合A={x|x<5}与集合B={x|x>3}的交集是:A. {x|x>5}B. {x|x<3}C. {x|3<x<5}D. {x|x>=5}2. 已知集合M={x|x²-x-6=0},该集合的元素个数是:A. 0B. 1C. 2D. 33. 集合P={x|-2≤x≤2}与集合Q={x|x²-5x+6=0}的并集是:A. {x|-2≤x≤2}B. {x|-1≤x≤2}C. {x|x=2或x=3}D. {x|x=2}4. 若集合S={x|x²-2x-35=0},则S的补集(相对于实数集R)是:A. {x|x≠-5或x≠7}B. {x|x≠-5}C. {x|x≠7}D. {x|x≠-5且x≠7}5. 对于集合T={x|x²+4x+4=0},下列说法正确的是:A. T是单元素集合B. T是空集C. T有两个元素D. T没有元素二、填空题6. 若集合A={1,2,3},B={2,3,4},则A∪B=______。

7. 已知集合C={x|x²-4=0},C的补集(相对于实数集R)是{x|x≠±2},那么C的元素个数是______。

8. 若集合D={x|-1<x<1},E={x|x>0},则D∩E=______。

9. 集合F={x|x²+x-6=0}的元素是______。

10. 集合G={x|x²-4x+4=0}的元素是______。

三、解答题11. 已知集合H={x|-3≤x≤3},I={x|x>0},求H∩I,并说明其元素个数。

12. 集合J={x|x²-9=0},求J的补集(相对于实数集R)。

13. 集合K={x|0<x<10},L={x|x>5},求K∪L,并说明其元素范围。

14. 集合M={x|x²-5x+6=0},求M的补集(相对于实数集R),并说明其补集的元素范围。

高中集合练习题及答案

高中集合练习题及答案

高中集合练习题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∪B。

A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {4}2. 集合A={x|x<5},集合B={x|x>3},求A∩B。

A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. 空集3. 集合M={x|x^2-4=0},求M的元素个数。

A. 0B. 1C. 2D. 34. 对于集合N={1,2,3,...,10},如果a∈N且a为奇数,求a的个数。

A. 5B. 6C. 8D. 105. 集合P={x|x是偶数},集合Q={x|x是质数},判断P和Q的关系。

A. P⊆QB. Q⊆PC. P∩Q=空集D. P∩Q≠空集二、填空题6. 集合S={x|x是小于10的正整数},S的补集是_________。

7. 如果集合A={1,2,3},B={3,4,5},那么A∩B=_________。

8. 集合W={x|x是自然数,且x能被3整除},W的元素个数是_________。

9. 集合X={x|x^2-4=0},X的元素是_________。

10. 如果集合Y={x|x^2+x+1=0},求Y的元素个数是_________。

三、解答题11. 已知集合A={1,2,3},B={3,4,5},求A∪B∩C,其中C是A和B 的交集的补集。

12. 集合D={x|x是小于20的正整数},E={x|x是大于10的正整数},求D∪E,并判断D∪E是否为全集。

13. 集合F={x|x是偶数},G={x|x是大于10的整数},求F∩G,并说明其元素个数。

14. 集合H={x|x^2-3x+2=0},求H的元素,并判断H是否为有限集。

15. 集合I={x|x是小于100的质数},求I的元素个数,并列出前5个元素。

四、证明题16. 证明:对于任意集合A,A的补集的补集等于A本身。

高三数学集合练习题

高三数学集合练习题

高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。

集合典型例题(含解析)

集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。

2023年高考数学真题实战复习(2022高考+模考题)专题01 集合问题(解析版)

2023年高考数学真题实战复习(2022高考+模考题)专题01 集合问题(解析版)

专题01 集合问题【高考真题】1.(2022·全国乙理)设全集U ={1,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M1.答案 A 解析 由题知M ={2,4,5},对比选项知,A 正确.故选A .2.(2022·全国乙文)集合M ={2,4,6,8,10},N ={x |-1<x <6},则M ∩N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.答案 A 解析 因为M ={2,4,6,8,10},N ={x |-1<x <6},所以M ∩N ={2,4}.故选A .3.(2022·全国甲理)设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则 ∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}3.答案 D 解析 由题意,B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.故选D .4.(2022·全国甲文)设集合A ={-2,-1,0,1,2},B ={x |0≤x <52},则A ∩B =( ) A .{0,1,2} B .{-2,-1,0} C .{0,1} D .{1,2}4.答案 A 解析 因为A ={-2,-1,0,1,2},B ={x |0≤x <52},所以A ∩B ={0,1,2}.故选A . 5.(2022·新高考Ⅰ)若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N =( )A .{x |0≤x <2}B .{x |13≤x <2}C .{x |3≤x <16}D .{x |13≤x <16} 5.答案 D 解析 M ={x |0≤x <16},N ={x |x ≥13},则M ∩N ={x |13≤x <16}.故选D . 6.(2022·新高考Ⅱ)已知集合A ={-1,1,2,4},B ={x ||x -1|≤1},则A ∩B =( )A .{-1,2}B .{1,2}C .{1,4}D .{-1,4}6.答案 B 解析 B ={x |0≤x ≤2},故A ∩B ={1,2}.故选B .7.(2022·北京)已知全集U ={x |-3<x <3},集合A ={x |-2<x ≤1},则∁U A =( )A .(-2,1]B .(-3,-2)∪[1,3)C .[-2,1)D .(-3,-2]∪(1,3)7.答案 D 解析 由补集定义可知,∁U A ={x |-3<x ≤-2或1<x <3},即∁U A =(-3,-2]∪(1,3).故 选D .8.(2022·浙江)设集合A ={1,2},B ={2,4,6},则A ∪B =( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}8.答案 D 解析 A ∪B ={1,2,4,6}.故选D .【知识总结】1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系3.集合的基本运算【同类问题】1.(2021·新高考Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}1.答案 B 解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3},故选B .2.(2021·新高考Ⅱ)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3}2.答案 B 解析 由题设可得∁U B ={1,5,6},故A ∩(∁U B )={1,6}.3.(2021·全国甲)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x ≤5,则M ∩N 等于( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13B .⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5} 3.答案 B 解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 13≤x ≤5,所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. 4.(2021·全国乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A .∅B .SC .TD .Z4.答案 C 解析 法一 在集合T 中,令n =k (k ∈Z ),则t =4n +1=2(2k )+1(k ∈Z ),而集合S 中,s =2n +1(n ∈Z ),所以必有T ⊆S ,所以S ∩T =T ,故选C .法二 S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以S ∩T =T ,故选C .5.(2021·天津)设集合A ={-1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( )A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}5.答案 C 解析 ∵A ={-1,0,1},B ={1,3,5},C ={0,2,4},∴A ∩B ={1},∴(A ∩B )∪C ={0,1,2,4}.6.(2021·北京)已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A ∪B =( )A .{x |0≤x <1}B .{x |-1<x ≤2}C .{x |1<x ≤2}D .{x |0<x <1}6.答案 B 解析 由集合并集的定义可得A ∪B ={x |-1<x ≤2},故选B .7.(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .67.答案 C 解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,且y ≥x }={(1,7),(2,6),(3,5),(4,4)}.8.设全集为R ,集合A ={y |y =2x ,x <1},B ={x |y =x 2-1},则A ∩(∁R B )=( )A .{x |-1<x <2}B .{x |0<x <1}C .D .{x |0<x <2}8.答案 B 解析 由题意知A ={y |0<y <2},B ={x |x ≤-1或x ≥1},所以∁R B ={x |-1<x <1},所以A ∩(∁RB )={x |0<x <1},故选B .9.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]9.答案 A 解析 ∵M ={0,1},N ={x |0<x ≤1},∴M ∪N ={x |0≤x ≤1}.10.集合A ={x |x 2-3x -4≥0},B ={x |1<x <5},则集合(∁R A )∪B 等于( )A .[-1,5)B .(-1,5)C .(1,4]D .(1,4)10.答案 B 解析 因为集合A ={x |x 2-3x -4≥0}={x |x ≤-1或x ≥4},又B ={x |1<x <5},所以∁R A=(-1,4),则集合(∁R A )∪B =(-1,5).11.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .311.答案 C 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3,得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2, -1)}.12.(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2 B .3 C .4 D .612.答案 C 解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.13.若全集U =R ,A ={x |-1≤x ≤6},B ={x |0<x ≤8},则图中阴影部分所表示的集合为________.13.答案 {x |0<x ≤6} 解析 由题图知阴影部分所表示的集合为A ∩B ={x |0<x ≤6}.14.已知全集U =R ,集合M ={x ∈Z ||x -1|<3},N ={-4,-2,0,1,5},则下列Venn 图中阴影部分的集合为________.14.答案 {-1,2,3} 解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x∈Z |-2<x <4}={-1,0,1,2,3},Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.15.(2021·上海)已知集合A ={x |x >-1,x ∈R },B ={x |x 2-x -2≥0,x ∈R },则下列关系中,正确的是( )A .A ⊆B B .∁R A ⊆∁R BC .A ∩B =D .A ∪B =R15.答案 D 解析 ∵A =(-1,+∞),B =(-∞,-1]∪[2,+∞),∴A ∪B =R ,D 正确,其余选项均错误.16.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( )A .A ∩B = B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3}16.答案 BD 解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2},∴A ∩B ={x |-1<x ≤2},A错误;A ∪B ={x |-2≤x ≤3},B 正确;∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |x <-2或x >-1},C 错误;A ∩∁R B ={x |2<x ≤3},D 正确.17.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个17.答案 BD 解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1,∴P ∩Q ={(1,0),(0,1)},故B 正 确,C 错误;又P ,Q 为点集,∴A 错误;又P ∩Q 有两个元素,∴P ∩Q 有3个真子集,∴D 正确.18.(多选)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅ B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A18.答案 CD 解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅, A ∩B ≠B ,故A ,B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =A ∪(∁U A )⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C ,D 均正确.19.(多选)已知全集U ={x ∈N |log 2x <3},A ={1,2,3},∁U (A ∩B )={1,2,4,5,6,7},则集合B 可能为( )A .{2,3,4}B .{3,4,5}C .{4,5,6}D .{3,5,6}19.答案 BD 解析 由log 2x <3得0<x <23,即0<x <8,于是得全集U ={1,2,3,4,5,6,7},因为∁U (A ∩B )={1,2,4,5,6,7},则有A ∩B ={3},3∈B ,C 不正确;对于A 选项,若B ={2,3,4},则A ∩B ={2,3},∁U (A ∩B )={1,4,5,6,7},矛盾,A 不正确;对于B 选项,若B ={3,4,5},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},B 正确;对于D 选项,若B ={3,5,6},则A ∩B ={3},∁U (A ∩B )={1,2,4,5,6,7},D 正确.20.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________.20.答案 {-5,-2,4} 解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.21.已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4]21.答案 C 解析 集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},B ={x |4x >2m }=⎩⎨⎧⎭⎬⎫x |x >m 2,∵A ∩B 中有三个元素,∴1≤m 2<2,解得2≤m <4. 22.集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=,则a 的取值范围是( )A .(1,+∞)B .[1,+∞)C .(-∞,1)D .(-∞,1]22.答案 B 解析 易得M ={x |2x 2-x -1<0}=⎩⎨⎧⎭⎬⎫x |-12<x <1.∵N ={x |2x +a >0}=⎩⎨⎧⎭⎬⎫x |x >-a 2,∴∁U N =⎩⎨⎧⎭⎬⎫x |x ≤-a 2.由M ∩(∁U N )=,则-a 2≤-12,得a ≥1. 23.已知集合A ={x |y =log 2(x 2-8x +15)},B ={x |a <x <a +1},若A ∩B =,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,4]C .(3,4)D .[3,4]23.答案 D 解析 易知A ={x |x 2-8x +15>0}={x |x <3或x >5},由A ∩B =,可得⎩⎪⎨⎪⎧a ≥3,a +1≤5,所以 3≤a ≤4.24.已知集合A ={x |-5<x <1},B ={x |(x -m )(x -2)<0},若A ∩B =(-1,n ),则m +n =________.24.答案 0 解析 ∵A ∩B =(-1,n ),∴m =-1,n =1,∴m +n =0.25.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =,则实数m 的取值范围是________.25.答案 [0,+∞) 解析 ①当2m ≥1-m ,即m ≥13时,B =,符合题意;②当2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,所以0≤m <13.综上,实数m 的取值范围是[0,+∞).26.已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( )A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2 26.答案 B 解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1,①B =∅,2a ≥a +3⇒a ≥3,符合题意; ②B ≠∅,⎩⎪⎨⎪⎧ a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1,解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12. 27.已知集合A ={1,a },B ={x |log 2x <1},且A ∩B 有2个子集,则实数a 的取值范围为( )A .(-∞,0]B .(0,1)∪(1,2]C .[2,+∞)D .(-∞,0]∪[2,+∞)27.答案 D 解析 由题意得,B ={x |log 2x <1}={x |0<x <2},∵A ∩B 有2个子集,∴A ∩B 中的元素个数为1;∵1∈(A ∩B ),∴a ∉(A ∩B ),即a ∉B ,∴a ≤0或a ≥2,即实数a 的取值范围为(-∞,0]∪[2,+∞).28.已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( )A .1≤a ≤2B .1<a <2C .a ≤1或a ≥2D .a <1或a >228.答案 D 解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},所以∁R B ={x |a -1<x <a +1};又A ∩(∁RB )≠∅,所以a -1<0或a +1>3,解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.29.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.29.答案 [2,+∞) 解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.30.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.30.答案 ⎝⎛⎦⎤-∞,92 解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9}, 符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.。

2023年新高考数学大一轮复习专题01 集合(原卷版)

2023年新高考数学大一轮复习专题01 集合(原卷版)

专题01 集合【考点预测】 1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。

集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合. ④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集. 3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且. 4、集合的运算性质 (1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.【方法技巧与总结】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.【题型归纳目录】题型一:集合的表示:列举法、描述法 题型二:集合元素的三大特征 题型三:集合与集合之间的关系 题型四:集合的交、并、补运算 题型五:集合与排列组合的密切结合 题型六:集合的创新定义【题型一】集合的表示:列举法、描述法 【典例例题】例1.(2022·安徽·芜湖一中三模(理))已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,4【方法技巧与总结】1.列举法,注意元素互异性和无序性,列举法的特点是直观、一目了然.2.描述法,注意代表元素.例2.(2022·山东聊城·二模)已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .5例3.(2022·安徽·寿县第一中学高三阶段练习(理))设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( )A .2B .3C .4D .无数个例4.(2022·湖南·岳阳一中一模)定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( ) A .1B .2C .3D .4例5.(2022·山东济南·二模)已知集合{}1,2A =,{}2,4B =,{},,y C z z x x A y B ==∈∈ ,则C 中元素的个数为( ) A .1B .2C .3D .4例6.(2022·全国·高三专题练习)用()C A 表示非空集合A 中元素的个数,定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧*=⎨-<⎩,已知集合{}2|0A x x x =+=,()(){}22|10B x x ax x ax =+++=,且1A B *=,设实数a 的所有可能取值构成集合S ,则()C S =( ) A .0 B .1C .2D .3【题型二】 集合元素的三大特征 【典例例题】例7.(2022·重庆南开中学模拟预测)已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1- B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--【方法技巧与总结】1.研究集合问题,看元素是否满足集合的特征:确定性、互异性、无序性。

高考数学一轮复习《集合》复习练习题(含答案)

高考数学一轮复习《集合》复习练习题(含答案)

高考数学一轮复习《集合》复习练习题(含答案)一、单选题1.设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}- 2.已知22,{|1},{|log }U R A y y x B x y x ===-==,则A B =A .()1,1-B .(),1-∞C .(],1-∞-D .[)1,+∞ 3.已知全集,则 ( ) A . B . C . D .4.已知集合{}2,1,0,1,2A =--,{}21,B y y x x ==+∈R ,则A B =( ) A .∅ B .{}1,2 C .{}0,1,2 D .{}2,1,0,1,2-- 5.图中阴影表示的集合是( ).A .()U P Q C S ⋃⋂B .()U P QC S ⋂⋃ C .()U P Q C S ⋂⋂D .()U P Q C S ⋂⋂6.集合2101x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合()12log 1B x y x ⎧⎪==-⎨⎪⎩,则集合A B 等于( ) A .10,2⎡⎤⎢⎥⎣⎦ B .()1,-+∞ C .()1,1- D .[)1,-+∞7.已知集合{}2,A x x x Z =<∈,{}220B x x x =--<,则A B =( ) A .{}0,1 B .()0,1 C .{}1,0,1- D .()1,2- 8.设集合M={-1,0,1},N={x |2x =x },则M∩N=A .{-1,0,1}B .{0,1}C .{1}D .{0} 9.已知P ={小于π的自然数},则( )A .2P ∈B .2P ⊆C .{}2P ∈D .{}2P ⊇10.若2{|1}M y y x x R ,==-∈,22{|1,,}N x x y x R y R =+=∈∈,则M N ⋂=( ) A .()1,1- B .[]1,1- C .[)1,1- D .∅11.已知集合{}2,0,2A =-,{}2230B x x x =-->,集合P A B =⋂,则集合P 的子集个数是 A .1 B .2 C .3 D .412.若集合{0,1,2,3}A =,{1,2,4}B =,C A B =,则C 的子集共有A .2个B .3个C .4个D .6个二、填空题13.已知集合A 、B 与集合A@B 的对应关系如下表:A{1,2,3,4,5} {-1,0,1} {-4,8} B{2,4,6,8} {-2,-1,0,1} {-4,-2,0,2} A@B {1,3,6,5,8} {-2} {-2,0,2,8} 若A ={-2009,0,2018},B ={-2009,0,2019},试根据图表中的规律写出A@B =________.14.已知函数2,()4,x x m f x x x x m<⎧=⎨+≥⎩,且对任意p m <,存在q m ≥,使得()()0f p f q +=,则实数m 的取值范围是________.15.记{|()sin()A f x x θωθ==+为偶函数,ω是正整数},{|()(1)0}B x x a x a =---<,对任意实数a ,满足A B 中的元素不超过两个,且存在实数a 使A B 中含有两个元素,则ω的值是__________.16.已知全集U ={0,2,4,6,8},集合A ={0,4,6},则∁U A =_______.17.定义:若对非空数集P 中任意两个元素a 、b ,实施“加减乘除”运算(如+a b 、-a b 、a b ⨯、(0)a b b ÷≠),其结果仍然是P 中的元素,则称数集P 是一个“数域”.下列四个命题:①有理数集Q 是数域;②若有理数集Q M ⊆,则数集M 是数域;③数域必是无限集;④存在无穷多个数域;上述命题错误的序号是_________.18.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =-(3)()()()A B A B f x f x f x ⋃=+(4)()()()A B A B f x f x f x ⋂=⋅ 19.集合{}21,2,,31M a a a =--,{1,3}N =-,若3M ∈且N M ⊆,则a 的取值为________.20.被3除余1的所有整数组成的集合用描述法表示为_________.三、解答题21.已知集合{}220A x x x =+=,{}22(1)10B x x a x a =+++-=. (1)若m A ∈,求实数m 的值;(2)若A B B ⋃=,求实数a 的值.22.(1)设集合{|13}A x x =-<<,{|04}B x x =<<,求()R AC B ; (2)计算:232lg 5lg 48+-.23.已知集合{}2{|22}|540A x a x a B x x x =+-=-+≥. ⑴当3a =-时,求A B ,A B .⑵若A B φ⋂=,求实数a 的取值范围.24.对于任意的复数(,)z x yi x y R =+∈,定义运算P 为2()(cos sin )P z x y i y ππ=+. (1)设集合A ={|(),||1,Re ,Im P z z z z ωω=≤均为整数},用列举法写出集合A ; (2)若2()=+∈z yi y R ,()P z 为纯虚数,求||z 的最小值;(3)问:直线:9=-L y x 上是否存在横坐标、纵坐标都为整数的点,使该点(,)x y 对应的复数z x yi =+经运算P 后,()P z 对应的点也在直线L 上?若存在,求出所有的点;若不存在,请说明理由.25.已知集合{}U 17x R x =∈<≤,{}25A x R x =∈≤<,{}37B x R x =∈≤<,求: (1)A B ;(2)()U A B ⋂;26.已知函数()()()112232F x x x =-++的定义域为A ,集合()1,21B m m =-+,m R ∈若A B A =,求实数m 的取值范围.27.已知集合{}2|650A x x x =-+<,{}2|1216x B x -=<<,{}|ln()C x y a x ==-,全集为实数集R .(1)求A B 和()A B R ∩.(2)若A C ⋂=∅,求实数a 的范围.28.已知集合{|12}A x x =-≤≤,{|1}B x m x m =≤≤+.(1)当2m =-时,求()R C A B ;(2)若B A ⊆,求实数m 的取值范围.29.设全集{}22,3,23U a a =+-,16,26a A +⎧⎫=⎨⎬⎩⎭.若{}5U A =,求实数a 的值.参考答案1.D2.D3.C4.B5.C6.C7.A8.B9.A10.B11.B12.C13.{}2018,201914.(,0]-∞15.4、5、616.{2,8}17.②18.(1)(2)(4)19.3a =或1a =-20.{|31,}x x k k Z =+∈21.(1)0m =或2m =-;(2)1.22.(1)(){|10}R A C B x x =-<≤(2)2-. 23.(1)=[1,1][4,5],A B=R A B -(2)(1,)-+∞24.(1){0,1}A =;(2;(3)存在,(3,6)-或(3,12)-- 25.(1){}27x R x ∈≤<,(2){|13x x <<或57}x ≤≤, 26.()3,+∞27.(1) {}|16A B x x ⋃=<<,(){} |56R C A B x x ⋂=≤<.(2) 1a ≤. 28.(1)(){|22}R C A B x x x ⋃=-或;(2){|11}m m -≤≤ 29.2a =。

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)集合、常用逻辑用语、不等式(含解析)

2023届高考二轮总复习试题(适用于老高考旧教材) 数学(理)集合、常用逻辑用语、不等式(含解析)

1.集合、常用逻辑用语、不等式考向1 集合的概念及运算1.(2022·全国甲·理3)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x 2-4x+3=0},则∁U (A ∪B )=( ) A.{1,3} B.{0,3} C.{-2,1} D.{-2,0}2.(2022·全国乙·理1)设全集U={1,2,3,4,5},集合M 满足∁U M={1,3},则( )A.2∈MB.3∈MC.4∉MD.5∉M3.(2022·新高考八省第二次T8联考)设集合A={x|log 2(x-1)<2},B={x|x<5},则( )A.A=BB.B ⊆AC.A ⊆BD.A ∩B=⌀ 4.(2022·安徽蚌埠质检三)设集合M={x|x=C 5m ,m ∈N *,m ≤5},则M 的子集个数为( )A.8B.16C.32D.64考向2 充分条件、必要条件与充要条件5.(2022·浙江·4)设x ∈R ,则“sin x=1”是“cos x=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件6.(2022·河南濮阳一模)“b ≤1”是“函数f (x )={bx +2,x >0,log 2(x +2)+b ,-2<x ≤0是在(-2,+∞)上的单调函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若x ,y ∈R ,则“x<|y|”是“x 2<y 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件8.(2022·河南许昌质检)若(x-a )2<4成立的一个充分不必要条件是1+12-x ≤0,则实数a 的取值范围为( ) A.(-∞,4] B.[1,4] C.(1,4)D.(1,4]考向3 常用逻辑用语9.(2022·河南郑州质检)已知命题p :∃x 0∈R ,3sin x 0+4cos x 0=4√2;命题q :∀x ∈R ,1e |x|≤1.则下列命题中为真命题的是 ( )A.p ∧qB.(¬p )∧qC.p ∨(¬q )D.¬(p ∨q )10.(2022·河南焦作一模)已知命题p :∃x 0∈N *,lg x 0<0,q :∀x ∈R ,cos x ≤1,则下列命题是真命题的是( ) A.p ∧q B.(¬p )∧q C.p ∧(¬q )D.¬(p ∨q )11.(2022·河南洛阳一模)已知命题p :"x ∈R ,x 2+x+1>0;命题q :若a>b ,则1a<1b.下列命题为真命题的是( ) A.(¬p )∨q B.(¬p )∧(¬q ) C.p ∧qD.p ∨q12.若“∃x 0∈12,2,使得2x 02-λx 0+1<0成立”是假命题,则实数λ的取值范围为 .考向4 不等关系及线性规划13.(2022·河南许昌质检)已知a>b>0,且a+b=1,则下列结论正确的是( ) A.ln(a-b )>0 B.√a +√b >2 C.b a >a bD.1a +1b >414.(2022·河南焦作二模)已知x ,y 满足约束条 件{2x -3y +6≥0,2x +y +2≥0,4x -y -8≤0,则3x-2y 的最大值为 ( )A.1B.4C.7D.1115.(2022·浙江·3)若实数x ,y 满足约束条件{x -2≥0,2x +y -7≤0,x -y -2≤0,则z=3x+4y 的最大值是( )A.20B.18C.13D.616.(2022·河南濮阳一模)设x ,y 满足约束条件{y ≥2x ,y ≥-x ,y ≤2,则z=y-x 的最大值是 .1.集合、常用逻辑用语、不等式1.D 解析: 由题意知B={1,3},则A ∪B={-1,1,2,3}, 所以∁U (A ∪B )={-2,0}, 故选D .2.A 解析: ∵U={1,2,3,4,5},∁U M={1,3}, ∴M={2,4,5},∴2∈M ,3∉M ,4∈M ,5∈M. 故选A .3.C 解析: log 2(x-1)<2⇔0<x-1<4⇔1<x<5,∴A={x|log 2(x-1)<2}={x|1<x<5},即A ⊆B ,故选C .4.A 解析: 因为C 51=C 54,C 52=C 53,所以集合中含有3个元素,则M 的子集个数为23=8,故选A .5.A 解析: 由sin x=1,得x=2k π+π2,k ∈Z ,此时cos x=0;由cos x=0,得x=k π+π2,k ∈Z ,此时sin x=±1,故选A .6.B 解析: 依题意,函数f (x )是在(-2,+∞)上的单调函数, ∵y=log 2(x+2)+b 在(-2,0]上单调递增, ∴f (x )在(-2,+∞)上单调递增, 需b>0且1+b ≤2,即0<b ≤1. 故选B .7.B 解析: 由x<|y|推不出x 2<y 2,如x=-3,y=1;由x 2<y 2得|x|<|y|,又因为x ≤|x|,所以x ≤|x|<|y|,所以x 2<y 2⇒x<|y|. 故选B .8.D 解析: 根据题意,(x-a )2<4⇔-2<x-a<2⇔a-2<x<a+2,不等式的解集为(a-2,a+2); 1+12-x ≤0⇔3-x2-x ≤0⇔(x-3)(x-2)≤0且x ≠2,解得2<x ≤3,不等式的解集为(2,3]; 若(x-a )2<4成立的一个充分不必要条件是1+12-x ≤0,则(2,3]⫋(a-2,a+2);则有{a -2≤2,a +2>3,解得1<a ≤4,即a 的取值范围为(1,4]. 故选D .9.B 解析: ∵3sin x+4cos x=5sin(x+θ)∈[-5,5],tan θ=43,4√2>5,∴命题p 为假命题.∵|x|≥0,∴1e|x|≤1e=1,∴命题q 为真命题,∴p ∧q 为假命题;(¬p )∧q 为真命题;p ∨(¬q )为假命题;¬(p ∨q )为假命题.故选B .10.B 解析: 因为∀x ∈N *,lg x ≥0,所以命题p 为假命题,¬p 为真命题.因为∀x ∈R ,cos x ≤1成立,所以命题q 为真命题,所以(¬p )∧q 为真命题.11.D 解析: 对命题p ,因为x 2+x+1=x+122+34>0恒成立,故命题p 为真命题.对命题q ,当a 为正数,b 为负数时,命题不成立,故命题q 为假命题,故只有选项D 为真命题,故选D .12.(-∞,2√2] 解析: 由题意得,“∀x ∈12,2,2x 2-λx+1≥0”为真命题,即λ≤2x+1x .因为2x+1x≥2√2x ·1x=2√2,当且仅当2x=1x,即x=√22时,等号成立,所以实数λ的取值范围为(-∞,2√2].13.D 解析: ∵a>b>0,且a+b=1,∴12<a<1,0<b<12, ∴0<a-b<1,ln (a-b )<0,故A 错误;∵1>a>b>0,∴√a +√b <1+1=2,故B 错误; 令f (x )=lnxx (0<x<1),则f'(x )=1-lnxx 2>0,故f (x )在(0,1)上单调递增,故lna a>lnb b,即b ln a>a ln b ,即ln a b >ln b a ,∴a b >b a ,故C 错误; ∵a>b>0,∴1a +1b =a+b a +a+b b =2+b a +a b ≥2+2√b a ·ab=4,当且仅当a=b 时,等号成立,∴1a +1b >4,故D正确.14. D 解析: 不等式组{2x -3y +6≥0,2x +y +2≥0,4x -y -8≤0表示的平面区域如图中阴影部分所示,联立方程组{2x +y +2=0,4x -y -8=0,解得{x =1,y =-4,即B (1,-4),平移直线3x-2y=0至经过点B 时目标函数u=3x-2y 取得最大值,即u max =3×1-2×(-4)=11.15. B 解析: 根据约束条件画出可行域.可知当直线y=-34x+z4过点(2,3)时,z 取到最大值,为18,故选B .16.4 解析: 画出可行域如图所示,化目标函数为斜截式方程y=x+z ,则当直线y=x+z 在y 轴上截距最大时,z 取得最大值,联立{y =2,y =-x , 解得{x =-2,y =2,。

高考数学总复习 11集合的概念及其运算 课后作业 试题

高考数学总复习 11集合的概念及其运算 课后作业  试题

卜人入州八九几市潮王学校【走向高考】2021年高考数学总复习1-1集合的概念及其运算课后作业北师大一、选择题1.(文)(2021·文,1)假设集合M={-1,0,1},N={0,1,2},那么M∩N等于()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}[答案]A[解析]此题考察集合的交集运算.M∩N={0,1}.(理)(2021·理,1)集合P={x|x2≤1},M={a},假设P∪M=P,那么a的取值范围是()A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)[答案]C[解析]此题主要考察了集合的运算及子集.依题意:P=[-1,1],∵P∪M=P,∴M⊆P,又M={a},∴a∈[-1,1],应选C.2.(文)(2021·文,1)U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},那么∁U(A∪B)=()A.{6,8} B.{5,7}C.{4,6,7} D.{1,3,5,6,8}[答案]A[解析]此题考察了集合的并集和补集运算,可以先求A∪B,再求∁U(A∪B),也可以利用∁U(A∪B)=(∁U A)∩(∁U B))求解.∵A={1,3,5,7},B={2,4,5},∴A∪B={1,2,3,4,5,7},又U={1,2,3,4,5,6,7,8},所以∁U(A∪B)={6,8}.(理)(2021·理,2)U={y|y=log2x,x>1},P={y|y=,x>2},那么∁U P=()A.[,+∞)B.(0,)C.(0,+∞)D.(-∞,0]∪[,+∞)[答案]A[解析]此题考察函数值域求解及补集运算.∵U={y|y=log2x,x>1}=(0,+∞),P={y|y=,x>2}=(0,),∴∁U P=[,+∞).3.(文)全集U=R,且A={x||x-1|>2},B={x|x2-6x+8<0},那么(∁U A)∩B等于()A.[-1,4) B.(2,3)C.(2,3] D.(-1,4)[答案]C[解析]解法1:A={x|x>3或者x<-1},B={x|2<x<4},∁U A={x|-1≤x≤3},∴(∁U A)∩B=(2,3],应选C.解法2:验证排除法,取x=0,x∉Bx=3,3∉A,3∈B.∴3∈(∁U A)∩B.排除B.(理)函数f(x)=的定义域为M,g(x)=ln(1+x)的定义域为N,那么M∩N等于()A.{x|x>-1} B.{x|-1<x<1}C.{x|x<1} D.∅[答案]B[解析]M={x|x<1},N={x|x>-1},∴M∩N={x|-1<x<1}.4.M={y|y=x2},N={y|x2+y2=2},那么M∩N=()A.{(1,1),(-1,1)} B.{1}C.[0,1] D.[0,][答案]D[解析]∵M=[0,+∞),N=[-,],∴M∩N=[0,],应选D.[点评]此题特别易错的地方是将数集误认为点集.5.(文)(2021·理,2)集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},那么A∩B的元素个数为()A.0 B.1C.2 D.3[答案]C[解析]此题考察集合的概念、集合交集的根本运算.可采用数形结合方法直接求解.集合A中点的集合是单位圆,B中点的集合是直线y=x,A∩B中元素个数,即判断直线y=x与单位圆有几个公一共点,显然有2个公一共点,故A∩B中有2个元素.选C.(理)(2021·文,4)设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},那么“x∈A∪B〞是“x ∈C〞的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析]此题考察了集合的运算与逻辑语言的充分必要条件的运用.∵A={x∈R|x-2>0},B={x∈R|x<0}∴A∪B={x∈R|x<0或者x>2}C={x|x(x-2)>0}={x|x<0或者x>2},∴A∪B=C,∴x∈A∪B是x∈C的充要条件.6.(文)假设A、B、C为三个集合,A∪B=B∩C,那么一定有()A.A⊆C B.C⊆AC.A≠C D.A=∅[答案]A[解析]考察集合的根本概念及运算.∵B∩C⊆B⊆A∪B,A∪B=B∩C⊆B,∴A∪B=B,B∩C=B,∴A⊆B,B⊆C,∴A⊆C,选A.(理)(2021·理,7)设集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-|<,i为虚数单位,x∈R},那么M∩N 为()A.(0,1) B.(0,1]C.[0,1) D.[0,1][答案]C[解析]本小题考察三角函数的倍角公式、值域及复数的模.y=|cos2x-sin2x|=|cos2x|,∴0≤y≤1.|x-|=|x+i|=<.∴x2<1,∴-1<x<1,∴M∩N=[0,1).二、填空题7.A={(x,y)|x2=y2},B={(x,y)|x=y2},那么A∩B=______.[答案]{(0,0),(1,1),(1,-1)}.[解析]A∩B=={(0,0),(1,1),(1,-1)}.8.集合A={x||x-a|≤1},B={x2-5x+4≥0},假设A∩B=∅,那么实数a的取值范围是________.[答案](2,3)[解析]B中,x2-5x+4≥0,∴x≥4或者x≤1.又∵A中|x-a|≤1,∴a-1≤x≤1+a.∵A∩B=∅,∴a+1<4且a-1>1,∴2<a<3.三、解答题9.集合A={x|x2+2(a+1)x+a2-1=0},B={x|x2+4x=0},假设A∪B=B,务实数a的取值范围.[分析]由A∪B=B,可以得出A⊆B,而A⊆B中含有特例,A=∅,应注意.[解析]由x2+4x=0得:B={0,-4},由于A∪B=B,(1)假设A=∅,那么Δ=4(a+1)2-4(a2-1)<0,得a<-1.(2)假设A≠∅,那么0∈A或者-4∈A当0∈A时,得a=±1;当-4∈A,得a=1或者a=7;但当a=7时A={-4,-12},此时不合题意.故由(1)(2)得实数a的取值范围是:a≤-1或者a=1.一、选择题1.(文)(2021·理,2)假设集合A={x|-1≤2x+1≤3},B={x|≤0},那么A∩B=()A.{x|-1≤x<0} B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}[答案]B[解析]此题主要考察不等式的解法与集合的运算.A={x|-1≤2x+1≤3}={x|-1≤x≤1},B={x|≤0}={x|0<x≤2},A∩B={x|0<x≤1},应选B.(理)P={α|α=(-1,1)+m(1,2),m∈R},Q={β|β=(1,-2)+n(2,3),n∈R}是两个向量集合,那么P∩Q =()A.{1,-2} B.{(-13,-23)}C.{(1,-2)} D.{(-23,-13)}[答案]B[解析]α=(m-1,2m+1),β=(2n+1,3n-2),令α=β得,∴∴P∩Q={(-13,-23)}.2.(文)设全集为U,集合A、B是U的子集,定义集合A与B的运算:A*B={x|x∈A或者x∈B,且x∉(A∩B)},那么(A*B)*A等于()A.A B.BC.(∁U A)∩B D.A∩(∁U B)[分析]此题考察集合新运算的理解,在韦恩图中,先画出A*B所表示的局部,再画出(A*B)*A表示的局部.[答案]B[解析]画一个一般情况的韦恩图,如下列图,由题目的规定,可知(A*B)*A表示集合B.(理)(2021·高三期中)设集合S={x||x-2|>3},T={x|a<x<a+8},S∪T=R,那么a的取值范围是()A.-3<a<-1 B.-3≤a≤-1C.a≤-3或者a≥-1 D.a<-3或者a>-1[答案]A[解析]S={x|x>5或者x<-1},∵S∪T=R,∴,∴-3<a<-1,应选A.二、填空题3.(2021·文,9)集合A={x∈R||x-1|<2},Z为整数集,那么集合A∩Z中所有元素的和等于________.[答案]3[解析]此题考察了简单绝对值不等式的解法与集合的运算.用列举法将A∩Z中的元素列举出来相加即可.A={x∈R||x-1|<2}={x∈R|-1<x<3}∴A∩Z={0,1,2}.∴A∩Z的元素的和为3.4.(文)设全集U=A∪B={x∈N+|lg x<1},假设A∩∁U B={m|m=2n+1,n=0,1,2,3,4},那么集合B=________.[答案]{2,4,6,8}[解析]A∪B={x∈N+|lg x<1}={1,2,3,4,5,6,7,8,9},A∩∁U B={m|m=2n+1,n=0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.(理)(2021·模拟)设S为满足以下条件的实数构成的非空集合:(1)1∈S;(2)假设a∈S,那么∈S①0∈S;②假设2∈S,那么∈S;③集合S={-1,,1,2}是符合条件的一个集合;④集合S中至少有4个元素,那么正确结论的序号是________.[答案]②③④[解析]因为∈S,且不可能为零,故①不正确;假设2∈S,那么-1∈S,那么∈S,故②正确;易知集合S={-1,,1,2}是符合条件的含有元素最少的集合,所以集合S中至少有4个元素,故③④正确.三、解答题5.(2021·模拟)设A={-4,2a-1,a2},B={9,a-5,1-a},A∩B={9},务实数a的值.[解析]∵A∩B={9},∴9∈A.(1)假设2a-1=9,那么a=5,此时A={-4,9,25},B={9,0,-4},A∩B={9,-4},与矛盾,舍去.(2)假设a2=9,那么aa=3时,A={-4,5,9},B={-2,-2,9},B中有两个元素均为-2,与集合元素的互异性相矛盾,应舍去;当a=-3时,A={-4,-7,9},B={9,-8,4},符合题意.综上所述,a=-3.6.(文)(2021·联考)设集合A={x|x2<4},B=.(1)求集合A∩B;(2)假设不等式2x2+ax+b<0的解集是B,求a,b的值.[解析]A={x|x2<4}={x|-2<x<2},B==={x|-3<x<1},(1)A∩B={x|-2<x<1}.(2)∵2x2+ax+b<0的解集为B={x|-3<x<1},∴-3和1为方程2x2+ax+b=0的两根,∴∴a=4,b=-6.(理)集合A={x|x2-x-6<0},集合B={x|x2+2x-8>0},集合C={x|x2-4ax+3a2<0},假设C⊇(A∩B).试确定实数a的取值范围.[解析]由得A={x|-2<x<3},B={x|x<-4或者x>2},A∩B={x|2<x<3}.∵C={x|x2-4ax+3a2<0}={x|(x-a)·(x-3a)<0},∴当a>0时,C={x|a<x<3a};当a<0时,C={x|3a<x<a};当a=0时,C=∅,此时C⊇(A∩B)是不可能的.①当a>0时,如下列图.C⊇(A∩B)⇔⇔1≤a≤2.②当a<0时,C是负半轴上的一个区间,而A∩B是正半轴上的一个区间,因此C⊇(A∩B)是不可能的.综上所述,1≤a≤2.7.集合A={x|x2+px+q=0},B={x|qx2+px+1=0},同时满足:①A∩B≠∅;②-2∈A(p,q≠0).求p,q的值.[分析]两个集合有公一共元素,可联立方程求解,注意到系数关系,问题可有多种解法.[解析]解法1:∵A∩B≠∅∴方程组有解.两式相减得:(q-1)x2=q-1.①当q=1时,方程有解.∵-2∈A,∴根据韦达定理知方程另一根为-.∴-p=-2+=-,p=.这时A=B=,符合题意.∴②当q≠1时,x2=1,x=±1又∵-2∈A,∴A={1,-2}或者{-1,-2},根据韦达定理:或者∴或者.综上:p,q的值是或者或者解法2:设x0∈A,那么有x+px0+q=0,两端同除以x,得1+p+q=0,那么知∈B.∴集合A,B中元素互为倒数.由A∩B≠∅,一定有x0∈A,使得∈B且x0=,x0=±1.又∵-2∈A,∴A={1,-2}或者{-1,-2},由此得B=或者.根据韦达定理:或者,∴或者另-2∈A,A∩B≠∅,可能出现-2∈B,那么-∈A.此时-2,-为A的两个元素,易知此时A=B=,故或者或者.。

高中集合练习题及答案

高中集合练习题及答案

高中集合练习题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∩B。

A. {1,2,3}B. {2,3}C. {1,4}D. {4}2. 若集合A={x|x<5},集合B={x|x>3},则A∪B表示的数集是:A. {x|x<5}B. {x|x>3}C. {x|x≤3}D. {x|x<=5}3. 对于集合A={1,2,3},集合B={4,5,6},下列哪个集合是A和B的差集?A. {1,2,3}B. {4,5,6}C. {1,2,3,4,5,6}D. {4,5}4. 集合P={x|x²-5x+6=0},求P的元素。

A. {2,3}B. {1,6}C. {-1,6}D. {2,-3}5. 若A={x|x²-3x+2=0},B={x|x²-4x+3=0},求A∩B。

A. {1}B. {2}C. {1,2}D. 空集二、填空题6. 集合M={x|x>0},N={x|x<0},则M∪N表示的数集是______。

7. 若集合C={x|x²-4=0},求C的元素为______。

8. 集合D={x|x²+2x+1=0},求D的元素为______。

9. 集合E={x|x²-4x+3=0},求E的补集(相对于实数集R)。

10. 若F={x|x²-x-6=0},求F的元素为______。

三、解答题11. 已知集合G={x|0<x<5},H={x|-3<x<2},求G∩H和G∪H。

12. 集合K={x|x²-8x+15=0},求K的所有子集。

13. 集合L={x|-1≤x≤4},M={x|x>1},求L∩M和L∪M。

14. 若集合O={x|x²-4x+3=0},P={x|x²-6x+8=0},求O∪P和O∩P。

15. 集合Q={x|x²-5x+6=0},R={x|x²+2x+1=0},求Q∩R和Q∪R。

高考数学总复习 阶段检测卷1 理-人教版高三全册数学试题

高考数学总复习 阶段检测卷1 理-人教版高三全册数学试题

阶段检测卷(一)(集合、逻辑用语、函数与导数)时间:50分钟 满分:100分一、选择题:本大题共8小题,每小题6分,共48分,有且只有一个正确答案,请将答案选项填入题后的括号中.1.设集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( ) A .∅ B .{2} C .{0} D .{-2}2.设命题p :∀x ∈R ,x 2+1>0,则p 为( )A .∃x 0∈R ,x 20+1>0 B .∃x 0∈R ,x 20+1≤0 C .∃x 0∈R ,x 20+1<0 D .∀x 0∈R ,x 2+1≤03.函数y =1log 2x -2的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .4 B.14 C .-4 D .-145.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg|x |6.若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值X 围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]7.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中,正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9二、填空题:本大题共3小题,每小题6分,共18分,把答案填在题中横线上. 9.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图J1­1.若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是__________.图J1­110.已知[x ]表示不超过实数x 的最大整数,g (x )=[x ],x 0是函数f (x )=log 2x -1x的零点,则g (x 0)=______.11.已知函数f (x )=x2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=______.三、解答题:本大题共2小题,共34分,解答须写出文字说明、证明过程或推演步骤. 12.(14分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )(单位:万元).当年产量不足80千件时,C (x )=13x 2+10x ;当年产量不小于80千件时,C (x )=51x +10 000x-1450.现已知每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (单位:万元)关于年产量x (单位:千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?13.(20分)已知函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax(a ∈R ). (1)求函数f (x )的单调区间;(2)当m >0时,若对任意x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立,求a 的取值X 围.阶段检测卷(一)1.B 解析:集合A ={-2,0,2},B ={2,-1},A ∩B ={2}.2.B 解析:全称命题的否定是特称命题,对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则綈p 为“∃x 0∈R ,x 20+1≤0”.故选B.3.C 解析:⎩⎪⎨⎪⎧x -2>0,log 2x -2≠0⇒⎩⎪⎨⎪⎧x >2,x ≠3.故选C.4.B 解析:f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f ⎝⎛⎭⎪⎫log 319=f (-2)=2-2=14.5.C 解析:y =1x为奇函数;y =e -x为非奇非偶函数;y =lg|x |为偶函数,但在区间(0,+∞)上单调递增;y =-x 2+1为偶函数,又在区间(0,+∞)上单调递减.故选C.6.B 解析:令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9.令f ′(x )=0,得x =-1或x =3(舍去).∵f (-1)=7,f (-2)=0,f (2)=-20,∴f (x )的最小值为f (2)=-20.故m ≤-20.7.C 解析:设h 1(x )=f (x )g (x ),有h 1(-x )=f (-x )g (-x )=-f (x )g (x )=-h 1(x ),所以h 1(x )为奇函数;设h 2(x )=|f (x )|g (x ),则有h 2(-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h 2(x ),所以h 2(x )为偶函数;设h 3(x )=f (x )|g (x )|,则有h 3(-x )=f (-x )|g (-x )|=-f (x )|g (x )|=-h 3(x ),所以h 3(x )为奇函数;设h 4(x )=|f (x )g (x )|,则有h 4(-x )=|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|=h 4(x ),所以h 4(x )为偶函数.故选C.8.C 解析:设f (-1)=f (-2)=f (-3)=k , 则一元三次方程f (x )-k =0有三个根-1,-2,-3. ∴f (x )-k =m (x +1)(x +2)(x +3),比较最高系数, 得m =1.∴f (x )=x 3+6x 2+11x +6+k . ∵0<k ≤3,∴6<c =6+k ≤9.9.23 解析:由几何概型知,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率p =2⎠⎛1-11-x 2dx22=23. 10.1 解析:f (1)=log 21-1<0,f (2)=log 22-12=1-12>0,∴1<x 0<2.∴g (x 0)=[x 0]=1.11.-1 解析:由已知,得m 2-m =3+m ,即m 2-2m -3=0.∴m =3或m =-1.当m =3时,f (x )=x -1,而x ∈[-6,6],∴f (x )在x =0处无意义,故舍去;当m =-1时,f (x )=x 3,此时x ∈[-2,2],∴f (m )=f (-1)=(-1)3=-1.12.解:(1)当0<x <80,x ∈N *时,L (x )=0.05×1000x -13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L (x )=0.05×1000x -51x -10 000x+1450-250=1200-⎝ ⎛⎭⎪⎫x +10 000x .∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,x ∈N *,1200-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥80,x ∈N *.(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950(万元);当x ≥80,x ∈N *时,L (x )=1200-⎝⎛⎭⎪⎫x +10 000x≤1200-2 x ·10 000x=1200-200=1000(万元).当x =10 000x,即x =100时,L (x )取得最大值1000万元,即当年产量为100千件时,该厂在这一商品的生产中所获最大利润为1000万元.13.解:(1)函数f (x )的定义域为R ,f ′(x )=m 1-x 2x 2+12=m 1-x 1+x x 2+12. ①当m >0时,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)(-1,1) (1,+∞)f ′(x ) - + - f (x )↘↗↘(1,+∞). ②当m <0时,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)(-1,1) (1,+∞)f ′(x ) + - + f (x )↗↘↗(-1,1). (2)依题意,“当m >0时,对于任意x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于 “当m >0 时,对于任意x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减, 因为f (0)=1,f (2)=2m5+1>1,所以函数f (x )的最小值为f (0)=1. 所以应满足g (x )max ≤1.因为g (x )=x 2e ax ,所以g ′(x )=(ax 2+2x )e ax. ①当a =0时,函数g (x )=x 2, ∀x ∈[0,2],g (x )max =g (2)=4, 显然不满足g (x )max ≤1,故a =0不成立; ②当a ≠0时,令g ′(x )=0,得x 1=0,x 2=-2a.ⅰ)当-2a≥2,即-1≤a <0时,在[0,2]上g ′(x )≥0,所以函数g (x )在[0,2]上单调递增. 所以g (x )max =g (2)=4e 2a.由4e 2a≤1,得a ≤-ln2,所以-1≤a ≤-ln2. ⅱ)当0<-2a<2,即a <-1时,在⎣⎢⎡⎭⎪⎫0,-2a 上g ′(x )≥0,在⎝ ⎛⎦⎥⎤-2a ,2上g ′(x )<0,所以函数g (x )在⎣⎢⎡⎭⎪⎫0,-2a 上单调递增,在⎝ ⎛⎦⎥⎤-2a ,2上单调递减.所以g (x )max =g ⎝ ⎛⎭⎪⎫-2a =4a 2e2.由4a 2e 2≤1,得a ≤-2e ⎝ ⎛⎭⎪⎫a ≥2e ,舍去,所以a <-1. ⅲ)当-2a<0,即a >0时,显然在[0,2]上g ′(x )≥0,函数g (x )在[0,2]上单调递增,且g (x )max =g (2)=4e 2a. 显然g (x )max =4e 2a≤1不成立,故a >0不成立. 综上所述,a 的取值X 围是(-∞,-ln2]. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.。

高考数学专题《集合》习题含答案解析

高考数学专题《集合》习题含答案解析

专题1.1 集合1.(2020·海南高考真题)设集合A {2,3,5,7},B ={1,2,3,5,8},则AB =( ) A .{1,3,5,7} B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【解析】根据集合交集的运算可直接得到结果.【详解】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =故选:C2.(2021·河北邯郸市·高三二模)已知集合{}5U x x =∈≤N ,{1,2}A =,则U A ()A .{}0,3,5B .{}0,3,4C .{}3,4,5D .{}0,3,4,5【答案】D【解析】由补集的定义可得.【详解】因为全集{0,1,2,3,4,5}U =,{1,2}A =,所以{0,3,4,5}U A =.故选: D3.(2020·全国高一课时练习)下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}【答案】D【解析】分析是否有元素在各选项的集合中,再作出判断.【详解】 练基础A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D4.(2020·北京高考真题)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则AB =( ).A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D【解析】根据交集定义直接得结果.【详解】 {1,0,1,2}(0,3){1,2}A B =-=,故选:D.5.【多选题】(2020·江苏省通州高级中学高一月考)已知集合{}22133A a aa =+++,,,且1A ∈,则实数a 的可能值为( ) A .0B .1-C .1D .2- 【答案】ABD【解析】由已知条件可得出关于实数a 的等式,结合集合中的元素满足互异性可得出实数a 的值.【详解】已知集合{}22133A a a a =+++,,且1A ∈,则11a +=或2331a a ++=,解得0a =或1a =-或2a =-.若0a =,则{}2,1,3A =,合乎题意;若1a =-,则{}2,0,1A =,合乎题意;若2a =-,则{}2,1,1A =-,合乎题意.综上所述,0a =或1a =-或2a =-.故选:ABD.6.(2021·云南昆明市·昆明一中高三其他模拟(文))已知集合{}1,0,1,2,3,4,5,6U =-,{}1,2,3,6A =,{}1,0,1,4,6B =-,则()U A B =( )A .{}1,0,4,5-B .{}1,0,4-C .{}0,4D .{}4【答案】B【解析】首先求出U A ,然后可得答案.【详解】因为{}1,0,4,5U A =-,所以(){}1,0,4U A B =-,故选:B7.(2018·天津高考真题(理))设全集为R ,集合,,则() A . B . C . D .【答案】B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项.8.(2017·全国高考真题(理))已知集合A ={x |x <1},B ={x |},则( )A .B .C .D .【答案】A【解析】∵集合∴ {}02A x x =<<{}1B x x =≥()A B =R {}01x x <≤{}01x x <<{}12x x ≤<{}02x x <<R C B {}|1R C B x x =<(){}01R A C B x ⋂=<<31x <{|0}A B x x =<A B R ={|1}A B x x =>A B =∅{|31}x B x =<{}|0B x x =<∵集合∴,故选A9.(2010·湖南省高考真题)已知集合,,则下列式子正确的是( ) A .B .C .D . 【答案】C【解析】因为集合,所以选C.10.(2019·安徽省高三二模(理))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( )A .0B .1C .2D .3【答案】D【解析】 {}{}|21,1,0,1A x x x Z =-<≤∈=-,所以集合A 中元素的个数为3.故选:D.1.(2020·陕西省高三三模(文))设集合{}|31A x x m =-<,若1A ∈且2A ∉,则实数m 的取值范围是( )A .25m <<B .25m ≤<C .25<≤mD .25m ≤≤【答案】C【解析】因为集合{|31}A x x m =-<,而1A ∈且2A ∉, 311m ∴⨯-<且321m ⨯-≥,解得25<≤m .故选:C .2.(2019·凤阳县第二中学高三期中(文))下列五个写法:①{0}{1,2,3}∈;②{0}∅⊆;③{0,1,2}{1,2,0}⊆;{|1}A x x =<{}|0A B x x ⋂=<{}|1A B x x ⋃=<{1,2,3}M ={2,3,4}N=M N ⊆N M ⊆{,}M N 23={1,4}M N ={1,2,3}M ={2,3,4}N ={}2,3,N M ⋂=∴练提升④0∈∅;⑤0∅=∅,其中错误写法的个数为( ) A .1B .2C .3D .4【答案】C【解析】 对①:{0}是集合,{1,2,3}也是集合,所以不能用∈这个符号,故①错误.对②:∅是空集,{0}也是集合,由于空集是任何集合的子集,故②正确.对③:{0,1,2}是集合,{1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确.对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④错误.对⑤:0是元素,∅是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.故选:C.3.(2021·浙江高一期末)已知集合{}0,1,2,3,4M =,{}2,4,6N =,P M N =⋂,则满足条件的P 的非空子集有( )A .3个B .4个C .7个D .8个【答案】A【解析】由交集定义可得集合P ,由P 的元素个数计算得到结果.【详解】 {}2,4P MN ==,P ∴的非空子集有2213-=个.故选:A. 4.(2021·辽宁高三二模(理))定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为( )A .16B .18C .14D .8 【答案】A【解析】由题设,列举法写出集合A B *,根据所得集合,加总所有元素即可.【详解】由题设知:{1,2,3,4,6}A B *=,∴所有元素之和1234616++++=.故选:A.5.(2020·浙江省高三其他)设全集[]0,3U =,[]0,2P =,[]1,3Q =,则()U C P Q ⋂=( )A .(]2,3B .()1,2C .[)0,1D .[)(]0.12,3 【答案】A【解析】∵[][]0,3,0,2U P ==,∴(]2,3U C P =,又[]1,3Q =,∴()(]2,3U C P Q =, 故选:A .6.(2020·江西省高三其他(理))已知集合{}2,,0A a a =,{}1,2B =,若{}1A B ⋂=,则实数a 的值为( )A .1-B .0C .1D .±1 【答案】A【解析】因为{}1A B ⋂=,所以1A ∈,又2a a ≠,所以0a ≠且1a ≠,所以21a =,所以1a =-(1a =已舍),此时满足{}1A B ⋂=.故选:A7.(2020·黑龙江省佳木斯一中高一期中(理))已知集合2{|430}A x x x =-+<,{|24}B x x =<<,则A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 【答案】C【解析】由()()2430130x x x x -+<⇒--<所以13x <<,所以()1,3A =又(){|24}2,4B x x =<<=,所以(2,3)A B ⋂=故选:C8.(2019·北京临川学校高二期末(文))已知集合A ={−1,3},B ={2,a 2},若A ∪B ={−1,3,2,9},则实数a 的值为( )A .±1B .±3C .−1D .3 【答案】B【解析】∵集合A ={−1,3},B ={2,a 2},且A ∪B ={−1,3,2,9},∴a 2=9,因此,a =±3,故选:B.9.(2021·全国高三月考(理))已知集合(){},1A x y y ==,(){}22,2B x y x y =+≤,则集合A B 中含有的元素有( )A .零个B .一个C .两个D .无数个 【答案】D【解析】确定集合A 、B 的几何意义,数形结合可得结果.【详解】集合A 表示直线1y =上的点,集合B 为半径的圆及其内部的点, 如图所示.A B 表示两图形的交点的集合,该集合有无数个元素.故选:D.10.(2020·全国高三一模(理))已知集合{}2220A x x ax a =++≤,若A 中只有一个元素,则实数a 的值为( )A .0B .0或2-C .0或2D .2【答案】C【解析】若A 中只有一个元素,则只有一个实数满足2220x ax a ++≤,即抛物线222y x ax a =++与x 轴只有一个交点,∴2480a a =-=△,∴0a =或2.故选:C1.(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2020·海南高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【解析】根据集合并集概念求解. 练真题【详解】[1,3](2,4)[1,4)A B ==故选:C3.(2020·天津高考真题)设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-.故选:C.4.(2020·全国高考真题(文))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5 【答案】B【解析】采用列举法列举出A B 中元素的即可.【详解】 由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 5.(2017·全国高考真题(理))已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0 【答案】B【解析】 集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22⎛⎫ ⎪ ⎪⎝⎭,,22⎛-- ⎝⎭,则A B 中有2个元素.故选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业1 §1.1集合
对应学生用书P 261
一、选择题
1.下列集合中恰有2个元素的集合是( ) A .{x 2-x =0} B .{y |y 2-y =0} C .{x |y =x 2-x }
D .{y |y =x 2-x }
解析:A 选项集合表示只有一个方程x 2-x =0的集合.B 中,∵y 2-y =0,∴y =0或y =1,∴{y |y 2-y =0}={0,1},恰有两个元素;C 中集合表示函数y =x 2-x 的定义域,为R ;D 中集合表示的是y =
x 2
-x 的值域为⎣⎢⎡⎭
⎪⎫
-14,+∞.
答案:B
2.(2013·浙江卷)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )
A .(-2,1]
B .(-∞,-4]
C .(-∞,1]
D .[1,+∞)
解析:∁R S ={x |≤-2},又T ={x |-4≤x ≤1},故(∁R S )∪T ={x |x ≤1}.
答案:C
3.(2013·广州测试)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素,若A ∩B 非空,则A ∩B 的元素个数为( )
A .mn
B .m +n
C .m -n
D .n -m
解析:作出韦恩图,可知m >n ,且A ∩B 的元素个数肯定比m 小,只有C 符合要求.
答案:C
4.设集合A ={3,log 2(a 2-3a +4)},集合B ={2,a,6},若A ∩B ={1},则集合A ∪B 的真子集个数是( )
A .15
B .12
C .7
D .3
解析:依题意,log 2(a 2-3a +4)=1,所以a 2-3a +4=2,即a 2
-3a +2=0,解得a =1或a =2,而B ={2,a,6},所以a =2舍去.所以A ∪B ={1,2,3,6},因此集合A ∪B 的真子集的个数是24-1=15.
答案:A
5.(2013·天津调查)若实数a ,b ,c 满足a 2+a +b i<2+c i(其中i 2
=-1),集合A ={x |x =a },B ={x |x =b +c },则A ∩∁R B 为( )
A .Ø
B .{0}
C .{x |-2<x <1}
D .{x |-2<x <0或0<x <1}
解析:由于只有实数间才能比较大小,故a 2+a +b i<2+c i ⇔
⎩⎪⎨⎪⎧ a 2+a <2,b =c =0,解得⎩⎪⎨⎪⎧
-2<a <1,b =c =0,
因此A ={x |-2<x <1},B ={0},故A ∩(∁R B )={x |-2<x <1}∩{x |x ∈R ,x ≠0}={x |-2<x <0或0<x <1}.
答案:D
6.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )
A.|a+b|≤3 B.|a+b|≥3
C.|a-b|≤3 D.|a-b|≥3
解析:|x-a|<1⇔-1<x-a<1⇔a-1<x<a+1,|x-b|>2⇔x<b-2或x>b+2,∵A⊆B,∴a+1≤b-2,或b+2≤a-1,即b-a≥3或a-b≥3⇒|a-b|≥3.
答案:D
二、填空题
7.已知A={y|y=x2-2x-1,x∈R},B={x|-2≤x<8},则集合A与B的关系是________.
解析:∵A={y|y=(x-1)2-2,x∈R}={y|y≥-2},B={y|-2≤y<8},∴B A.
答案:B A
8.(2013·山西月考)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.
解析:依题意得A={0,3},因此有32+3m=0,m=-3.经检验,符合条件.
答案:-3
9.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集.给出平面上4个点集的图形如下(阴影区域及其边界):
其中为凸集的是________.(写出所有凸集相应图形的序号)
解析:在图形①中,连接最上面的两个端点的线段,显然不在图形中;②满足新定义;③满足新定义;④不满足,当分别连接两个圆上的点时不满足新定义.
答案:②③
10.某地对农户抽样调查,结果如下:电冰箱拥有率为49%,电视机拥有率85%,洗衣机拥有率为44%,拥有上述三种电器中两种或三种的占63%,三种电器齐全的为25%,那么一种电器也没有的相对贫困户所占比例为________.
解析:不妨设调查了100户农户,
U ={被调查的100户农户}, A ={100户中拥有电冰箱的农户}, B ={100户中拥有电视机的农户}, C ={100户中拥有洗衣机的农户},
由图可知,A ∪B ∪C 的元素个数为49+85+44-63-25=90. ∴∁U (A ∪B ∪C )的元素个数为100-90=10. ∴所占比例为:10%. 答案:10% 三、解答题
11.(1)已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A ,求实数a 的值;
(2)已知M ={2,a ,b },N ={2a,2,b 2}且M =N ,求a ,b 的值. 解:(1)由题知:a +2=1或(a +1)2=1或a 2+3a +3=1, ∴a =-1或-2或0,据元素的互异性排除-1,-2. ∴a =0即为所求.
(2)由题知,⎩⎪⎨⎪⎧ a =2a b =b 2
或⎩⎪⎨⎪⎧ a =b 2b =2a ⇒⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧
a =0
b =0
或⎩⎪⎨⎪⎧
a =14
b =12

据元素的互异性得⎩⎪⎨
⎪⎧
a =0
b =1
或⎩⎪⎨⎪⎧
a =14
b =12
即为所求.
12.设全集U =R ,函数y =log 2(6-x -x 2)的定义域为A ,函数y =
1
x 2-x -12的定义域为B .
(1)求集合A 与B ; (2)求A ∩B 、(∁U A )∪B .
解:(1)函数y =log 2(6-x -x 2)要有意义需满足:6-x -x 2>0,解得-3<x <2,
∴A ={x |-3<x <2}. 函数y = 1
x 2
-x -12
要有意义需满足x 2-x -12>0,解得x <-3或x >4,
∴B ={x |x <-3或x >4}. (2)A ∩B =Ø.
∁U A ={x |x ≤-3或x ≥2}, ∴(∁U A )∪B ={x |x ≤-3或x ≥2}.
13.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}. (1)若A B ,求a 的取值范围; (2)若A ∩B =∅,求a 的取值范围; (3)若A ∩B ={x |3<x <4},求a 的取值范围. 解:∵A ={x |x 2-6x +8<0}, ∴A ={x |2<x <4}.
(1)当a >0时,B ={x |a <x <3a },当A B 时,
应满足⎩⎨⎧
a ≤2,3a >4.或⎩⎪⎨⎪⎧
a <2,3a ≥4
⇒43≤a ≤2;
当a <0时,B ={x |3a <x <a },当A B 时,
应满足⎩⎨⎧ 3a ≤2a >4或⎩⎨⎧
3a <2a ≥4
⇒a ∈∅,∴4
3≤a ≤2时,A
B .
(2)要满足A ∩B =∅,
当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2, ∴0<a ≤2
3或a ≥4;
当a <0时,B ={x |3a <x <a },a ≤2或a ≥4
3, ∴a <0,验证知当a =0时也成立. 综上所述,{a |a ≤2
3,或a ≥4}时A ∩B =∅. (3)要满足A ∩B ={x |3<x <4}, 显然a >0且a =3时成立,
此时B ={x |3<x <9},且A ∩B ={x |3<x <4}. 故所求a 的值为3.。

相关文档
最新文档