数据结构实验6:二叉树的线索化

合集下载

数据结构-6 树和二叉树

数据结构-6 树和二叉树

第六章树和二叉树一.选择题1. 以下说法错误的是。

A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2. 如图6-2所示的4 棵二叉树中,不是完全二叉树。

图6-2 4 棵二叉树3. 在线索化二叉树中,t 所指结点没有左子树的充要条件是。

A. t->left == NULLB. t->ltag==1C. t->ltag==1 且t->left==NULL D .以上都不对4. 以下说法错误的是。

A.二叉树可以是空集B.二叉树的任一结点最多有两棵子树C.二叉树不是一种树D.二叉树中任一结点的两棵子树有次序之分5. 以下说法错误的是。

A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好6. 如图6-3所示的4 棵二叉树,是平衡二叉树。

图6-3 4 棵二叉树7. 如图6-4所示二叉树的中序遍历序列是。

A. abcdgefB. dfebagcC. dbaefcgD. defbagc图6-4 1 棵二叉树8. 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是。

A. acbedB. decabC. deabcD. cedba9. 如果T2 是由有序树T 转换而来的二叉树,那么T 中结点的前序就是T2 中结点的。

A. 前序B.中序C. 后序D. 层次序10. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是。

A. bdgcefhaB. gdbecfhaC. bdgaechfD. gdbehfca11. 将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双亲结点编号为。

线索二叉树

线索二叉树

6.4 线索化二叉树从前面的讨论可知,遍历二叉树就是将非线性结构的二叉树线性化,即按一定规则将二叉树中的结点排列成一个线性序列依次访问。

如图6.20(a)所示的二叉树,经中序遍历得到线性序列:BADEC,经前序遍历得到线性序列:ABCDE,经后序遍历得到线性序列:BEDCA。

在这些线性序列中,二叉树中的每个结点(除第一个和最后一个外)有且仅有唯一的一个前趋和唯一的一个后继,很容易找到各个结点的直接前驱和直接后继。

但当以二叉链表作为二叉树的存储结构时,只能找到结点的左、右孩子,而不能直接找到前驱和后继,只有在遍历的动态过程中得到这些信息。

如果将这些信息在第一次遍历时保存起来,在需要再次对二叉树进行“遍历”时就可以将二叉树视为线性结构进行访问,从而简化遍历操作。

那么,如何存储遍历中得到的结点前驱和后继的信息呢?一个简单的办法是在每个结点上增加两个指针域fwd和bkwd,分别指向存储遍历中得到的结点前驱和后继。

fwd L child data R child bkwd这是采用多重链表来表示二叉树。

这种方法虽简单易行,但这种结构的存储密度将大大降低,浪费存储空间。

另一种方法,是利用原有链域L child 和R child的空链域。

在n个结点的二叉链表中有2n个孩子链域,其中仅有n-1个链域是用来指示结点的左右孩子,而另外n+1个链域是空链域。

现在把这些空链域利用起来,使其指向结点的前驱或后继;对那些原来就不为空的链域,则仍然指向左或右孩子。

如果把指向前驱和后继的指针称为线索(Thread),那么,如何区分指向左、右孩子的指针和指向前驱、后继的线索呢?在原结点结构上增加标志域定义为:0 Lchild为左指针,指向左孩子0 Rchild为右指针,指向右孩子ltag=rtag=1 Lchild为左线索,指向前驱 1 Rchild为右线索,指向后继以这种结点构成的二叉链表作为二叉树的存储结构,叫做线索链表,其C语言类型说明如下:Typedef struct ThreadTNode{enum{0,1} ltag, rtag;Elem Type data;Struct ThreadTNode *Lchild, *Rchild;}ThreadTNode, *ThreadTree;为了节省内存空间,我们用C语言的位段方法将结点中的左标志域和右标志域与数据域合并在一个存储单元中(即各用一位表示左标志和右标志,其余各位表示结点值)。

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构和算法》实验指导书实验及学时数分配序号实验名称学时数(小时)1 实验一线性表 42 实验二树和二叉树 23 实验三图 24 实验四查找 25 实验五内部排序 2合计12几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

《数据结构》习题汇编06第六章树和二叉树试题

《数据结构》习题汇编06第六章树和二叉树试题

第六章树和二叉树试题一、单项选择题1.树中所有结点的度等于所有结点数加()。

A. 0B. 1C. -1D. 22.在一棵树中,()没有前驱结点。

A. 分支结点B. 叶结点C. 根结点D. 空结点3.在一棵二叉树的二叉链表中,空指针域数等于非空指针域数加()。

A. 2B. 1C. 0D. -14.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于()。

A. nB. n-1C. n+1D. 2*n5.在一棵具有n个结点的二叉树的第i层上(假定根结点为第0层,i大于等于0而小于等于树的高度),最多具有()个结点。

A. 2iB. 2i+1C. 2i-1D. 2n6.在一棵高度为h(假定根结点的层号为0)的完全二叉树中,所含结点个数不小于()。

A. 2h-1B. 2h+1C. 2h-1D. 2h7.在一棵具有35个结点的完全二叉树中,该树的高度为()。

假定空树的高度为-1。

A. 5B. 6C. 7D. 88.在一棵具有n个结点的完全二叉树中,分支结点的最大编号为()。

假定树根结点的编号为0。

A. ⎣(n-1)/2⎦B. ⎣n/2⎦C. ⎡n/2⎤D. ⎣n/2⎦ -19.在一棵完全二叉树中,若编号为i的结点存在左孩子,则左子女结点的编号为()。

假定根结点的编号为0A. 2iB. 2i-1C. 2i+1D. 2i+210.在一棵完全二叉树中,假定根结点的编号为0,则对于编号为i(i>0)的结点,其双亲结点的编号为()。

A. ⎣(i+1)/2⎦B. ⎣(i-1)/2⎦C. ⎣i/2⎦D. ⎣i/2⎦-111.在一棵树的左子女-右兄弟表示法中,一个结点的右孩子是该结点的()结点。

A. 兄弟B. 子女C. 祖先D. 子12.在一棵树的静态双亲表示中,每个存储结点包含()个域。

A. 1B. 2C. 3D. 413.已知一棵二叉树的广义表表示为a (b (c), d (e ( , g (h) ), f ) ),则该二叉树的高度为()。

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。

二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。

三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。

四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。

数据结构(C++)-线索二叉树精品PPT课件

数据结构(C++)-线索二叉树精品PPT课件
14
一、线索二叉树
(4) 中序遍历线索树 P217
a)先由根结点指针找到根结点,从根结点起沿 左指针逐结点一直向左查找,找到左线索标志 为1的结点(“最左”的结点)即为遍历中需首先 访问的结点。 b)由此结点开始,反复进行寻找后继结点的过 程,并陆续访问这些结点,直至结束。
15
中序线索二叉树的遍历算法
13
一、线索二叉树
(3) 中序线索树求前趋结点
找前趋结点相应的原则如下:
a) 如果某结点的左线索标志域为1,说明其左指针域 是线索,这个线索所指的即是该结点的前趋结点; b) 如果某结点的左线索标志为0,则其左指针域是指 向左儿子结点的指针,由此结点的左儿子结点起按右 指针域指针逐结点向右查找,一直找到右线索标志域 为1的结点,即是该结点的前趋结点。
} }
12
一、线索二叉树
(2) 中序线索树求后继结点
在中序遍历线索树过程中,按下述两条原则即可 找到后继结点:
a) 如果某结点的右线索标志域为1,说明其右指针域 是线索,这个线索所指的即是该结点的后继结点; b) 如果某结点的右线索标志为0,则其右指针域是指 向右儿子结点的指针,由此结点的右儿子结点起按左 指针域指针逐结点向左查找,一直找到左线索标志域 为1的结点,即是该结点的后继结点。
pre->rightChild = cur; pre->rightTag = THREAD_PTR; } else if (pre != NULL) { pre->rightTag = CHILD_PTR; } pre = cur;
if (cur->rightTag == CHILD_PTR) InThreadHelp(cur->rightChild, pre);

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构与算法》实验指导书实验及学时数分配几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

(从键盘接受删除元素位置i,实现删除;显示删除后的线性表)二、用C语言编程实现建立一个单链表,并在此表中插入一个元素和删除一个元素。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。

在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。

实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。

2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。

3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。

4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。

5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。

二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

节点被表示为一个由数据和指向其左右子节点的指针组成的结构。

二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。

二叉树可以用链式存储结构或顺序存储结构表示。

- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。

- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。

二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。

我们可以通过手动输入或读取外部文件中的数据来创建二叉树。

对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。

对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。

一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。

2. 创建子节点,并到父节点。

3. 重复步骤2,直到创建完整个二叉树。

数据结构实验二叉树

数据结构实验二叉树

实验六:二叉树及其应用一、实验目的树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。

二、问题描述首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。

其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。

如算术表达式:a+b*(c-d)-e/f三、实验要求如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。

求二叉树的深度。

十进制的四则运算的计算器可以接收用户来自键盘的输入。

由输入的表达式字符串动态生成算术表达式所对应的二叉树。

自动完成求值运算和输出结果。

四、实验环境PC微机DOS操作系统或Windows 操作系统Turbo C 程序集成环境或Visual C++ 程序集成环境五、实验步骤1、根据二叉树的各种存储结构建立二叉树;2、设计求叶子结点个数算法和树的深度算法;3、根据表达式建立相应的二叉树,生成表达式树的模块;4、根据表达式树,求出表达式值,生成求值模块;5、程序运行效果,测试数据分析算法。

六、测试数据1、输入数据:2.2*(3.1+1.20)-7.5/3正确结果:6.962、输入数据:(1+2)*3+(5+6*7);正确输出:56七、表达式求值由于表达式求值算法较为复杂,所以单独列出来加以分析:1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。

例如有如下的中缀表达式:a+b-c转换成后缀表达式为:ab+c-然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。

如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。

线索二叉树

线索二叉树

6·4 线索二叉树1、线索二叉树的结点结构二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。

对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。

为了容易找到前驱和后继,有两种方法。

一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。

现将二叉树的结点结构重新定义如下:其中:ltag=0 时ltag=1 时lchild指向前驱;rtag=0 时rchild指向左子女;rtag=1 时rchild指向后继;以这种结点结构构成的二叉链表作为二叉树的存储结构,叫做线索链表,指向前驱和后继的指针叫线索,加上线索的二叉树叫线索二叉树,对二叉树进行某种形式遍历使其变为线索二叉树的过程叫线索化。

学习线索化时,有三点必须注意:一是何种“序”的线索化,是先序、中序还是后序;二是要“前驱”线索化、“后继”线索化还是“全”线索化(前驱后继都要);三是只有空指针处才能加线索。

2、对二叉树进行中序线索化的算法bithptr *pre; /* 全程变量*/void INTHREAD(bithptr *p){if(p!=NULL){ INTHREAD(p->lchild); /* 左子树线索化*/if(p->lchild==NULL) { p->ltag=1;p->lchild=pre;}if(p->rchild==NULL) p->rtag=1;if(pre!=NULL && pre->rtag==1) pre->rchild=p;pre=p; /* 前驱指向当前结点*/INTHREAD(p->rchild); /* 右子树线索化*/}3、在线索二叉树上查找前驱和后继(1)中序线索二叉树:若结点的ltag=1,lchild指向其前驱;否则,该结点的前驱是以该结点为根的左子树上按中序遍历的最后一个结点。

线索二叉树算法的实验与实现

线索二叉树算法的实验与实现
pre P;
InTh reading(P一>rchild);//右子树线 索化 } }

其 中 pre指向当前访问的结点 P的前驱.在别的教科书也同样存在这个问题.
3 二叉树线 索化算法 的修正
对原算法做出了修正 ,以中序线索化为例 ,修改后 的程序如下 : void InThreading(BiThrTree){
2 线索二叉树 的实验研 究
在对线索化的二叉树遍历过程中发现大部分“数据结构 ”教材 中实现二叉树线索化的算法存在问 题 ,容易引起死机.通过反复实验 ,发现原来教材中没有对线索树中非线索结点的 LTag和 RTag的指针 赋值.以中序线索化为例 -3】,原程序如下 :
void InT hreading(BiT h rTree){ if(p){ InThreading(P一>lchild);//左子树线索化 if(!P一>lchild){P一>LTag=Thread;P一>lchild=pre;}//前驱线索 if(!P一 >rchild){P一 >RTag=T h read;P一>rchild=P;}//后 继线 索
typedef char TElemType;
typedef enum {Link,Thread}PointerThr;//Link==O:指针 ,Thread==1:线索 typedef struct BiThrNode{
TElemType data;
struct BiThrN0de lchild,:f:rchild;//左右 指针 PointerThr LTag,RTag;//左右 标志 }BiThrNode, BiThrTree;
[摘 要 ] 线索二叉树是 “数据结构”课程 中讨论 的重要 内容 之一 ,在计 算机领 域 中有着举足 轻重 的作 用。对各种“数据结构”教材 中的二 又树线 索化算法进行 了大量 的实验 ,发 现很 多教科 书对二叉树 的线索化 算 法在 实现上存在错误 .论 文对这 些错误进行 了修 正和 实现 ,提 高了“数据 结构”课程在 理论 方面教 学的严格 性 和 实 用性 .

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

计算机数据结构知识点梳理 线索二叉树的基本概念和构造

计算机数据结构知识点梳理		线索二叉树的基本概念和构造
解答:D。
[题2] 一棵左子树为空的二叉树在先序线索化后,其中空链域的个数是( )。
A.不确定 B.0
C.1
D.2
分析:左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后 结点的右线索为空(无后继),共2个空链域。
解答:D。
这样,在线索二叉树(特别是中序线索二叉树)上遍历就消除了递归,也不使用栈(其 中后序线索二叉树中查找后继仍需要栈)。
2、由于序列可由不同的遍历方法得到,因此,线索树有先序线索二叉树、中 序线索二叉树和后序线索二叉树三种。在先序、中序和后序线索二叉树中所位取值也完全 相同,只是当标志位取1时,不同的线索二叉树将用不同的虚线表示,即不 同的线索树中线索指向的前驱结点和后继结点不同。
知识点7: 线索二叉树的基本概念和构造
1、在二叉链表表示的二叉树中,引入线索的目的主要是便于查找结点的前驱和后继。因 为若知道各结点的后继,二叉树的遍历就变得非常简单。
二叉链表结构查找结点的左、右孩子非常方便,但其前驱和后继是在遍历中形成的。为 了将非线性结构二叉树的结点排成线性序列,利用具有n个结点的二叉树的二叉链表中 的n+1个空指针域,可以利用某结点空的左指针域(lchild)指出该结点在某种遍历序 列中的直接前驱结点的存储地址,利用结点空的右指针域(rchild)指出该结点在某种 遍历序列中的直接后继结点的存储地址;对于那些非空的指针域,则仍然存放指向该结 点左、右孩子的指针。
C.线索二叉树是利用二叉树的n+1个空指针来存放结点前驱和后继信息的
D.每个结点通过线索都可以直接找到它的前驱和后继
分析:不是每个结点通过线索都可以直接找到它的前驱和后继。在先序线索 二叉树中查找一个结点的先序后继很简单,而查找先序前驱必须知道该结 点的双亲结点。同样,在后序线索二叉树中查找一个结点的后序前驱也很 简单,而查找后序后继也必须知道该结点的双亲结点。二叉链表中没有存 放双亲的指针。

数据结构C语言版_线索二叉树

数据结构C语言版_线索二叉树
// 中序遍历二叉线索树T(头结点)的非递归算法。
int InOrderTraverse_Thr(BiThrTree T,int(*Visit)(TElemType))
{
BiThrTree p;
p=T->lchild; // p指向根结点
while(p!=T)
{ // 空树或遍历结束时,p==T
// 空格(字符型)表示空结点
int CreateBiThrTree(BiThrTree *T)
{
TElemType h;
scanf("%c",&h);
if(h==Nil)
*T=NULL;
else
{
*T=(BiThrTree)malloc(sizeof(BiThrNode));
if(!p->lchild) // 没有左孩子
{ Biblioteka p->LTag=Thread; // 前驱线索
p->lchild=pre; // 左孩子指针指向前驱
}
if(!pre->rchild) // 前驱没有右孩子
{
pre->RTag=Thread; // 后继线索
"b为左子树的二叉树)\n");
CreateBiThrTree(&T); // 按先序产生二叉树
InOrderThreading(&H,T); // 中序遍历,并中序线索化二叉树
printf("中序遍历(输出)二叉线索树:\n");
InOrderTraverse_Thr(H,vi); // 中序遍历(输出)二叉线索树

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。

浅谈线索二叉树

浅谈线索二叉树

浅谈线索二叉树摘要:数据结构中二叉树有很多的遍历算法,但本质都是将属性结构转换为线性序列,简化问题。

在遍历序列中,每个节点都有自己的前驱和后去,但在二叉树遍历过程中寻求答案却因为时间复杂度等因素使操作效率低下。

线索二叉树很好地解决了这一问题,本文是在二叉树的基础上加入线索二又树实现数据的快速可操作性。

关键词:数据结构;线索二叉树;应用前言为了实现在遍历序列中快速查找节点的前驱、后继,利用二叉链表中空的指针域,指向结点在遍历序列中的前驱、后继,这些指向前驱、后继的指针就是线索。

1、数据结构数据结构起源于程序设计,主要是电脑中数据的组织方式、存储结构和处理方法。

在程序的编程中,写一个“好”的程序,就是要选择一个合理的数据结构和算法。

数据的逻辑结构常用结构图来描述,将每一个数据元素看做一个结点,在计算处理数据的时候,算法同样很关键。

一种算法的有穷性,必须对任何合法的输入在执行有穷之后结束,并且每 1 步都在有穷时间内完成。

树形结构就是用于有层次关系的数据表示,表达大多数问题求解的思路,而二叉树的结点数和深度,为二叉树存储结构的选择提供了预备知识和思考线索。

线索二又树借助二又树遍历的程序框架建立,通过函数将整个二叉树的线索化分解,求后继、前驱结点的算法增加数据操作的效率,缩短时间,提高数据的操作性。

2、树的结构定义树形结构是信息的重要组织形式之一,树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。

把它叫做“树”是因为它看起来像1棵倒挂的树,也就是说它是根朝上,而叶朝下的。

它具有以下的特点:(1)每个结点有零个或多个子结点;(2)每一个子结点只有一个父结点;(3)没有前驱的结点为根结点;(4)除了根结点外,每个子结点可以分为多个不相交的子树。

树的应用非常广泛,在程序设计中实现通用树的基本功能需要考虑很多功能,比方内存分配,添加节点,修改节点,删除节点,移动节点,遍历,查询,保存,读取问题。

数据结构 第六章 树和二叉树

数据结构 第六章  树和二叉树

F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n

浅谈二叉树线索化及利用线索进行遍历

浅谈二叉树线索化及利用线索进行遍历

“数据 结 构 ”在 计 算 机 科 学 中是 一 门综 合 性 的专 业 基础 课 。它 的研 究 不 仅 涉 及 到 计 算 机 硬 件 的 范 围 ,而且 和计 算 机 软 件 有 着 更 密 切 的关 系 .无 论 是 编 译 程序 还 是操 作系统 。都涉及到数据元素在存储器 中的分配 问 题 。在 研 究 信 息 检索 时也 必 须 考 虑 如 何 组 织 数 据 ,以便 查 找 和 存 取 数 据 元 素更 为 方 便 。数 据 结 构 和算 法 是 程 序设 计 的 基 础 ,可 以用 该 式 来 表 示 :
程序 =算 法 +数 据 结 构 遍 历 二 叉树 是 以一 定 规 则 将 二 叉 树 中结 点 排 列成 一 个 线 性 序 列 ,得  ̄ml_-叉 树 中结 点 的先 序 或 中序 序 列 或后 序 序 列 。这 实 质 上 是 对 一 个 非 线 性 结 构 进 行 线 性 化操作 ,使每个结 点(除第 一个 和最后 一个外 )在这些 线性 序 列 中 有 且仅 有一 个 直接 前 驱 和 直 接 后 继 。但 是 . 当以 二 叉 链 表 作 为 存 储 结 构 时 .只 能 找 到 结 点 的 左 、右 孩 子 信 息 ,而 不 能 直 接 得 到 结 点 在 任 一 序 列 中 的 前 驱 和后继信息 ,这种信息只有在遍 历的动 态过 程中才能 得 到 。如果 对 这 种 二 叉 树进 行 线 索 化 ,就 能 够 直 接 得 到 结 点 的前 驱 和后 继 信 息 。
ZHOU Min,YU Ying-jan
(Heilongjiang Agricultural Economy Vocational College,Mudangjiang 1570 4 1,China)

线索二叉树的应用资料

线索二叉树的应用资料

课程设计说明书(数据结构课程设计)专业:网络工程课程名称: 数据结构课程设计班级: 网络B11-1设计题目: 线索二叉树的应用设计时间: 2013-2-25 至2013-3-8评语:_____________________________________________________________________________________________________________________________________________________________________________________________________评阅成绩:____评阅教师:__一、问题描述与需求分析1、问题描述本实验的问题是建立一个线索二叉树,并实现线索二叉树的插入、删除、恢复线索等功能。

2、功能需求分析本程序要实现的功能是: 1. 线索二叉树的建立。

2.线索二叉树的插入。

3.线索二叉树的删除。

4.线索二叉树的恢复。

想要完成上面的功能,我们首先是要知道上面是线索二叉树。

我们可以从数据结构的书上找到答案,利用二叉链表的空指针域将空的左孩子指针域改为指向其前驱,空的右孩子指针域改为指向其后继。

这种改变指向的指针称为线索,加上了线索的二叉链表称为线索链表。

N个结点的二叉链表中含有n+1个空指针域。

利用二叉链表中的空指针域,存放指向结点的在某种遍历次序下的前驱和后继结点的指针,这种加上了线索的二叉链表称为线索链表。

相应的二叉树称为线线索二叉树。

根据线索二叉树性质的不同,线索二叉树可以分为前序线索二叉树,中序线索二叉树和后续线索二叉树三种,此次课程设计中使用的是中序线索二叉树。

二、概要设计1、总体设计思路首先就是要建立一个二叉树,然后再对二叉树进行线索化。

线索链表中的结点结构为:其中:线索二叉树及其存储结构如在线索树上进行遍历,只需先找到序列中的第一个结点,然后依次找结点后继为空时而止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验6:二叉树的线索化
一、实验目的
1.掌握线索二叉树的存储结构。

2.掌握将一棵二叉树线索化算法。

3.掌握线索二叉树的遍历算法,理解算法在效率上的改进。

4.将算法用C语言编写完整程序并上机运行,记录实验过程与数据。

二、实验仪器:
1.硬件:Lenovo通用PC机,
2.软件:WINDOWS7,WORD,GCC编译器
三、实验原理:
1.线索化算法
四、实验步骤:
1.设计一个实验样本,取二叉树为:
2.定义一个线索二叉树的结点;
此处填写具体代码
3.按先序的方式建立一棵普通的二叉树;此处填写具体代码
4.将普通二叉树线索化
此处填写具体代码
5.按线性方式遍历线索二叉树
此处填写具体代码
五、数据处理及结论
1.输入:
A↙B↙D↙#↙#↙E↙#↙#↙C↙F↙#↙#↙G↙#↙#
注:每个↙符号代表输入确定,即回车
2.输出:
C B E A F C G
C B E A F C G
七、思考题:
1.为什么要将一棵二叉树线索化?
2.为什么在线索化的过程中preNode要使用全局变量?附:
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define NULLFLAG '#'
typedef char elemType;
typedef enum{
FALSE,TRUE
}status;
typedef enum{
link,thread
}pointerTag;
typedef struct NODE{
elemType data;
struct NODE *lchild,*rchild;
int lTag,rTag;
}biThreadTreeNode;
//定义一个全局变量指针preNode,在线索化时记录每个结点的直接前驱结点biThreadTreeNode *preNode;
status biThreadTreeNodeInit(biThreadTreeNode *t,elemType e){ if(t){
t->data=e;
t->lchild=NULL;
t->rchild=NULL;
t->lTag=link;
t->rTag=link;
return TRUE;
}
else
return FALSE;
}
//按先序遍历的方法建立一棵二叉树,空位用空格号代替
status biThreadTreeCreate(biThreadTreeNode **t){
elemType ch;
//fflush(stdin);//如果使用清空缓存的这句,则每输入一个字符要回车一次ch=getchar();
if(ch==NULLFLAG){
*t=NULL;
return FALSE;
}
else{
*t=(biThreadTreeNode*)malloc(sizeof(biThreadTreeNode));
if(*t){
biThreadTreeNodeInit(*t,ch);
biThreadTreeCreate(&((*t)->lchild));
biThreadTreeCreate(&((*t)->rchild));
}
}
return TRUE;
}
//按中序遍历的方式输出一棵二叉树
void biThreadTreePrint(biThreadTreeNode *t){
if(t){
biThreadTreePrint(t->lchild);
printf("%4c",t->data);
biThreadTreePrint(t->rchild);
}
}
//按中序遍历的方式将二叉树线索化
status biTreeThreading(biThreadTreeNode *t){
if(!t)
return FALSE;
else{
biTreeThreading(t->lchild);
if(t->lchild==NULL){
t->lchild=preNode;
t->lTag=thread;
}
if(preNode->rchild==NULL){
preNode->rchild=t;
preNode->rTag=thread;
}
preNode=t;
biTreeThreading(t->rchild);
}
return TRUE;
}
//完整的线索化过程
status inOrderThreading(biThreadTreeNode *head,biThreadTreeNode *t){ head->rchild=head;
head->rTag=thread;
if(t==NULL){
head->lchild=head;
head->lTag=thread;
return FALSE;
}
else{
head->lTag=link;
head->lchild=t;
preNode=head;
biTreeThreading(t);
head->rchild=preNode;
preNode->rchild=head;
preNode->rTag=thread;
}
return TRUE;
}
status threadTraversal(biThreadTreeNode *head){
biThreadTreeNode *p;
if(head==NULL)
return FALSE;
p=head->lchild;
while(p!=head){
while(p->lTag==link)
p=p->lchild;
printf("%4c",p->data);
while(p->rTag==thread && p->rchild!=head){
p=p->rchild;
printf("%4c",p->data);
}
p=p->rchild;
}
return TRUE;
}
void main(){
biThreadTreeNode *head,*root;
head=(biThreadTreeNode*)malloc(sizeof(biThreadTreeNode));
biThreadTreeCreate(&root);
biThreadTreePrint(root);
inOrderThreading(head,root);
printf("\n");
threadTraversal(head);
}
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档