研究论文:物理系统中随机效应混沌和随机共振

研究论文:物理系统中随机效应混沌和随机共振
研究论文:物理系统中随机效应混沌和随机共振

90894 物理学论文

物理系统中随机效应:混沌和随机共振

【Abstract】Aiming to comprehend the nonlinear behaviors in modern physics, this paper utilizes the numerical method to illustrate the chaos effect and the stochastic resonance phenomenon. Chaos demonstrates the internal randomness of deterministic systems, which develops our view on occasionality and inevitability. While, stochastic resonance is the cooperative effect in the random systems, and the benefits of noise in certain nonlinear systems are adequately appreciated. These results are interesting for students to understand certain physical systems clearly via the physical calculations.

【Key words】Chaos; Stochastic resonance;Deterministic system; Random system

在混沌动力系统学建立之前,物理学家认为微分方程的确定性解可以描述自然现象,只要收集到初始数据,那么系统未来状态是完全可以预测的[1-2]。基于统计原理的量子力学首先打破了上述确定论观念,而混沌概念和涨落唯象理论的提出,使得人们意识到确定性系统也可以出现随机性结果[1-3]。经过近50年的发展,物理系统中内禀随机性和非平衡态随机效应已经成为现代统计物理理论的前沿研究问题[1-3]。本文利用计算机模拟物理系统中混沌和随机共振两类随机效应,前者是物理系统内禀随机性引起的,其本质是物理系统对于初始条件的敏感性,而后者是微观涨落运动对于物理系统宏观变量演化的一种作用机制。我们通过微分方程的数值解法形象地解释了上述两种随机效应,达到学生通过物理计算更好地理解物理系统动力学性质的目的。

1 物理系统内禀随机性:混沌

20世纪50年代,美国麻省理工大学气象学家洛伦兹研究大气流体流动模型,从而解释物理参数变化对天气预报结果的影响。由于时代的限制,当时的单行打印机打印速度非常慢,每10秒钟才能打印一行。为了加快计算,洛伦兹只打印了部分数据,虽然计算机计算到小数点后六位,而洛伦兹打印结果只精确到三位数,他认为舍去的数字并

不会影响系统解的精度,将经过舍位之后的计算机计算结果作为初始值中途输入计算机继续计算。按照确定论观点,这样得到的计算结果应该和计算机原来运行结果应该是一致的。然而,洛伦兹发现新一轮的计算机计算结果很快从初始值处发生扩散。经过深入研究,洛伦兹认为问题的根源在于系统对于初始条件的敏感依赖性,即使初始值的微小变化,经过系统之后,系统解轨迹出现巨大差别,这一现象非常好地解释了天气预报的复杂性[1-3]:初始条件的任何误差被系统迅速放大,以至于具有实际价值的可预测性大大降低。这类系统的内禀随机性被称为混沌现象[1-3],它比纯粹的可预测性更加符合我们的日常经验,比如中长期的天气预报准确率是非常低的,因为天气初始条件微小变化使得几周之后天气情况在本质上是无法预测的[1-3]。

变量x(t)和y(t)与大气温度的竖直和水平变化相关,而变量z(t)与大气对流有关,σ是普兰特数,γ是规范化瑞利数,而常数b和研究区域的几何形状相关[1-3]。该确定性系统只有线性项和二次项,没有外部随机性输入,然而此系统有着复杂的类随机动力学行为。比如取参数σ=10,γ=28,b=8/3,其轨迹完全由上述参数和初始条件(x0,y0,z0)确定,但是其特性很难预测。方程(1)的数值解法采用4阶龙格-库塔法,如图1所示,初

始条件为(1.01,1.0,1.0),洛伦兹系统三维相图表明其轨迹在三维相空间中是有界的,但是无周期性且不相交,混乱地来往于两个吸引子之间。这是因为整体上系统能量是耗散的,其轨迹趋向一个零体积集合,而两个吸引子是不稳定的,导致其轨迹的不断褶叠、翻转和延伸,因此出现了总体的混沌现象。这类系统的内禀随机性表现在初始值的敏感性:即使初始值的微小变化经过系统放大之后,随着时间的变化二者的轨迹出现完全不相干的性质。比如将初始条件(1.01,1.0,1.0)改为(1.011,1.0,1.0),如图2所示,在两种初始条件下变量x(t)随时间演化,尽管其误差仅有1‰,但是二者轨迹在21秒处发生改变,实线和虚线分别代表上述两类不同初始条件下的状态变量演化,随着时间继续增加,x(t)状态发生很大改变且没有相关性,其他变量y(t)与z(t)也类似,这也是混沌系统长时间行为不可预测的本质。

2 随机系统的内在有序性:随机共振

随机共振概念最早是由邦济[4-5]在研究太阳对于地球的随机作用力是如何引起冰川期和暖期的周期性变化时提出的。地球的冰川期大约105年,这个周期和地球由于星系间的引力引起的轨道偏心率一致,但是偏心率不足以使得地球气候发生如此大的变化。邦济发现由于地球每年气

候涨落(如太阳的辐射)而引起的气候变化和偏心率能够达到了一种“共振”,从而使得地球的冰川期和暖期发生周期性变化,此现象称为随机共振现象。随机共振现象第一次证实了随机涨落对于宏观变量(如地球气候)影响能够起到决定性作用[4-5]。经典随机共振模型为质量是m粒子在双稳态势阱内运动过程,其随机微分动力学方程满足[4-5]:

当阻尼系数λ>>m,称为过阻尼系统,不失一般性地设λ=1,式(2)可简化为一阶随机微分方程:

这里信号为s(t),白噪声ξ(t)的强度为D,数值解法采用Euler-Maruyama随机微分解法[4-5]。双稳态对称势函数V(x)=-x2/2+x4/4,具有两个稳态xm=±1和能量势垒ΔV=1/4,当信号s(t)存在时,此势函数成为被s (t)调制为V(x,t)=-x2/2+x4/4-s(t)x。设弱信号s (t)=Acos(Ωt)的幅值A<和频率Ω<

3 总结

上述两种随机效应给现代物理带来了巨大冲击:一是,混沌打破了物理学以往可预言的确定论观点,它让人们理解了某些物理系统长时间预测是无意义的,系统内部的随机性深化了人们对必然和偶然的认识,更全面地理解

自然界的统一性;二是,随机共振打破了噪声是有害的观念,在某些非线性系统中噪声能出人意料地产生积极影响,对于系统的演化反而起到决定性作用,对于系统序的建立是有益的,使得人们更加重视微观尺度的运动对于宏观量演化的影响,而不能简单地依据尺度和强度大小而忽略它。简言之,混沌表现了确定性系统的内禀随机性,而随机共振表现了随机系统的内在有序性,本文通过这两类物理现象计算,使得我们能够达到更好地理解物理系统的两类随机效应。

高层楼房震动测试报告

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,

随机共振系统输入阈值的频率特性_王嘉赋

随机共振系统输入阈值的频率特性 王嘉赋 刘 锋 王均义 陈 光 王 炜 (南京大学物理系,固体物理研究所,南京 210093) (1997年4月28日收到) 通过对双稳态系统和Hindmarsh -Rose 神经元输入信号阈值的频率特性进行数值计算, 分别研究了非自激和可自激随机共振系统输入阈值随信号频率的依赖关系,提出了确定非自 激系统阈值的频率特性的解析方法;指出了可自激系统阈值的频率特性可能在某些频区出现 反常极小现象,并对产生这一现象的物理原因进行了理论分析. PACC :0547;8710;0250 1 引言 随机共振概念是由Benzi 等[1,2]为了解释古气象学中冰川期与暖气候期周期性交替出现现象时提出的.他们的气候模型认为,处于非线性条件下的地球可能取冷、暖两种气候状态.地球偏心率的很小的周期变化虽然不能直接使气候在两种状态之间变动,但地球所受的随机力(如太阳常量的各种无规变化等)却能大大提高弱小周期信号对非线性系统状态的调制能力,从而引起大气候的大幅度周期变化,出现随机共振现象.目前,随机共振现象已在Schmitt 电子触发器[3]、双向环形激光器[4]和磁弹板[5]等诸多双稳系统中被观察到,并已用来研究感觉神经元的发放机制[6,7],甚至用来检测计算机字符输入的成功率[8].最近随机共振思想已推广应用到多稳态[9]甚至单稳态[10]等许多可激发系统[11]. 随机共振机制表明,合适的噪声强度可以使得弱输入信号驱动下的非线性系统的输出信噪比达到某一最佳值.分析这一现象的本质可知,它是噪声能量转化为信号能量的结果,是输入信号与噪声的协作效应.这一能量转移机制也只能在非线性系统中得以实现.总结产生随机共振现象的条件,大致可以归纳为以下三个要素:(1)阈值.非线性系统要存在两个(或更多个)稳态或亚稳态,或者说系统吸引子之间存在某种势垒,从而使得外部驱动(信号)只有超过某一个临界值(阈值)时系统才会出现不同(亚)稳态之间的跃迁,或者说系统才会从一个吸引域跃变到另一个吸引域.(2)阈下输入信号.输入信号还不足引起系统在不同(亚)稳态之间跃迁,亦即粒子将滞留在系统的某个确定的吸引域内,从而系统将不给出以在不同(亚)稳态间跃迁为标志的输出信号(输入信号超过阈值所引起的信号输出,往往不在随机共振理论研究所关心的范围).通常人们大多考虑输入信号为周期信号的情形,也有人讨论过非周期输入信号驱动下的可激发系统的随机共振问题[12].(3)噪声.它既可以是系统外部的随机驱动力,也可以来自系统内部相互作用引起的涨落或关第46卷第12期1997年12月 1000-3290/97/46(12)/2305-08物 理 学 报ACTA PHYSICA SI NI CA Vol .46,No .12,December ,1997c 1997Chin .Phys .Soc .

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

路面不平度的模拟与汽车非线性随机振动的研究报告

清华大学学报自 然科学版JOURNAL OF TSINGHUA UNIVERSITY SCIENCE AND TECHNOLOGY1999年 第39卷第8 期Vol.39 No.8 1999 路面不平度的模拟与汽车非线性随机振动的研 究* 金睿臣,宋健 文摘预测汽车的随机振动响应对汽车的开发设计是非常重要的。实际汽车存在许多非线性环节,需采用非线性振动模型进行研究,在这种情况下,通常采用的频域分析方法一般不再适用。应用机械系统分析软件ADAMS建立了11自由度汽车非线性振动模型,并用由伪白噪声法生成的符合实际路面统计特性的伪随机序列来模拟路面不平度。在此基础上,利用数值算法在时域中对汽车的非线性随机振动响应进行了计算机仿真计算研究。结果表明,这种方法对研究汽车的非线性随机振动是有效的。 关键词汽车动力学;ADAMS软件;非线性随机振动;路面不平度分类号U 461;O 322 Simulation of the road irregularity and study of nonlinear random

vibration of the automobile JIN Ruichen,SONG Jian Department of Automotive Engineering,State Key Laboratory of Automotive Safety and Energy Conservation,Tsinghua University,Beijing 100084,China Abstract To use the simulation technique is very important to predict the random vibration of the automobile.Because there are many nonlinear factors in a real automobile,a nonlinear vibration model should be necessarily used.In this case,the frequency domain methods can not be applicable.Under the help of the mechanical system simulation program ADAMS,an 11 DOF nonlinear vibration model of the automobile was built.By means of pseudo white noise,pseudo random sequences,which can simulate the random irregularities of a road,were generated.Based on these,using numerical method,the random vibration of the automobile was studied.The results of simulation have demonstrated the validity of the method. Key words vehicle dynamics;program ADAMS;nonlinear random vibration; road irregularities 汽车以一定的速度行驶时,路面的随机不平度通过轮胎、悬架等弹性、阻尼元件传递到车身上,并通过座椅将振动传递到人体。研究这种汽车振动一般是在频域进行的,这种方法是建立在汽车为线性振动系统的基础上的。

随机振动理论综述

随机振动理论综述 摘要:本文对随机振动理论在现代工程中的应用以及该理论在现阶段的发展做了简要的论述,还简单的说明了随机振动在抗震方面的应用。此外,还介绍了对随机振动理论的分析和计算的方法。最后具体的阐述了随机振动试验的类型和方法。 关键词:随机振动、抗震分析、试验 1、引言 随机振动是一门用概率与统计方法研究受随机载荷的机械与结构系统的稳定性、响应、识别及可靠性的技术学科。[1] 20世纪50年代的中期,为解决航空与宇航工程中所面临的激励的随机性,将统计力学、通讯噪声及湍流理论中已有的方法移植到机械振动中来,初步形成了随机振动这门学科。[2] 1958年在美国麻省理工学院举办的随机振动暑期讨论班以及该讨论班文集的出版可认为是随机振动作为一门学科诞生的标准,此后,随机振动在环境测量、数学理论、振动引起的损伤、系统的识别与诊断、试验技术以及结构在随机荷载下的响应分析与可靠性研究等方面都有了很大的发展。 随机振动理论是机械振动或结构动力学与概率论相结合的产物,而作为一种技术学科乃是由工程实践需要而产生并为工程实践服务的。近10年来,在理论基础、分析方法、数值计算、信号分析测试技术和实验研究、载荷分析、环境减振降噪、设计优化、故障诊断、工程可靠性分析等诸多方面,得到了全方位的发展,结构工程、地震工程、海洋工程、车辆工程、包装工程、机械工程、飞行器、土木工程等方面有了广泛的应用,并与其它相关学科如非线性振动、有限元方法等相结构交叉而产生新的生长点,如非线性随机振动,随机分叉与随机浑沌,随机有限元等方面并取得长足进展,跟上了国际的发展潮流,有些研究达到了国际先进水平,在国际学术交流中发挥了影响。[3]近20年来,我国在随机振动领域做出了多项具有国际影响的突破性成果,包括虚拟激励法、复模态理论、FPK方程的哈密顿理论体系和非线性随机系统的密度演化理论等方面的贡献。 作为机械振动或结构动力学与概率论及其分支相结合的产物,随机振动是关于机械或结构系统对随机激励的稳定性、响应及可靠性的一整套理论的总称,是现代应用力学的一个分支。 2、随机振动在抗震方面的应用 地震是一种能对人类的生产和生活带来极大破坏的自然灾害,对工程结构的破坏更是非常严重,人类一直对其进行研究,以提高工程结构的抗震能力。自1947年Housner首次用随机过程描述地震动以来的半个多世纪,随机振动理论在工程抗震中得到应用并迅速发展,日益成为一种较为先进合理的抗震分析工具。 地震发生的时间、空间和强度特征不仅随时间变化,而且具有明显的随机性。主要表现在:同样的基本条件下得到的地震动时程曲线不相同。地震荷载不同于静载也不同于其他的动力荷载,是一种随机荷载,每次的动力作用的频率样本不一。荷载的频率大小、峰谷值高

随机振动试验研究

随机振动试验研究 摘要:随机振动试验中存在许多“失控”现象,随机振动控制理论通常把试验“失控”的原因归于:(1)共振激励太大,超出了控制仪的动态范围;(2)台面、工装、试验件三者产生共振,造成试验中过大的冲击。本文主要针对随机振动试验中的“失控”现象,从工装角度分析其现象形成的原因,并提出解决问题的方法。 关键词:随机振动试验失控现象工装 振动试验是军用设备环境试验项目之一,是产品可靠性试验的重要组成部分。振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。 1、基本概念 1.1 随机振动的定义 严格来说一切振动都是随机的,当随机因素可以忽略时,可看做是确定性振动,这时,可以用简单函数或这些函数的组合来描述。另一种不能用确定函数而只能用概率和统计方法描述振动规律的运动称为随机振动。 1.2 振动的分类 振动按其时域波形的特征可分为确定性振动和非确定性振动。 确定性振动是指振动物理盈随时间的变化规律可用确定的数学关系式来表达的一类振动。 非确定性振动是指振动物理量随时间的变化规律无法用确定的数学关系式来表达,而只能用概率论和统计学的方法来描述的一类振动。随机振动属非确定性振动。 2、随机振动试验中的失控现象及解决方法 2.1 随机振动设备组成及功用 在试验室振动试验中,试件一般通过适当的试验工装安装在振动台,试验工装与振动台的组合用于模拟预期使用过程中平台产生的振动环境,如图1所示。大多数情况下,振动使用条件所对应的振动控制点选择在试件与试验工装的连接界面上,其代表了预期使用过程中平台对装备的振动环境激励。在理想状态情况下,即试件相对与振动台和试验工装可以近似作为刚体处理,如果在试件与试验工装连接界面的振动响应将与预期使用过程一致,可以认为试件经受了符合预期使用过程的振动环境考核。 图1 当试件的尺寸和重量较大,或固有频率较低时,由于试件与振动台、试验工装的动力耦合作用,试验时振动环境的模拟结果往往偏离理想的试验条件。这样即使在试件与试验工装连接界面的振动控制点达到了规定的振动加速度试验条件,试件上的振动响应也会与预期使用过程中装备上的振动响应不一致,从而导致试件的过试验或欠试验。因此,在实验室振动环境试验中,需要采取适当的控制方法,以改善试件的过试验或欠试验,使得试验结果更接近预期试验情况。 2.2 失控现象及其解决途径 在复杂结构的高频振动试验中,测试系统的各部分连接一定要牢靠,否则因

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁 2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): (2) 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位( ): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(c): (2) 1.2.6 对数衰减率(δ): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗): (5) 1.4.2 三角窗(Bartlett或Fejer窗): (5) 1.4.3 汉宁窗(Hanning窗): (5) 1.4.4 海明窗(Hamming窗) (6) 1.4.5 高斯窗(Gauss窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型: (8) 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13) 3.3 简谐振幅值测量 (13)

第13章-随机振动试验复习过程

第13章-随机振动试 验

第13章随机振动试验 13.1 试验目的、影响机理、失效模式 产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。 随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。 随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。 为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。 13.2 随机振动的描述 在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

RJ45_RB信赖性测试报告

信赖性测试报告 Reliability Test Report z 产品名称(Name): RJ45 RB 6 & RJ45 RB 7x z 测试周期(Period): 2007-11-10 ~~ 2007-11-15 z 测试环境(Environment Condition): 温度 20℃~25℃ 相对湿度 90% z 样品数量(Q’ty): 10pcs` 测试结果(Adjudgement): ? 合格(PASS) ? 不合格(REJECT) 编号 (Number) FA-0711001

1.目的(PURPOSE) 为了验证某产品是否符合设计要求,特进行此信赖性测试.信赖性测试项目应包括电气,机械,及环境等测试. This test verifys if product meets design requirements and related legal requirements. All test itmes should include electrical, mechanical, and environment tests. 2.参考标准(REFERENCE) 所有的测试项目都应按照EIA-364及MIL-STD-1344相应的测试程序. All test should be compliance with EIA-364 and MIL-STD-1344. z EIA-364电子连接器及插座测试程序(Electrical connector/socket test procedure) z MIL-STD-1344电子连接器及插座测试程序(Electrical connector/socket test procedure) z BS EN-60529密封箱的防护等级(Degrees of protection provided by enclosures (IP CODE)) 3.测试计划流程图(TEST PLAN FLOW DIAGRAM) . 组别(Group) Group 1 Group 2 Group 3Group 4 样品数量 4pcs 2pcs 2pcs 2pcs (Q’ty)

悬臂梁实验报告

实验报告悬臂梁的模态实验 姓名:xxx 学号:xxx 专业:xxx 系别:xxx

一、试验装置 二、实验原理 本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~ , ∑=+-==n i i i i k i s i r s r rs i k F X H 12 ) ()()(0) 21(~~ λζλ?? (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为 ,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为: ∑=+--=-=n i i i i k i s i r s r a rs i k F X H 12 ) ()()(2 02)21(~~λζλ??ωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为: ,22)(~) ()()()() ()(2k k k s k r k k k s k r k k a rs m i k i H ζ??ζ??ωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m k k k 2() (ω)式中= 为各阶主质量...n k ,3,2,1=。改变s 点的位置,在不同点激振,可以得到不同点与点r 之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为: ∑ =+--=n i i i i i i r i r a rr i k H 1 2 )() ()(2 ) 21(~λζλ??ω (4) 它的第k 个峰值为:

燕山大学现代机械系统测试技术实验报告

《现代机械系统测试技术》 课程报告 课程方向机械设计 学号 姓名 课程负责人 实验指导教师 2015年6 月12 日

实验二 用“李萨如图形法”测量 简谐振动的频率 一、 实验目的 1.1 了解李萨如图形的物理意义规律和特点。 1.2 学会用“李萨如图形法”测量简谐振动的频率。 二、实验装置 图2-1 实验装置框图 三、实验原理 李萨如图是把两个传感器测得的信号,一个作为X 轴一个作为Y 轴进行合成得到的图形。互相垂直,不同频率的振动的合成,显示出复杂的图形,一般情况下,图形是不稳定的,当两个振动的频率成整数比时,它们就合成了较稳定的图形。 为简单起见,以两个振动方向互相垂直的简谐振动的合成进行讨论。设两个振动波形方程为: ) cos )cos(222111φωφω+=+=t A y t A x (

其合成波形的方程式为: )(sin )cos(1221222 122 22 12????-=-- + ?A A xy A y A x 112f πω=, 222f πω= 3.1 当ω1 =ω2 ,12??=,012=-?? 1 2A A x y = 合成波形的轨迹是一条直线,直线通过坐标原点,斜率为两个振幅之比即A 2/A 1。 3.2 当ω1 =ω2 ,A 2 = A 1 ,φ??=-12时 φφ22122sin cos 2A y xy x =+- 当 φ= 0时 ()02=-y x 直线 φ= 45°时 2/22122A y xy x =+- 椭圆 φ= 90°时 2122A y x =+ 圆 φ= 135°时 2/22122A y xy x =++ 椭圆 φ= 180°时 ()02=+y x 直线 以上合成波形见下图2-2。 3.3 当ω1 ≠ω2 、A 2 = A 1 、φ 2 –φ 1 =φ时 例如:ω1 =2ω2和ω1=3ω3,φ=0° ,45°(315°),90°(270°),135°(225°),180°时李萨如图形,如图2-2所示。 图2-2 李萨如图形

随机振动实验

随机振动特征描述: 随机振动是一种非确定性振动。当物体作随机振动时,我们预先不能确定物体上某监测点在未来某个时刻运动参量的瞬时值。因此随机振动和确定性振动有本质的不同,是不能用时间的确定性函数来描述的一种振动现象。这种振动现象存在着一定的统计规律性,能用该现象的统计特性进行描述。 随机振动又分为平稳随机振动和非平稳随机振动。平稳随机振动是指其统计特性不随时间而变化。 卫星所经受的随机振动激励是一种声致振动,主要来自起飞喷气噪声和飞行过程中的气动噪声.过去,模拟随机振动环境大部分都是用正弦扫描试验来代替,随着快速傅里叶变换算法的出现和电子计算机的发展,各种型号数字式随机振动控制系统相继问世,才使随机振动试验得以广泛采用。 试验条件及其容差: (1)试验条件 随机振动试验条件包括试验频率范围、试验谱形及量级、试验持续时间和试验方向.试验谱形及量级常以表格形式或加速度功率谱密度曲线形式给出.下图为以功率谱密度曲线给出的卫星组件典型的随机振动试验条件。 (2)试验容差 根据中国军标GJB1027的要求,卫星及其组件随机振动试验容差为: a.加速度功率谱密度 ? 20~500Hz(分析带宽25Hz或更窄)±1.5dB ? 500~2000Hz(分析带宽50Hz或更窄)±3dB b.总均方根加速度 ±1.5dB与正弦振动试验一样,要满足随机振动试验的容差要求,不是对每个试件都能做到的.控制精度主要与控制系统的动态范围、均衡速度、均衡精度,试验夹具和试件安装的合理性、试件本身的动特性等有关.解决试验超差主要应从上述几方面分析原因,提高控制精度. 试验方法: 随机振动试验的控制原理如图所示.随机振动试验方法与正弦振动试验方法有很多共同点,二者的主要区别在于振动控制系统. (1)振动台的选用(2)总均方根加速度的计算 (3)试验参数的设置 随机振动试验控制中的参数设置直接关系到试验的控制精度.影响控制精度的参数主要有谱线数(或分辨率)和统计自由度(帧数),试验中应合理选择.谱线数决定了频率分析的精度,而统计自由度决定了统计误差.谱线数和统计自由度越多,统计分析精度越高,但不一定达到高的试验控制精度.因为谱线数和统计自由度越多,分析计算时间就越长,均衡速度也就越慢.增加均衡时间,对持续时间短的试验,在绝大部分时间内试验并未真正达到高的控制精度.对卫星的随机振动试验,因试验要求时间短(1~2min),故谱线数和自由度不宜太多.一般取400条谱线,100个统计自由度即可. 随机振动试验响应数据处理:

振动试验机随机振动试验的操作方法

振动试验机随机振动试验的操作方法 做振动试验的好处 1、设计时,可分析破坏点、易不良点 2、质量时,可分析每一批产品所产生的不同点和不良点 3、生产时,可完全一边振动一边测量,使产品不良率早发现。 4、耐久测量,让产品耐久使用、使不耐久的组件提早改进,公司品牌口碑即会更好。 振动试验机的操作方法: 1、试验前后的准备工作见“操作方法一”。 2、将滤波器转换开关选至适当的频率范围。 3、运行RANVIB.EXE,出现主窗口。 4、新试验项目可以单击“参数设置”,选“宽带随机”,“宽带加窄带”或“宽带加正弦”。 如果选择“宽带随机”,将会出现下列参数: 本系统对宽带谱线数的设置更灵活, 原理上可以在100--800内任意设置。虽然缺省值为400线,您也可以根据最低和最高试验频率进行设置, 使频率分辨率为整数, 最低频率也最好为频率分辩率的整数倍,如最低频率10Hz,最高频率500Hz,可设谱线数为250,则频率分辩率为2.00Hz。由于试验均衡速度与频率分辩率成反比,所以低频和试验时间很短的试验,比如不到1分钟,宜选较小的谱线数,否则试验均衡速度将会太慢。 真/伪随机,通常选真随机。但在时间很短的试验中,可选伪随机,以加快均衡速度。 削波系数小,可避免过大的加速度峰值, 保护振动台, 但会引起附加噪声。在进行系统动态范围测试时, 应选用较大值。显示的非零初始值为缺省值。其它各参数设置的意义比较明显,不多解释。 上述问题回答完, 系统会对上述数据进行越界检测, 如有错误将报警并自动跳到该数据位置, 便于您及时修改。按“下一步”,开始其它参数设置。 设置振级-时间表,推荐用3dB增量。

工程检测技术实验报告

1.实验名称:悬臂梁固有频率的测定试验 2.专业名称:交通工程班级代码:1014111 实验组长:何跃丞 实验日期:2014年11月15日 3.实验目的: (1)学会加速度与力传感器的接线方法和调试; (2)熟悉和了解悬臂梁振动的规律和特点。 (3)学会使用锤击法测量悬臂梁固有频率; 4.实验设备: 1、带力传感器的锤锤子:3425 2、加速度传感器356A02 力锤传感器:086D05 3、振动台:由支座,夹板和悬臂梁试件组成。 4、悬臂梁长度:L=850mm,宽度:b=110mm,厚度:h=8mm,材料Q304 5、8通道的东华数据采集器 6、带东华动态振动分析系统的笔记本电脑 本实验使用的振动系统及仪器设备如图4-1,4-2所示。 图4-1 悬臂梁振动实验系统实图

实验系统原理示意图如图4-2所示 5.实验原理: 1、悬臂梁的振动机理 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有园频率为 A EI i i n 2 ρβω= (5-2) 对应i 阶固有频率的主振型函数为 ) ,3,2,1() sin (sin cos cos )( =-++- -=i x x sh L L sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3) 对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。 各阶固有园频率之比 1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4) y A B x h L b 图5-1 悬臂梁振动模型 数据采集器 东华振动分析软 件 加速度计 图4-2 悬臂梁振动实验系统示意图 锤 力传感器

机械振动实验报告解析

实验三:简谐振动幅值测量 一、 实验目的 1、了解振动位移、速度、加速度之间的关系。 2、学会用压电传感器测量简谐振动位移、速度、加速度幅值 二、实验仪器安装示意图 三、 实验原理 由简谐振动方程:)sin()(?ω-=t A t f 简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下: 根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A : )sin(?ω-=t X x )cos()cos(?ω?ωω-=-==t V t X x v )sin()sin(2?ω?ωω-=--==t A t X x a 式中:ω——振动角频率 ?——初相位 所以可以看出位移、速度和加速度幅值大小的关系是:X V A X V 2 ωωω===,。 振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。 在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD 卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大

小。 DASP 通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DASP 参数设置表中输入各通道的工程单位和标定值。工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。 传感器灵敏度为K CH (PC/U )(PC/U 表示每个工程单位输出多少PC 的电荷,如是力,而且参数表中工程单位设为牛顿N ,则此处为PC/N ;如是加速度,而且参数表中工程单位设为m/s 2 ,则此处为PC/m/s 2 ); INV1601B 型振动教学试验仪输出增益为K E ;积分增益为K J (INV1601 型振动教学试验仪的一次积分和二次积分K J =1); INV1601B 型振动教学试验仪的输出增益: 加速度:K E = 10(mV/PC) 速度:K E = 1 位移:K E = 0.5 则DASP 参数设置表中的标定值K 为: )/(U mV K K K K J E CH ??= 四、 实验步骤 1、安装仪器 把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B 型振动教学试验放大仪的功放输出接口。把带磁座的加速度传感器放在简支梁的中部,输出信号接到 INV1601B a 加速度。 2、打开INV1601B 型振动教学试验仪的电源开关,开机进入DASP2006 标准版软件的主界面,选择单通道按钮。进入单通道示波状态进行波形示波。 3、在采样参数设置菜单下输入标定值K 和工程单位m/s 2 ,设置采样频率为4000Hz ,程控倍数1倍。 4、调节INV1601B 型振动教学试验仪频率旋钮到40Hz 左右,使梁产生共振。 5、在示波窗口中按数据列表进入数值统计和峰值列表窗口,读取当前振动的最大值。 6、改变档位v (mm /s )、d (mm )进行测试记录。 7、更换速度和电涡流传感器分别测量a (m /s 2 )、v (mm /s )、d (mm )。

随机振动测试的峰度控制和削波

Spider 随机测试模式中的峭度控制用于控制随机振动的振幅分布。峭度控制,测试可以更好的模拟现实世界的环境。在现实世界中的许多振动的环境中,信号都具有高峭度值的特征(相对于高斯随机)。这些环境中的振动疲劳和损坏力比纯高斯随机信号高。因此,采用传统的高斯随机信号作为测试信号实际上只能在产品的服务环境中进行测试。 峭度可以用一个标准化的K值表示,这个值是由第四统计矩除以第二统计矩的平方得来。下面的等式为N个采样点时的K值计算。 无峭度控制,随机振动控制仪(如Spider-81)的输出分布是高斯分布。这意味着,大峰是比较少见的;随机波形值在98%的情况下将小于4倍的RMS值。真实世界的振动,例如汽车驾驶在粗糙路面的振动,峰值通常为RMS值得5至10倍。峭是这种“峰度”的量度,与幅度分布相关。具有较高的峭度的随机振动在该分布的下包含更多的“离群值”峰。纯高斯分布峭度值总为3,而现实世界振动峭度一般为5到8。 通过增加随机振动峭度值以匹配预期的真实世界的振动的峭度,振动测试将更加紧密地匹配实际环境。

高斯随机振动波形 随机振动波形峭度=7 上图显示了从两个测试中得到的振动信号,他们使用相同的RMS及频率分布。然而,在第二张图中所示的振动波形峭度为7,而第一张图中的振动波形为高斯分布。 下图显示两个测试的振幅分布的差异。幅度分布可以用直方图来测量。由此可以看出,具有较高峭度的测试,分布图尾部延伸得更远。控制器通过调整随机生成的驱动信号的相位来改变这个幅度分布。因为只有相位被改变,振动的频率成分没有受影响。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销

相关文档
最新文档