大跨度钢筋混凝土支撑体系计算书
6超高大空间大跨度梁板模板支撑施工工法
超高、大空间、大跨度梁板模板支撑施工工法甘肃第七建设集团股份有限公司王茂全1.前言随着建筑造型越来越趋于现代化,为满足特殊功能要求,超高、大空间、大跨度结构形式的应用越来越多。
对于“三超”钢筋混凝土结构的施工方法、施工技术提出了更高的要求。
最近几年,针对这种结构形式,超高、大空间、大跨度、超线荷载模板支撑架体施工技术,在七建集团公司内部已经趋于成熟。
“超高、大空间、大跨度、超线荷载模板支撑体系”采用轴向传力较好的碗扣脚手架,同时加设竖向和水平剪刀撑、连墙件等稳固措施,有效的提高了支撑架体的整体稳定性,增大了承载能力和横向刚度,为“三超”模板体系的安装提供了安全可靠的施工操作平台和结构成型支撑体系。
在“兰州市九州台老虎梁”、“甘肃省高级人民法院审判综合楼”超高空间、大跨度、超线荷载模板施工中取得了较好的应用效果。
同时为装饰工程施工提供了便利。
2.工法特点2.1 超高大空间、大跨度、超线荷载模板支撑施工,较传统架体大大缩短搭设周期。
2.2 碗扣脚手架支撑体系杆件连接、传力为轴心传力,架体承载平台具有刚度大、承载能力强的特点,针对结构施工提供稳定支撑。
3.适用范围本工法适用于超高大空间、大跨度的结构构件的施工。
4.工艺原理4.1 在超高大空结构下按照计算书要求搭设碗扣式钢管支撑脚手架,在支撑脚手架顶端安装大梁和楼板模板,形成安全、可靠的操作承载平台。
架体中部按照高度要求搭设隔离层。
4.2 架体与周边框架柱、剪力墙可靠连接,框架柱采用抱箍形式,剪力墙采用穿墙螺栓连接形式。
4.3 支撑架体自下而上连续搭设竖向剪刀撑,以增加架体刚度,提高稳定性;同时在与竖向剪刀撑对应跨内搭设水平剪刀撑,水平剪刀撑按3.5m左右高度间隔布置,以增强架体水平抗剪稳定性,形成稳定的承载平台,利用支撑架体进行模板安装。
4.4 模板空隙部分用脚手板封闭,以确保作业人员的安全。
4.5 受力传递顺序:超高大空间结构自重和施工荷载→模板→承载平台及支撑架体→底部架体支座或垫板→地面或建筑主体结构。
400×800梁需4.2米支撑木模板与支撑计算书
梁木模板与支撑计算书一、梁模板基本参数梁截面宽度 B=400mm,梁截面高度 H=800mm,H方向对拉螺栓2道,对拉螺栓直径14mm,对拉螺栓在垂直于梁截面方向距离(即计算跨度)900mm。
梁模板使用的木方截面38×80mm,梁模板截面侧面木方距离300mm。
梁底模面板厚度h=15mm,弹性模量E=6000N/mm2,抗弯强度[f]=15N/mm2。
梁侧模面板厚度h=15mm,弹性模量E=6000N/mm2,抗弯强度[f]=15N/mm2。
二、梁模板荷载标准值计算模板自重 = 0.200kN/m2;钢筋自重 = 1.500kN/m3;混凝土自重 = 24.000kN/m3;施工荷载标准值 = 2.500kN/m2。
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载设计值;挠度验算只考虑新浇混凝土侧压力产生荷载标准值。
新浇混凝土侧压力计算公式为下式中的较小值:其中γc——混凝土的重力密度,取24.000kN/m3;t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.714h;T ——混凝土的入模温度,取20.000℃;V ——混凝土的浇筑速度,取2.500m/h;H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取1.200m;β——混凝土坍落度影响修正系数,取0.850。
根据公式计算的新浇混凝土侧压力标准值 F1=28.800kN/m2考虑结构的重要性系数0.90,实际计算中采用新浇混凝土侧压力标准值:F1=0.90×28.800=25.920kN/m2考虑结构的重要性系数0.90,倒混凝土时产生的荷载标准值:F2=0.90×6.000=5.400kN/m2。
三、梁底模板木楞计算梁底木方的计算在脚手架梁底支撑计算中已经包含!四、梁模板侧模计算面板直接承受模板传递的荷载,应该按照均布荷载下的连续梁计算,计算如下作用在梁侧模板的均布荷载q=(1.2×25.92+1.40×5.40)×0.80=30.931N/mm面板的截面惯性矩I和截面抵抗矩W分别为:本算例中,截面惯性矩I和截面抵抗矩W分别为:截面抵抗矩 W = bh2/6 = 80.00×1.80×1.80/6 = 43.20cm3;截面惯性矩 I = bh3/12 = 80.00×1.80×1.80×1.80/12 = 38.88cm4;式中:b为板截面宽度,h为板截面高度。
大跨度高支撑模板计算书
近年来,全国范围内发生因模板高支架坍塌而导致重大恶性事故多起,因此对此方面的安全监理工作应特别引起施工现场人员的重视。
根据《建设工程安全生产管理条例》和建设部建质〔2004〕213号文件《危险性较大工程安全专项施工方案编制及专家论证审查办法》要求,模板工程施工前施工单位应当单独编制安全专项施工方案,对水平砼构件模板支撑系统高度超过8m或跨度超过18m,施工总荷载大于10KN/m2或集中荷载大于15KN/m2的模板支撑系统必须由建筑施工企业组织不少于5人的专家组,对编制的安全专项施工方案进行论证审查。
1. 工程概况由南京图腾置业发展有限公司开发的大观·天地MALL项目位于南京市下关区建宁路300号,东邻阅江楼、静海寺,西面热河路,北抵郑和路,为阅江楼旅游观光风景区的一个重要组成部分。
中庭大圆井字梁,截面500×2000,跨度27m,支模架高度17m;影剧院屋面梁截面550×2100,板厚200,跨度17m,支模架高度11m。
2. 高支架搭设方案结合本工程的结构形式和施工特点(26-35轴线屋顶构架模板支撑体系属于大跨度高支模,其搭设方案:2.1整体钢管排架采用48×3.0钢管,竖向立杆间距不大于800×800,水平连杆双向在离楼面上150设扫地杆,以上水平连杆1500每步设置,大圆弧处井字量扫地杆150设置,以上每步1450到-0.1顶紧再按每步1450到 5.7顶紧再每步1200到梁底。
小影剧院550×2100的每步1250到15.7处顶紧每步1250到梁底。
支撑架与整体排架连接要连接牢固。
2.2框架梁小影剧院550×2100实行梁宽方向竖向立杆间距500+300+500即两侧从楼面到楼板底及梁顶面,中间加二根立杆从楼面到梁底,顺梁方向立杆间距统一按800设置,如果梁底中间加一根立杆从楼面到梁底,顺梁方向立杆间距按400设置,梁处水平杆按每步1250搭设在中间砼梁顶紧支撑架与整体排架连接处要连接牢固。
大跨度、大体积混凝土“贝雷梁”支撑系统施工技术应用
大跨度、大体积混凝土“贝雷梁”支撑系统施工技术应用摘要:大体积混凝土梁一般采用预制和现浇两种方式,但往往在施工阶段,易受场地限制,大型起重设备难以满足现场起重要求,大跨度、大体积预制梁通常不具备预制吊运条件,只能采用现浇方式进行施工。
在高落差、大跨度、大体积梁混凝土支撑系统研究过程中发现,常规模板支撑系统,如桁架、满堂支架等结构,其均存在施工工程量较大,操作复杂,且混凝土施工质量较难控制等缺点。
参考贝雷桥结构及其受力特点,其贝雷梁结构稳定、施工便利,可作为混凝土模板支撑系统。
通过对其研究、试验,总结出一套新型混凝土模板支撑系统,其施工综合效果优良,可为后期同类型施工条件工程有借鉴作用。
关键词:高落差、大跨度;大体积;贝雷梁;支撑系统1概况三河口大坝泄洪表孔共布置三个孔,其孔口尺寸为15m×15m(宽×高),根据设计图纸,大坝表孔上游分别布置门机大梁、交通桥,其中上游门机大梁为T型梁结构,底宽1m,顶宽1.78m,高2.5m,跨度15m,单根长度16.96m,交通桥为Π型梁结构,两支腿底宽均为0.5m,顶宽2.045m,高1.8m,跨度15m,单根长度18.96m,本文以跨度15m和混凝土方量43.8m³的门机大梁为例,来介绍贝雷桥在大跨度、大体积混凝土支撑系统的应用。
由于三河口大坝工程所处地区地形复杂,缺少常见的高拱坝垂直起吊设备缆机,由于本工程表孔顶部大梁自重过大,周边结构施工空间过下,架桥机、塔机等设备无法布置,故现场无法采用预制施工工艺。
为此,需要为三河口大坝表孔门机大梁混凝土施工量身订做一套安全经济的支撑系统,通过选用“贝雷桥”施工结构的研究,通过对其改装,使其作为模板支撑系统,解决了拱坝表孔高落差、大体积混凝土支撑,相比其它大跨度梁混凝土施工模板支撑系统布置,贝雷梁结构承载力可靠,支撑具备承载能力大、刚度强、挠度小、安全性性高等特点。
且贝雷梁施工工期短,贝雷梁支撑架设快速,分解容易,安装方便,造价低。
超高大跨度模板支撑体系专项方案
新建天津市电子信息高级技术学校超高大跨度模板支撑体系专项方案目录一、工程简介 02二、编制依据 02三、梁模板高支撑架的构造和施工要求 03四、8.1m 梁模板支撑架计算书 05五、11m梁、板模板支撑架计算书 22一、工程简介本项目为新建天津市电子信息高级技术学校工程,由天津市北洋园投资开发有限公司开发建设,天津市建筑设计院设计,天津建质建设工程监理咨询有限公司监理,中天建设集团有限公司承建。
本工程位于天津市海河教育园区南侧,东临津沽公路,北至纬四路,西至经三路,南临老海河。
该工程共由一栋综合教学楼、两栋实训楼、四栋宿舍、一栋食堂共八栋楼组成,建筑面积75764m²。
综合教学楼北端两间合班教室层高8.1米,框架结构,8.1米部位仅有框架梁;坡屋顶高度为11米,板厚0.11米,拟先施工8.1米框架结构梁柱部分,待梁柱混凝土强度达到100%,将满堂架与梁柱结构固定后,再施工屋顶部分,这样可保证上部架体的稳定性。
因支模架底座与基础承台上平(-1.55米),因此支模架首次搭设高度高达9.65米,二次搭设高度最高处为12.45米。
该教室东西方向跨度(柱中)达21.6米,南北方向跨度(柱中)达18米,为超高大跨度支模架。
8.1米标高处中间部分纵横框架梁截面为350×1000mm,间距均为3.6米;四周框架梁截面为300×1200mm,在8.1米标高处上返600㎜,梁顶部与坡屋面板连接,该教室在4.15米标高处(二层平面)沿框架柱周围设置有一道300×600的框架梁。
为便于现场施工,拟将该处梁分成上下两段分开浇筑混凝土,先浇筑到8.1米处,上部与坡屋顶梁板一道浇筑。
坡屋顶板厚0.11米,纵横框架梁截面为350×1100mm,间距均为3.6米。
框架柱总高度达到10.25米,拟分四次浇筑,第一次浇筑到5.7米(与二层框架梁同时浇筑);第二次浇筑到8.65米,即与框架梁底平,因框架柱加固架体与满堂架连接为整体,先浇筑完柱体混凝土,待柱体混凝土达到一定强度后(至少50%),再与8.1米标高处梁同时浇筑到9.65米,这样可提高浇筑框架梁时架体的稳定性;第四次与屋面梁板一道浇筑。
主桥边跨现浇梁钢支架计算书
主桥边跨现浇梁钢支架计算书
设计参数
- 主桥边跨现浇梁长度:10m
- 梁截面尺寸:150mm x 250mm
- 混凝土强度等级:C30
- 钢支架尺寸:80mm x 80mm x 6mm
- 钢支架材质:Q235
假设
- 假设混凝土极限拉应力为0.67fctk,混凝土极限抗压强度为fck+8。
荷载计算
- 荷载组合采用最不利工况组合;
- 施工荷载(配重):4.0kN/m2
- 现浇梁及混凝土浇筑时荷载:25kN/m2
钢支架计算
钢管强度计算公式
- 钢管承载能力=1.2×σs×A/γm
- σs——钢管屈服强度
- A——钢管截面面积
- γm——安全系数,取值为1.0。
钢管刚度计算公式
- KS=Es×As/L
- Es——钢管弹性模量
- As——钢管截面面积
- L——钢管长度
钢管最大变形计算公式
- δmax=5(qL4)/(384EI)
- qL4/384EI——集中力作用下钢管在跨中的最大挠度
钢管稳定性计算公式
- fcr=π²EI/δcr²
- E——钢管弹性模量
- I——钢管截面惯性矩
- δcr——稳定临界挠度
结论
根据经过计算的结果,取钢管Q235直径为89mm,壁厚为5.5mm,长度为3m,最大变形为1.3mm,稳定性满足要求;取6支钢管布置在主梁下,即跨中4m处,间距为1m,能够满足设计要求。
大跨斜腿刚构计算书.
摘要本设计为燕子峡大桥施工图设计,设计荷载为公路-Ⅰ级,抗震烈度为Ⅶ度;无通航要求。
结合桥址处地形、地貌、地质、水文等情况,拟定出三个比选方案,分别是预应力混凝土斜腿刚构桥、预应力混凝土连续梁桥及钢管混凝拱桥;依据安全、适用、经济、美观的原则确定预应力混凝土斜腿刚构桥为推荐方案,跨径布置为62m+136m+62m=165m,截面为单箱双室。
采用悬臂浇注施工方法。
拟定主梁纵、横断面尺寸;采用MIDAS/CIVIL6.71结构分析程序计算施工阶段和成桥后的主梁各控制截面的恒载内力、活载内力、温度内力,分别按承载能力极限状态和正常使用极限状态进行荷载效应组合;估算预应力钢束数量并确定束数;布置钢束位置;对各控制截面进行强度、应力验算,各项验算均满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》要求。
【关键词】:预应力混凝土斜腿刚构桥;悬臂浇注施工;作用效应组合;预应力筋的布置;方案比选目录一概述 (3)二桥型设计方案比选 (5)1设计方案比选概述 (5)2方案论证 (6)三技术指标及设计资料 (11)1技术指标 (11)2桥位地形、地质等资料 (11)3材料参数 (12)四结构体系及尺寸拟定 (15)1设计总说明 (15)2桥梁结构体系 (15)3桥梁截面形式........................................................... 错误!未定义书签。
4斜腿底座及桥台方案............................................... 错误!未定义书签。
五MIDAS建模及施工方案 .. (17)1模型分析 (17)2施工技术研究 (19)六结构内力计算............................................................. 错误!未定义书签。
1计算原则................................................................... 错误!未定义书签。
钢筋混凝土框架结构设计计算书完整版
摘要本设计是武汉地区一大学宿舍楼。
该工程占地40002m,共六层,层高均为3m;结构形式为钢筋混凝土框架结构;抗震要求为六度设防。
本结构设计只选取一榀有代表性的框架(8号轴对应的框架)进行计算。
本设计包括以下内容:一、开题报告,即设计任务,目的要求;二、荷载计算,包括恒荷载,活载,风荷载;三、内力计算和内力组合;四、框架梁柱配筋计算;五、现浇板,楼梯和基础计算;六、参考文献,结束语和致谢。
该设计具有以下特点:一、在考虑建筑结构要求的同时考虑了施工要求及可行性;二、针对不同荷载特点采用多种不同计算方法,对所学知识进行了全面系统的复习;三、框架计算中即运用了理论公式计算又运用了当前工程设计中常用的近似计算方法。
AbstractThis article is to explain a design of a 6-storey-living building in Wuhan. The building is to use frame structure with steel and concrete with the seismic requirements for the minimum security 7.The structural design only selected the framework on the 7th axis for calculation. Throughout the design, it mainly used some basic concept such as the structural system selection, the structure of planar and vertical layout, columns and beams section to determine, load statistics, combination of internal forces, together with the methods of construction and structure.On the preliminary design stage, in order to determine or estimate the structure of layout elements cross-section size, it requires the use of some simple approximate calculation methods, in order to solve the problem quickly and provincially. Therefore, in the designing, the use of a framework structure similar to hand-counting methods, including the role of vertical load under the hierarchical method, the level of seismic shear and D value method to master the basic methods of structural analysis to establish the structure of mechanical behavior of the basic concepts; in the design of the foundation, foundation bearing capacity of soil is an important basis for the design. Bearing capacity of foundation soil is not only related to the nature of soil, but also based on the form and size of upper part. I selected the reinforced concrete foundation which has a better shear capacity and bending capacityKeywords: frame structure, load statistics, combination of internal forces, shear method, carrying capacity1 绪论我所学的专业是土木工程,偏向建筑结构方向,专业的主要课程是力学和结构两大类,注重培养学生侧重于力学理论在结构工程中的应用;可以熟练地对建筑结构进行计算并应用所学的力学理论对计算结果进行分析。
钢筋混凝土过梁计算书
钢筋混凝土过梁计算书在建筑结构中,过梁是一种常见的构件,用于承担门窗洞口上方的荷载,并将其传递到墙体两侧。
钢筋混凝土过梁因其良好的承载能力和耐久性,被广泛应用于各类建筑中。
下面将详细介绍钢筋混凝土过梁的计算方法。
一、设计资料1、过梁所承受的洞口尺寸:宽_____mm,高_____mm。
2、墙体材料:_____,墙体厚度_____mm。
3、过梁上的荷载:恒载标准值:包括过梁自重、洞口上方墙体自重等,_____kN/m。
活载标准值:根据使用功能确定,_____kN/m。
二、过梁的类型选择根据洞口的跨度和墙体的高度,选择合适的过梁类型。
常见的有现浇钢筋混凝土过梁和预制钢筋混凝土过梁。
对于跨度较小且施工条件允许的情况,可采用现浇过梁;对于跨度较大或施工进度要求较高的情况,预制过梁可能更为合适。
三、计算荷载1、恒载计算过梁自重:根据过梁的截面尺寸和混凝土容重计算,容重一般取25kN/m³。
墙体自重:根据墙体厚度和高度以及墙体材料的容重计算。
2、活载计算按照规范要求,根据过梁所承受的使用功能确定活载标准值。
3、荷载组合一般情况下,采用基本组合进行计算,即恒载乘以分项系数γG,活载乘以分项系数γQ,然后将两者相加。
四、内力计算1、弯矩计算对于简支梁,弯矩最大值出现在跨中位置,M = 1/8 × q × l²,其中q 为荷载组合值,l 为过梁的计算跨度。
2、剪力计算剪力最大值出现在支座处,V = 1/2 × q × l 。
五、正截面承载力计算1、确定混凝土强度等级和钢筋级别。
2、计算受压区高度 x:根据平衡条件,M =α1 × f c × b × x × (h 0 x/2) ,其中α1 为系数,f c 为混凝土轴心抗压强度设计值,b 为过梁截面宽度,h 0 为截面有效高度。
3、计算所需钢筋面积 A s :A s = M /(f y × h 0 ),f y 为钢筋抗拉强度设计值。
(完整版)钢筋混凝土过梁计算书
结构构件计算书3钢筋混凝土过梁计算书项目名称 ______________ 日设计者 ________________ 校—、构件编号:GL-1二、示意图:In三、设计依据《混凝土结构设计规范》 (GB 50010-2010)《砌体结构设计规范》 (GB 50003-2001)四、计算信息1. 几何参数过梁高度h = 300 mm过梁宽度b = 240 mm过梁净跨 Ln = 2500 mm过梁梁端的支承长度 a = 300 mm过梁上墙体高度 hw = 1000 mm墙体厚度 bw = 240 mm2. 材料信息砌体类型:烧结普通砖 砌体强度等级:MU10 砂浆强度:M5砌体材料抗压强度设计值调整系数 丫 a = 1.00纵筋种类:HPB300 fy = 270.00 N/mm 箍筋种类:HPB300 fyv = 270.00 N/mm 箍筋间距:s = 200 mm3. 计算信息结构重要性系数:丫 o = 1.0纵筋合力点至近边距离:as = 35 mm4. 荷载信息恒载分项系数:丫 G = 1.35砌体材料容重:丫 W = 18.00 kN/m 过梁容重:丫 L = 25.00 kN/m 3梁板传来荷载设计值:qb = 10.00 kN/m bEs = 210000.00 N/mm2五、计算过梁荷载设计值1. 墙体荷载gk w = 丫W*bw*Ln/3 = 18.00*0.24*2.50/3 = 3.60 kN/m2. 过梁自重gk L = Y L*b*h = 25.00*0.24*0.30 = 1.80 kN/m3. 过梁上荷载设计值p = 丫O[丫G(gk w+gk L)+qb] = 1.00[1.35(3.60+1.80)+10.00] = 17.29 kN/m六、过梁截面配筋1. 计算过梁的计算跨度Lo = min(Ln+a,1.05L n) = min (2.50+0.30,1.05*2.50) = 2.625 m2. 计算过梁跨中最大弯矩2 2MU = 1/8*p*Lo = 1/8*17.29*2.625 = 14.89 kN •m3. 计算截面有效高度ho=h-as=300-35=265mm4. 计算相对界限受压区高度E b=3 1/(1+fy/(Es* & cu))=0.80/(1+270/(2.1*10 5*0.0033))=0.5765. 确定计算系数6a s=Y o*M/( a 1*fc*b*ho*ho)=1.0*14.892*10 心.0*7.2*240*265*265)=0.1236. 计算相对受压区高度E =1-sqrt(1- 2a s)=1 -sqrt(1- 2*0.123)=0.131 b=0.576 满足要求。
钢筋混凝土挑梁计算书
钢筋混凝土挑梁计算书在建筑结构中,钢筋混凝土挑梁是一种常见且重要的构件,它承担着将上部荷载传递到支撑结构的重要任务。
为了确保挑梁的安全性和稳定性,我们需要进行详细而准确的计算。
以下将对钢筋混凝土挑梁的计算过程进行详细阐述。
一、设计资料首先,我们需要明确挑梁所承受的荷载情况以及相关的设计参数。
1、挑梁的跨度:假设为 L 米。
2、恒载标准值:包括挑梁自重以及可能存在的其他恒载,假设为g₁ kN/m。
3、活载标准值:例如人员活动、临时堆放的物品等产生的荷载,假设为 q₁ kN/m。
4、混凝土强度等级:比如 C30。
5、钢筋级别:选用 HRB400 级钢筋。
二、荷载计算1、恒载设计值 g = 12×g₁ kN/m2、活载设计值 q = 14×q₁ kN/m三、挑梁的内力计算1、最大弯矩设计值在挑梁的外端,最大弯矩 Mmax = g×L²/2 + q×L²/22、剪力计算挑梁根部的剪力 Vmax = g×L + q×L四、挑梁的截面尺寸选择1、挑梁的截面高度 h 一般取 L/6 L/8 ,同时不应小于 300mm 。
2、截面宽度 b 通常取 200mm 300mm 。
五、正截面受弯承载力计算1、计算受压区高度 x根据公式α₁f₁cbx = fyAs ,其中α₁为系数,f₁c 为混凝土轴心抗压强度设计值,b 为截面宽度,fy 为钢筋抗拉强度设计值,As 为受拉钢筋的截面面积。
2、计算相对受压区高度ξ = x/h₀,h₀为截面有效高度。
3、若ξ ≤ ξb (ξb 为相对界限受压区高度),则满足要求,可计算出受拉钢筋的面积 As = Mmax /(fy × h₀(1 05ξ) )。
4、根据计算出的 As ,选择合适的钢筋直径和根数。
六、斜截面受剪承载力计算1、验算截面尺寸当 hw /b ≤ 4 时,V ≤ 025βcf₁cbh₀,其中 hw 为截面的腹板高度,βc 为混凝土强度影响系数。
支撑体系计算书
模板支撑体系计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-20113、《混凝土结构设计规范》GB 50010-20104、《建筑结构荷载规范》GB 50009-20125、《钢结构设计规范》GB 50017-2003一、工程属性二、荷载设计三、模板体系设计设计简图如下:四、面板验算取单位宽度b=1000mm ,按三等跨连续梁计算:W =bh 2/6=1000×14×14/6=32666.667mm 3,I =bh 3/12=1000×14×14×14/12=228666.667mm 4q 1=0.9×max[1.2(G 1k +(G 2k +G 3k )×h)+1.4Q 2k ,1.35(G 1k +(G 2k +G 3k )×h)+1.4ψc Q 2k ]×b=0.9×max[1.2×(0.1+(24+1.5)×0.9)+1.4×2,1.35×(0.1+(24+1.5)×0.9)+1.4×0.7×2]×1=29.77kN/mq 1静=0.9×1.35×[G 1k +(G 2k +G 3k )×h]×b =0.9×1.35×[0.1+(24+1.5)×0.9]×1=28.006kN/mq 1活=0.9×1.4×0.7×Q 2k ×b =0.9×1.4×0.7×2×1=1.764kN/m q 2=[1×(G 1k +(G 2k +G 3k )×h)]×b =[1×(0.1+(24+1.5)×0.9)]×1=23.05kN/m计算简图如下: 1、强度验算M max =0.1q 1静L 2+0.117q 1活L 2=0.1×28.006×0.12+0.117×1.764×0.12=0.03kN ·mσ=M max /W =0.03×106/32666.667=0.92N/mm 2≤[f]=15N/mm 2 满足要求! 2、挠度验算νmax =0.677q 2L 4/(100EI)=0.677×23.05×1004/(100×5400×228666.667)=0.013mm ≤[ν]=L/250=100/250=0.4mm 满足要求! 3、支座反力计算设计值(承载能力极限状态)R 1=R 4=0.4q 1静L+0.45q 1活L=0.4×28.006×0.1+0.45×1.764×0.1=1.2kN R 2=R 3=1.1q 1静L+1.2q 1活L=1.1×28.006×0.1+1.2×1.764×0.1=3.292kN 标准值(正常使用极限状态)R 1'=R 4'=0.4q 2L=0.4×23.05×0.1=0.922kN R 2'=R 3'=1.1q 2L=1.1×23.05×0.1=2.536kN 五、小梁验算承载能力极限状态:梁底面板传递给左边小梁线荷载:q 1左=R 1/b=1.2/1=1.2kN/m 梁底面板传递给中间小梁最大线荷载:q 1中=Max[R 2,R 3]/b = Max[3.292,3.292]/1= 3.292kN/m梁底面板传递给右边小梁线荷载:q 1右=R 4/b=1.2/1=1.2kN/m 小梁自重:q 2=0.9×1.35×(0.3-0.1)×0.3/3 =0.024kN/m 梁左侧模板传递给左边小梁荷载q 3左=0.9×1.35×0.5×(0.9-0.12)=0.474kN/m梁右侧模板传递给右边小梁荷载q 3右=0.9×1.35×0.5×(0.9-0.12)=0.474kN/m梁左侧楼板传递给左边小梁荷载q 4左=0.9×Max[1.2×(0.5+(24+1.1)×0.12)+1.4×2,1.35×(0.5+(24+1.1)×0.12)+1.4×0.7×2]×(0.5-0.3/2)/2×1=1.105kN/m梁右侧楼板传递给右边小梁荷载q 4右=0.9×Max[1.2×(0.5+(24+1.1)×0.12)+1.4×2,1.35×(0.5+(24+1.1)×0.12)+1.4×0.7×2]×((1-0.5)-0.3/2)/2×1=1.105kN/m左侧小梁荷载q 左=q 1左+q 2+q 3左+q 4左 =1.2+0.024+0.474+1.105=2.803kN/m中间小梁荷载q 中= q 1中+ q 2=3.292+0.024=3.317kN/m右侧小梁荷载q 右=q 1右+q 2+q 3右+q 4右 =1.2+0.024+0.474+1.105=2.803kN/m 小梁最大荷载q=Max[q 左,q 中,q 右]=Max[2.803,3.317,2.803]=3.317kN/m 正常使用极限状态:梁底面板传递给左边小梁线荷载:q 1左'=R 1'/b=0.922/1=0.922kN/m 梁底面板传递给中间小梁最大线荷载:q 1中'=Max[R 2',R 3']/b = Max[2.536,2.536]/1= 2.536kN/m梁底面板传递给右边小梁线荷载:q 1右'=R 4'/b=0.922/1=0.922kN/m 小梁自重:q 2'=1×(0.3-0.1)×0.3/3 =0.02kN/m梁左侧模板传递给左边小梁荷载q 3左'=1×0.5×(0.9-0.12)=0.39kN/m 梁右侧模板传递给右边小梁荷载q 3右'=1×0.5×(0.9-0.12)=0.39kN/m 梁左侧楼板传递给左边小梁荷载q 4左'=[1×(0.5+(24+1.1)×0.12)]×(0.5-0.3/2)/2×1=0.615kN/m梁右侧楼板传递给右边小梁荷载q 4右'=[1×(0.5+(24+1.1)×0.12)]×((1-0.5)-0.3/2)/2×1=0.615kN/m 左侧小梁荷载q 左'=q 1左'+q 2'+q 3左'+q 4左'=0.922+0.02+0.39+0.615=1.947kN/m中间小梁荷载q 中'= q 1中'+ q 2'=2.536+0.02=2.556kN/m 右侧小梁荷载q 右'=q 1右'+q 2'+q 3右'+q 4右' =0.922+0.02+0.39+0.615=1.947kN/m小梁最大荷载q'=Max[q 左',q 中',q 右']=Max[1.947,2.556,1.947]=2.556kN/m为简化计算,按简支梁和悬臂梁分别计算,如下图: 1、抗弯验算M max =max[0.125ql 12,0.5ql 22]=max[0.125×3.317×0.52,0.5×3.317×0.32]=0.149kN ·mσ=M max /W=0.149×106/32667=4.569N/mm 2≤[f]=11.44N/mm 2 满足要求! 2、抗剪验算V max =max[0.5ql 1,ql 2]=max[0.5×3.317×0.5,3.317×0.3]=0.995kNτmax =3V max /(2bh 0)=3×0.995×1000/(2×40×70)=0.533N/mm 2≤[τ]=1.232N/mm 2 满足要求! 3、挠度验算ν1=5q'l 14/(384EI)=5×2.556×5004/(384×7040×114.333×104)=0.258mm ≤[ν]=l 1/250=500/250=2mmν2=q'l 24/(8EI)=2.556×3004/(8×7040×114.333×104)=0.322mm ≤[ν]=2l 2/250=2×300/250=2.4mm 满足要求!4、支座反力计算 承载能力极限状态R max =[qL 1,0.5qL 1+qL 2]=max[3.317×0.5,0.5×3.317×0.5+3.317×0.3]=1.824kN 同理可得:梁底支撑小梁所受最大支座反力依次为R 1=1.542kN,R 2=1.824kN,R 3=1.824kN,R 4=1.542kN 正常使用极限状态R max '=[q'L 1,0.5q'L 1+q'L 2]=max[2.556×0.5,0.5×2.556×0.5+2.556×0.3]=1.406kN 同理可得:梁底支撑小梁所受最大支座反力依次为R 1'=1.071kN,R 2'=1.406kN,R 3'=1.406kN,R 4'=1.071kN 六、主梁验算1、抗弯验算主梁弯矩图(kN ·m)σ=M max /W=0.141×106/4120=34.284N/mm 2≤[f]=205N/mm 2满足要求! 2、抗剪验算主梁剪力图(kN)V max =3.366kNτmax =2V max /A=2×3.366×1000/384=17.532N/mm 2≤[τ]=125N/mm 2 满足要求! 3、挠度验算主梁变形图(mm)νmax =0.056mm ≤[ν]=L/250=334/250=1.336mm 满足要求! 4、支座反力计算 承载能力极限状态支座反力依次为R 1=0.295kN ,R 2=3.661kN ,R 3=3.661kN ,R 4=0.295kN 正常使用极限状态支座反力依次为R 1'=0.224kN ,R 2'=2.701kN ,R 3'=2.701kN ,R 4'=0.224kN 七、2号主梁验算P =max[R 2,R 3]=Max[3.661,3.661]=3.661kN ,P '=max[R 2',R 3']=Max[2.701,2.701]=2.701kN 1、抗弯验算2号主梁弯矩图(kN ·m)σ=M max /W=0.641×106/4120=155.509N/mm 2≤[f]=205N/mm 2 满足要求! 2、抗剪验算2号主梁剪力图(kN)V max =2.38kNτmax =2V max /A=2×2.38×1000/384=12.394N/mm 2≤[τ]=125N/mm 2 满足要求! 3、挠度验算2号主梁变形图(mm)νmax =1.533mm ≤[ν]=L/250=1000/250=4mm 满足要求! 4、支座反力计算 极限承载能力状态支座反力依次为R 1=4.942kN ,R 2=7.871kN ,R 3=7.871kN ,R 4=4.942kN 立柱所受主梁支座反力依次为R 2=7.871/1=7.871kN ,R 3=7.871/1=7.871kN 八、纵向水平钢管验算P =max[R 1,R 4]=0.295kN ,P '=max[R 1',R 4']=0.224kN 计算简图如下: 1、抗弯验算纵向水平钢管弯矩图(kN ·m)σ=M max /W =0.052×106/4120=12.531N/mm 2≤[f]=205N/mm 2满足要求! 2、抗剪验算纵向水平钢管剪力图(kN)V max =0.192kNτmax =2V max /A=2×0.192×1000/384=0.999N/mm 2≤[τ]=125N/mm 2 满足要求! 3、挠度验算纵向水平钢管变形图(mm)νmax =0.127mm ≤[ν]=L/250=1000/250=4mm 满足要求! 4、支座反力计算支座反力依次为R 1=0.398kN ,R 2=0.634kN ,R 3=0.634kN ,R 4=0.398kN 同理可得:两侧立柱所受支座反力依次为R 1=0.634kN ,R 4=0.634kN 九、可调托座验算1、扣件抗滑移验算两侧立柱最大受力N =max[R 1,R 4]=max[0.634,0.634]=0.634kN ≤1×8=8kN单扣件在扭矩达到40~65N·m且无质量缺陷的情况下,单扣件能满足要求!2、可调托座验算可调托座最大受力N=max[R2,R3]=7.871kN≤[N]=30kN满足要求!十、立柱验算1、长细比验算l=h=1500mmλ=l/i=1500/16=93.75≤[λ]=150长细比满足要求!查表得,φ=0.6412、风荷载计算Mw =0.9×φc×1.4×ωk×la×h2/10=0.9×0.9×1.4×0.29×1×1.52/10=0.074kN·m3、稳定性计算根据《建筑施工模板安全技术规范》JGJ162-2008,荷载设计值q 1有所不同:1)面板验算q 1=0.9×[1.2×(0.1+(24+1.5)×0.9)+1.4×0.9×2]×1=27.162kN/m 2)小梁验算q 1=max{1.098+0.9×1.2×[(0.3-0.1)×0.3/3+0.5×(0.9-0.12)]+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×max[0.5-0.3/2,(1-0.5)-0.3/2]/2×1,3.01+0.9×1.2×(0.3-0.1)×0.3/3}=3.032kN/m 同上四~八计算过程,可得:R 1=0.574kN ,R 2=7.003kN ,R 3=7.003kN ,R 4=0.574kN立柱最大受力N w =max[R 1+N 边1,R 2,R 3,R 4+N 边2]+0.9×1.2×0.15×(31.2-0.9)+M w /l b =max[0.574+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×(1+0.5-0.3/2)/2×1,7.003,7.003,0.574+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×(1+1-0.5-0.3/2)/2×1]+4.909+0.074/1=11.985kNf =N/(φA)+M w /W =11985.215/(0.641×384)+0.074×106/4120=66.653N/mm 2≤[f]=205N/mm 2 满足要求! 十一、高宽比验算根据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 第6.9.7:支架高宽比不应大于3 H/B=31.2/20=1.56<3满足要求,不需要进行抗倾覆验算 ! 十二、立柱支承面承载力验算F 1=N=11.985kN 1、受冲切承载力计算根据《混凝土结构设计规范》GB50010-2010第6.5.1条规定,见下表可得:βh =1,f t =0.858N/mm 2,η=1,h 0=h-20=100mm , u m =2[(a+h 0)+(b+h 0)]=1500mmF=(0.7βh f t +0.25σpc ,m )ηu m h 0=(0.7×1×0.858+0.25×0)×1×1500×100/1000=90.09kN ≥F 1=11.985kN 满足要求!2、局部受压承载力计算根据《混凝土结构设计规范》GB50010-2010第6.6.1条规定,见下表可得:f c =7.488N/mm 2,βc =1,βl =(A b /A l )1/2=[(a+2b)×(b+2b)/(ab)]1/2=[(1000)×(1350)/(100×450)]1/2=5.477,A ln =ab=45000mm 2F=1.35βc βl f c A ln =1.35×1×5.477×7.488×45000/1000=2491.568kN ≥F 1=11.985kN 满足要求!Q235A 钢管轴心受压构件的稳定系数。
超高、超重、大跨度钢筋混凝土劲性梁施工技术
超高、超重、大跨度钢筋混凝土劲性梁施工技术梁底支撑方木的计算需要考虑到梁底荷载的承载能力和支撑方木的稳定性。
根据现场实际情况,采用了48×3.5钢管作为支撑方木,通过验算确定了支撑方木的横跨间距和步距,同时采用可调支托和普通铸铁扣件进行连接,确保了支撑方木的稳定性和承载能力。
三)、立杆的计算立杆的计算需要考虑到其承载能力和稳定性,同时还需要考虑到立杆的连接方式和支撑方式。
本工程采用了满堂钢管脚手架支撑体系,通过对立杆的横跨间距和步距进行验算,采用可调支托和普通铸铁扣件进行连接,确保了立杆的稳定性和承载能力。
三、模板支撑搭设中的构造措施在模板支撑搭设过程中,需要采取一些构造措施来保证搭设质量和施工安全。
本工程采用了满堂钢管脚手架支撑体系,通过对每一个环节的承载进行精准的验算,采用可调支托和普通铸铁扣件进行连接,同时还采用了横向加强杆和斜向加强杆来提高支撑体系的稳定性,确保了模板支撑搭设的质量和施工安全。
四、混凝土配合比的设计及原材料的选择在混凝土配合比的设计和原材料的选择中,需要考虑到混凝土的强度和耐久性。
本工程采用了C50的混凝土配合比,同时选择了优质的水泥、骨料和___作为原材料,确保了混凝土的强度和耐久性。
五、钢骨梁下钢筋密集部位混凝土的浇筑在钢骨梁下钢筋密集部位混凝土的浇筑中,需要采取一些措施来保证混凝土的浇筑质量。
本工程采用了振动棒进行混凝土的浇筑,同时还采用了密集振捣和重力振捣两种方式进行混凝土的密实,确保了钢骨梁下钢筋密集部位混凝土的浇筑质量。
根据方木长度,按照三跨连续梁计算其抗弯强度和刚度。
在计算中,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和。
同时,通过对支撑方木的抗压强度、抗剪强度、最大挠度计算值与设计值的比较,达到设计要求。
钢管托梁按照方木集中荷载与托梁自重均布荷载下多跨连续梁计算。
通过对钢管托梁的抗压强度、最大挠度计算值与设计值的比较,达到设计要求。
在托梁与立杆连接时,根据托梁支座反力验算扣件的抗滑承载力。
钢结构课程设计计算书-跨度为24m
钢结构课程设计任务书姓名:杨文博学号:A13110059 指导教师:王洪涛目录1、设计资料 01。
1结构形式 (2)1.2屋架形式及选材 (2)1.3荷载标准值(水平投影面计) (2)2、支撑布置 (2)2。
1桁架形式及几何尺寸布置 (2)2。
2桁架支撑布置如图 (3)3、荷载计算 (5)4、内力计算 (5)5、杆件设计 (8)5。
1上弦杆 (8)5。
2下弦杆 (9)5。
3端斜杆A B (9)5.4腹杆 (11)5。
5竖杆 (16)5。
6其余各杆件的截面 (16)6、节点设计 (20)6.1下弦节点“C” (20)6。
2上弦节点“B” (21)6.3屋脊节点“H” (22)6.4支座节点“A” (23)6。
5下弦中央节点“H” (23)参考文献 (27)图纸 (27)1、设计资料1。
1、结构形式某厂房跨度为24m,总长90m,柱距6m,采用梯形钢屋架、1。
5×6。
0m预应力混凝土大型屋面板,屋架铰支于钢筋混凝土柱上,上柱截面400×400,混凝土强度等级为C25,屋面坡度为10=i。
地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为7 :1度,屋架下弦标高为18m;厂房内桥式吊车为2台150/30t(中级工作制),锻锤为2台5t。
1.2、屋架形式及选材屋架跨度为24m,屋架形式、几何尺寸及内力系数如附图所示。
屋架采用的钢材及焊条为:设计方案采用235B钢,焊条为E43型。
1。
3、荷载标准值(水平投影面计)①永久荷载:三毡四油(上铺绿豆砂)防水层0.4 kN/m220厚水泥砂浆找平层0.4 kN/m2100厚加气混凝土保温层0.6kN/m2一毡二油隔气层0.05kN/m2预应力混凝土大屋面板(加灌缝) 1.4kN/m2屋架及支撑自重(按经验公式L.0+=计算) 0.384 KN/m212.0q011②可变荷载:屋面活荷载标准值: 0.8 KN/m2雪荷载标准值: 0.5 KN/m2积灰荷载标准值: 0.7 KN/m22、支撑布置2.1桁架形式及几何尺寸布置如下图2。
350×1000mm梁木模板与支撑计算书
350×1000mm梁木模板与支撑计算书一、梁模板基本参数梁截面宽度 B=350mm,梁截面高度 H=1000mm,H方向对拉螺栓1道,对拉螺栓直径16mm,对拉螺栓在垂直于梁截面方向距离(即计算跨度)550mm。
梁模板使用的木方截面50×70mm,梁模板截面侧面木方距离200mm。
梁底模面板厚度h=10mm,弹性模量E=6000N/mm2,抗弯强度[f]=15N/mm2。
梁侧模面板厚度h=10mm,弹性模量E=6000N/mm2,抗弯强度[f]=15N/mm2。
二、梁模板荷载标准值计算模板自重 = 0.340kN/m2;钢筋自重 = 1.500kN/m3;混凝土自重 = 24.000kN/m3;施工荷载标准值 = 2.500kN/m2。
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载设计值;挠度验算只考虑新浇混凝土侧压力产生荷载标准值。
新浇混凝土侧压力计算公式为下式中的较小值:其中c——混凝土的重力密度,取24.000kN/m3;t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.714h; T ——混凝土的入模温度,取20.000℃;V ——混凝土的浇筑速度,取2.500m/h;H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取1.200m;1——外加剂影响修正系数,取1.000;2——混凝土坍落度影响修正系数,取0.850。
根据公式计算的新浇混凝土侧压力标准值 F1=28.800kN/m2实际计算中采用新浇混凝土侧压力标准值 F1=28.800kN/m 2 倒混凝土时产生的荷载标准值 F2= 6.000kN/m 2。
三、梁底模板木楞计算梁底木方的计算在脚手架梁底支撑计算中已经包含!四、梁模板侧模计算梁侧模板按照三跨连续梁计算,计算简图如下20020020042.96kN/mAB图 梁侧模板计算简图 1.抗弯强度计算抗弯强度计算公式要求: f = M/W < [f] 其中 f —— 梁侧模板的抗弯强度计算值(N/mm 2); M —— 计算的最大弯矩 (kN.m);q —— 作用在梁侧模板的均布荷载(N/mm); q=(1.2×28.80+1.4×6.00)×1.00=42.960N/mm 最大弯矩计算公式如下:M=-0.10×42.960×0.2002=-0.172kN.mf=0.172×106/16666.7=10.310N/mm 2梁侧模面板抗弯计算强度小于15.00N/mm 2,满足要求!2.抗剪计算最大剪力的计算公式如下:Q = 0.6ql 截面抗剪强度必须满足:T = 3Q/2bh < [T] 其中最大剪力 Q=0.6×0.200×42.960=5.155kN截面抗剪强度计算值 T=3×5155/(2×1000×10)=0.773N/mm 2 截面抗剪强度设计值 [T]=1.40N/mm 2面板的抗剪强度计算满足要求!3.挠度计算最大挠度计算公式如下:其中 q = 28.80×1.00=28.80N/mm三跨连续梁均布荷载作用下的最大挠度v = 0.677×28.800×200.04/(100×6000.00×83333.3)=0.624mm梁侧模板的挠度计算值: v = 0.624mm小于 [v] = 200/250,满足要求!五、穿梁螺栓计算计算公式:N < [N] = fA其中 N ——穿梁螺栓所受的拉力;A ——穿梁螺栓有效面积 (mm2);f ——穿梁螺栓的抗拉强度设计值,取170N/mm2;穿梁螺栓承受最大拉力 N = (1.2×28.80+1.4×6.00)×1.00×0.55/1=23.63kN穿梁螺栓直径为16mm;穿梁螺栓有效直径为13.6mm;穿梁螺栓有效面积为 A=144.000mm2;穿梁螺栓最大容许拉力值为 [N]=24.480kN;穿梁螺栓承受拉力最大值为 N=23.628kN;穿梁螺栓的布置距离为侧龙骨的计算间距550mm。
13米跨径钢筋混凝土T梁计算书
13米跨径钢筋混凝土T梁计算书一、基本设计资料1.跨度和桥面宽度(1)标准跨径:13m(墩中心距)。
(2)计算跨径:12.5m。
(3)主梁全长:12.96m。
(4)桥面宽度(桥面净空):净-7+2×1.0m2.技术标准设计荷载:公路—1级,桥面铺装按照5kn/㎡计算,人群荷载为3kN/㎡。
环境标准:I类环境。
设计安全等级:二级。
3.主要材料(1)混凝土:混凝土简支T形梁及横梁采用C40混凝土;桥面铺装上层采用0.03m沥青混凝土,下层为厚0.06~0.13m的C30混凝土,沥青混凝土重度按23kN/3m计,混凝土重度按25kN/3m计。
(2)刚材: HRB400钢筋。
4.构造形式及截面尺寸如下图所示,全桥共由5片T形梁组成,单片T形梁高为1.1m,宽1.8m;桥上横坡为双向2%,坡度由C30混凝土桥面铺装控制;设有五根横梁。
桥梁横断面图 1:100桥梁主要纵断面图 1:1005.设计依据 (1)《公路桥涵设计通用规范》(JTG D60-2015),简称“桥规” (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 62-2018),简称“公 预规”6.参考资料(1)结构设计原理:叶见曙 ,人民交通出版社 (2)桥梁工程:姚玲森,人民交通出版社 (3)公路桥梁设计手册《梁桥》(上、下册)人民交通出版社 (4)桥梁计算示例丛书《混凝土简支梁(板)桥》(第三版)易建国主编。
人民交通出版社; (5)《钢筋混凝土及预应力混凝土简支梁结构设计》闫志刚主编,机械工业出版社。
二、 主梁的计算1、 主梁的荷载横向分布系数1.跨中荷载横向分布系数(按G-M 法)承重机构的宽跨比为:B/L=9/12.5=0.72(1)主梁的抗弯及抗扭惯矩Ix 和ITX 1)求主梁截面的重心位置 (图2)翼缘板厚按平均厚度计算,其平均板厚度为:h1=1/2(10+16)=13cm 则13110(18018)131101822(16018)1113018x a -⨯⨯+⨯⨯=-⨯+⨯=24.19cm2)抗弯惯性矩Ix 为:32324241131110[(18018)13(18018)13(24.19)1811018110(24.19)]1221223557834.01355.7810X I cm m -=⨯-⨯+-⨯⨯-+⨯⨯+⨯⨯-==⨯对于T 形梁截面,抗扭惯性矩可近似按下式计算T 形抗扭惯矩近似等于各个矩形截面的抗扭惯矩之和,即:ITX=∑3ii i tb c式中:Ci 为矩形截面抗扭刚度系数(查附表1);附表-1 bi 、ti 为相应各矩形的宽度与厚度。
支撑体系计算书
模板支撑体系计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-20113、《混凝土结构设计规范》GB 50010-20104、《建筑结构荷载规范》GB 50009-20125、《钢结构设计规范》GB 50017-2003一、工程属性新浇混凝土梁名称KL1 混凝土梁截面尺寸(mm×mm) 300×900 模板支架高度H(m) 31.2 模板支架横向长度B(m) 20模板支架纵向长度L(m) 10.15 梁侧楼板厚度(mm) 120二、荷载设计模板及其支架自重标准值G1k(kN/m2) 面板0.1 面板及小梁0.3 楼板模板0.5 模板及其支架0.75新浇筑混凝土自重标准值G2k(kN/m3) 24混凝土梁钢筋自重标准值G3k(kN/m3) 1.5 混凝土板钢筋自重标准值G3k(kN/m3) 1.1 当计算支架立柱及其他支承结构构件时Q1k(kN/m2)1对水平面模板取值Q2k(kN/m2) 2风荷载标准值ωk(kN/m2) 基本风压ω0(kN/m2) 0.35非自定义:0.29 地基粗糙程度C类(有密集建筑群市区)模板支架顶部距地24面高度(m)风压高度变化系数0.796μz风荷载体型系数μs 1.04三、模板体系设计新浇混凝土梁支撑方式梁两侧有板,梁底小梁平行梁跨方向梁跨度方向立柱间距l a(mm) 1000梁两侧立柱横向间距l b(mm) 1000步距h(mm) 1500新浇混凝土楼板立柱间距l'a(mm)、l'b(mm) 1000、1000混凝土梁距梁两侧立柱中的位置居中梁左侧立柱距梁中心线距离(mm) 500梁底增加立柱根数 2梁底增加立柱布置方式按梁两侧立柱间距均分梁底增加立柱依次距梁左侧立柱距离(mm) 333,667梁底支撑小梁最大悬挑长度(mm) 300梁底支撑小梁根数 4梁底支撑小梁间距100每纵距内附加梁底支撑主梁根数 1结构表面的要求结构表面隐蔽模板及支架计算依据《建筑施工模板安全技术规范》JGJ162-2008 设计简图如下:平面图立面图四、面板验算面板类型覆面木胶合板面板厚度t(mm) 14面板抗弯强度设计值[f](N/mm2) 15 面板抗剪强度设计值[τ](N/mm2) 1.5面板弹性模量E(N/mm2) 5400取单位宽度b=1000mm,按三等跨连续梁计算:W=bh2/6=1000×14×14/6=32666.667mm3,I=bh3/12=1000×14×14×14/12=228666.667mm4q1=0.9×max[1.2(G1k+(G2k+G3k)×h)+1.4Q2k,1.35(G1k+(G2k+G3k)×h)+1.4ψc Q2k]×b=0.9×max[1.2×( 0.1+(24+1.5)×0.9)+1.4×2,1.35×(0.1+(24+1.5)×0.9)+1.4×0.7×2]×1=29.77kN/mq1静=0.9×1.35×[G1k+(G2k+G3k)×h]×b=0.9×1.35×[0.1+(24+1.5)×0.9]×1=28.006kN/mq1活=0.9×1.4×0.7×Q2k×b=0.9×1.4×0.7×2×1=1.764kN/mq2=[1×(G1k+(G2k+G3k)×h)]×b=[1×(0.1+(24+1.5)×0.9)]×1=23.05kN/m计算简图如下:1、强度验算M max=0.1q1静L2+0.117q1活L2=0.1×28.006×0.12+0.117×1.764×0.12=0.03kN·mσ=M max/W=0.03×106/32666.667=0.92N/mm2≤[f]=15N/mm2满足要求!2、挠度验算νmax=0.677q2L4/(100EI)=0.677×23.05×1004/(100×5400×228666.667)=0.013mm≤[ν]=L/250=10 0/250=0.4mm满足要求!3、支座反力计算设计值(承载能力极限状态)R1=R4=0.4q1静L+0.45q1活L=0.4×28.006×0.1+0.45×1.764×0.1=1.2kNR2=R3=1.1q1静L+1.2q1活L=1.1×28.006×0.1+1.2×1.764×0.1=3.292kN标准值(正常使用极限状态)R1'=R4'=0.4q2L=0.4×23.05×0.1=0.922kNR2'=R3'=1.1q2L=1.1×23.05×0.1=2.536kN五、小梁验算小梁类型方木小梁截面类型(mm) 40×70小梁抗弯强度设计值[f](N/mm2) 11.44 小梁抗剪强度设计值[τ](N/mm2) 1.232小梁截面抵抗矩W(cm3) 32.667 小梁弹性模量E(N/mm2) 7040小梁截面惯性矩I(cm4) 114.333 小梁计算方式简支梁承载能力极限状态:梁底面板传递给左边小梁线荷载:q1左=R1/b=1.2/1=1.2kN/m梁底面板传递给中间小梁最大线荷载:q1中=Max[R2,R3]/b = Max[3.292,3.292]/1=3.292kN/m梁底面板传递给右边小梁线荷载:q1右=R4/b=1.2/1=1.2kN/m小梁自重:q2=0.9×1.35×(0.3-0.1)×0.3/3 =0.024kN/m梁左侧模板传递给左边小梁荷载q3左=0.9×1.35×0.5×(0.9-0.12)=0.474kN/m梁右侧模板传递给右边小梁荷载q3右=0.9×1.35×0.5×(0.9-0.12)=0.474kN/m梁左侧楼板传递给左边小梁荷载q4左=0.9×Max[1.2×(0.5+(24+1.1)×0.12)+1.4×2,1.35×(0.5+(24 +1.1)×0.12)+1.4×0.7×2]×(0.5-0.3/2)/2×1=1.105kN/m梁右侧楼板传递给右边小梁荷载q4右=0.9×Max[1.2×(0.5+(24+1.1)×0.12)+1.4×2,1.35×(0.5+(24 +1.1)×0.12)+1.4×0.7×2]×((1-0.5)-0.3/2)/2×1=1.105kN/m左侧小梁荷载q左=q1左+q2+q3左+q4左 =1.2+0.024+0.474+1.105=2.803kN/m中间小梁荷载q中= q1中+ q2=3.292+0.024=3.317kN/m右侧小梁荷载q右=q1右+q2+q3右+q4右 =1.2+0.024+0.474+1.105=2.803kN/m小梁最大荷载q=Max[q左,q中,q右]=Max[2.803,3.317,2.803]=3.317kN/m正常使用极限状态:梁底面板传递给左边小梁线荷载:q1左'=R1'/b=0.922/1=0.922kN/m梁底面板传递给中间小梁最大线荷载:q1中'=Max[R2',R3']/b = Max[2.536,2.536]/1=2.536kN/m梁底面板传递给右边小梁线荷载:q1右'=R4'/b=0.922/1=0.922kN/m小梁自重:q2'=1×(0.3-0.1)×0.3/3 =0.02kN/m梁左侧模板传递给左边小梁荷载q3左'=1×0.5×(0.9-0.12)=0.39kN/m梁右侧模板传递给右边小梁荷载q3右'=1×0.5×(0.9-0.12)=0.39kN/m梁左侧楼板传递给左边小梁荷载q4左'=[1×(0.5+(24+1.1)×0.12)]×(0.5-0.3/2)/2×1=0.615kN/m梁右侧楼板传递给右边小梁荷载q4右'=[1×(0.5+(24+1.1)×0.12)]×((1-0.5)-0.3/2)/2×1=0.615kN/m 左侧小梁荷载q左'=q1左'+q2'+q3左'+q4左'=0.922+0.02+0.39+0.615=1.947kN/m中间小梁荷载q中'= q1中'+ q2'=2.536+0.02=2.556kN/m右侧小梁荷载q右'=q1右'+q2'+q3右'+q4右' =0.922+0.02+0.39+0.615=1.947kN/m小梁最大荷载q'=Max[q左',q中',q右']=Max[1.947,2.556,1.947]=2.556kN/m为简化计算,按简支梁和悬臂梁分别计算,如下图:1、抗弯验算M max=max[0.125ql12,0.5ql22]=max[0.125×3.317×0.52,0.5×3.317×0.32]=0.149kN·m σ=M max/W=0.149×106/32667=4.569N/mm2≤[f]=11.44N/mm2满足要求!2、抗剪验算V max=max[0.5ql1,ql2]=max[0.5×3.317×0.5,3.317×0.3]=0.995kNτmax=3V max/(2bh0)=3×0.995×1000/(2×40×70)=0.533N/mm2≤[τ]=1.232N/mm2满足要求!3、挠度验算ν1=5q'l14/(384EI)=5×2.556×5004/(384×7040×114.333×104)=0.258mm≤[ν]=l1/250=500/250=2 mmν2=q'l24/(8EI)=2.556×3004/(8×7040×114.333×104)=0.322mm≤[ν]=2l2/250=2×300/250=2.4m m满足要求!4、支座反力计算承载能力极限状态R max=[qL1,0.5qL1+qL2]=max[3.317×0.5,0.5×3.317×0.5+3.317×0.3]=1.824kN同理可得:梁底支撑小梁所受最大支座反力依次为R1=1.542kN,R2=1.824kN,R3=1.824kN,R4=1.542kN 正常使用极限状态R max'=[q'L1,0.5q'L1+q'L2]=max[2.556×0.5,0.5×2.556×0.5+2.556×0.3]=1.406kN同理可得:梁底支撑小梁所受最大支座反力依次为R1'=1.071kN,R2'=1.406kN,R3'=1.406kN,R4'=1.071kN 六、主梁验算主梁类型钢管主梁截面类型(mm) Φ48×2.7主梁计算截面类型(mm) Φ48×2.7主梁抗弯强度设计值[f](N/mm2) 205主梁抗剪强度设计值[τ](N/mm2) 125 主梁截面抵抗矩W(cm3) 4.12主梁弹性模量E(N/mm2) 206000 主梁截面惯性矩I(cm4) 9.891、抗弯验算主梁弯矩图(kN·m)σ=M max/W=0.141×106/4120=34.284N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算主梁剪力图(kN)V max=3.366kNτmax=2V max/A=2×3.366×1000/384=17.532N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算主梁变形图(mm)νmax=0.056mm≤[ν]=L/250=334/250=1.336mm满足要求!4、支座反力计算承载能力极限状态支座反力依次为R1=0.295kN,R2=3.661kN,R3=3.661kN,R4=0.295kN正常使用极限状态支座反力依次为R1'=0.224kN,R2'=2.701kN,R3'=2.701kN,R4'=0.224kN七、2号主梁验算主梁类型钢管主梁截面类型(mm) Φ48×2.7主梁计算截面类型(mm) Φ48×2.7主梁抗弯强度设计值[f](N/mm2) 205主梁抗剪强度设计值[τ](N/mm2) 125 主梁截面抵抗矩W(cm3) 4.12主梁弹性模量E(N/mm2) 206000 主梁截面惯性矩I(cm4) 9.89主梁计算方式三等跨连续梁可调托座内主梁根数 1P=max[R2,R3]=Max[3.661,3.661]=3.661kN,P'=max[R2',R3']=Max[2.701,2.701]=2.701k N1、抗弯验算2号主梁弯矩图(kN·m)σ=M max/W=0.641×106/4120=155.509N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算2号主梁剪力图(kN)V max=2.38kNτmax=2V max/A=2×2.38×1000/384=12.394N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算2号主梁变形图(mm)νmax=1.533mm≤[ν]=L/250=1000/250=4mm满足要求!4、支座反力计算极限承载能力状态支座反力依次为R1=4.942kN,R2=7.871kN,R3=7.871kN,R4=4.942kN立柱所受主梁支座反力依次为R2=7.871/1=7.871kN,R3=7.871/1=7.871kN八、纵向水平钢管验算钢管截面类型(mm) Φ48×2.7钢管计算截面类型(mm) Φ48×2.7钢管截面面积A(mm2) 384 钢管截面回转半径i(mm) 16钢管弹性模量E(N/mm2) 206000 钢管截面惯性矩I(cm4) 9.89钢管截面抵抗矩W(cm3) 4.12 钢管抗弯强度设计值[f](N/mm2) 205钢管抗剪强度设计值[τ](N/mm2) 125P=max[R1,R4]=0.295kN,P'=max[R1',R4']=0.224kN计算简图如下:1、抗弯验算纵向水平钢管弯矩图(kN·m)σ=M max/W=0.052×106/4120=12.531N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算纵向水平钢管剪力图(kN)V max=0.192kNτmax=2V max/A=2×0.192×1000/384=0.999N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算纵向水平钢管变形图(mm)νmax=0.127mm≤[ν]=L/250=1000/250=4mm满足要求!4、支座反力计算支座反力依次为R1=0.398kN,R2=0.634kN,R3=0.634kN,R4=0.398kN同理可得:两侧立柱所受支座反力依次为R1=0.634kN,R4=0.634kN九、可调托座验算荷载传递至立柱方式可调托座2 可调托座承载力容许值[N](kN) 30扣件抗滑移折减系数k c 11、扣件抗滑移验算两侧立柱最大受力N=max[R1,R4]=max[0.634,0.634]=0.634kN≤1×8=8kN单扣件在扭矩达到40~65N·m且无质量缺陷的情况下,单扣件能满足要求!2、可调托座验算可调托座最大受力N=max[R2,R3]=7.871kN≤[N]=30kN满足要求!十、立柱验算立柱钢管截面类型(mm) Φ48×2.7立柱钢管计算截面类型(mm) Φ48×2.7钢材等级Q235 立柱截面面积A(mm2) 384回转半径i(mm) 16 立柱截面抵抗矩W(cm3) 4.12抗压强度设计值[f](N/mm2) 205 支架自重标准值q(kN/m) 0.151、长细比验算l0=h=1500mmλ=l0/i=1500/16=93.75≤[λ]=150长细比满足要求!查表得,φ=0.6412、风荷载计算M w=0.9×φc×1.4×ωk×l a×h2/10=0.9×0.9×1.4×0.29×1×1.52/10=0.074kN·m3、稳定性计算根据《建筑施工模板安全技术规范》JGJ162-2008,荷载设计值q1有所不同:1)面板验算q1=0.9×[1.2×(0.1+(24+1.5)×0.9)+1.4×0.9×2]×1=27.162kN/m2)小梁验算q1=max{1.098+0.9×1.2×[(0.3-0.1)×0.3/3+0.5×(0.9-0.12)]+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×max[0.5-0.3/2,(1-0.5)-0.3/2]/2×1,3.01+0.9×1.2×(0.3-0.1)×0.3/3}=3.032kN/m 同上四~八计算过程,可得:R1=0.574kN,R2=7.003kN,R3=7.003kN,R4=0.574kN立柱最大受力N w=max[R1+N边1,R2,R3,R4+N边2]+0.9×1.2×0.15×(31.2-0.9)+M w/l b=max[0.57 4+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×(1+0.5-0.3/2)/2×1,7.003,7.003,0.574+0.9×[1.2×(0.5+(24+1.1)×0.12)+1.4×0.9×1]×(1+1-0.5-0.3/2)/2×1]+4.909+0.074/1=11.985kNf=N/(φA)+M w/W=11985.215/(0.641×384)+0.074×106/4120=66.653N/mm2≤[f]=205N/mm2 满足要求!十一、高宽比验算根据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011第6.9.7:支架高宽比不应大于3H/B=31.2/20=1.56<3满足要求,不需要进行抗倾覆验算!十二、立柱支承面承载力验算支撑层楼板厚度h(mm) 120 混凝土强度等级C30 混凝土的龄期(天) 14 混凝土的实测抗压强度f c(N/mm2) 7.488 混凝土的实测抗拉强度f t(N/mm2) 0.858 立柱垫板长a(mm) 100 立柱垫板宽b(mm) 450F1=N=11.985kN1、受冲切承载力计算根据《混凝土结构设计规范》GB50010-2010第6.5.1条规定,见下表公式参数剖析F l≤(0.7βh f t+0.25σpc,m)ηu m h0F1局部荷载设计值或集中反力设计值βh截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9;中间线性插入取用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨度钢筋混凝土支撑体系计算书一、梁模板钢管高支撑架计算书高支撑架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。
本计算书还参照《施工技术》2002.3.《扣件式钢管模板高支撑架设计和使用安全》。
模板支架搭设高度为29.5米,基本尺寸为:梁截面 B ×D=1500mm ×2500mm ,中间空腔部分尺寸为:B ×D=700mm ×1700mm ,计算时可简化为梁截面 B ×D=1500mm ×1700mm ,梁支撑立杆的横距(跨度方向) l=0.60米,立杆的步距 h=1.20米,梁底增加5道承重立杆。
梁顶托采用100×100mm 方木。
295001200170图1 梁模板支撑架立面简图采用的钢管规格为48×3.5。
二、托梁的计算托梁按照集中与均布荷载下多跨连续梁计算。
集中荷载取方木的支座力,如图所示。
均布荷载取托梁的自重 q= 0.096kN/m 。
托梁计算简图0.534托梁弯矩图(kN.m)0.002托梁变形图(mm)10.1610.16托梁剪力图(kN)最大弯矩 M= 0.534kN.m最大支座 F= 17.691kN最大变形 V= 0.1mm顶托梁的截面力学参数为:本结构中,截面惯性矩I和截面抵抗矩W分别为:W = 10.00×10.00×10.00/6 = 166.67cm3;I = 10.00×10.00×10.00×10.00/12 = 833.33cm4;1、顶托梁抗弯强度计算抗弯计算强度 f=0.534×106/166666.7=3.20N/mm2顶托梁的抗弯计算强度小于13.0N/mm2,满足要求!2、顶托梁抗剪计算截面抗剪强度必须满足:T = 3Q/2bh < [T]截面抗剪强度计算值:T=3×10163/(2×100×150)=1.016N/mm2截面抗剪强度设计值 [T]=1.30N/mm2顶托梁的抗剪强度计算满足要求!3、顶托梁挠度计算最大变形 v =0.1mm顶托梁的最大挠度小于450.0/250,满足要求!三、扣件抗滑移的计算纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):R ≤ Rc其中 Rc ——扣件抗滑承载力设计值,取8.0kN;R ——纵向或横向水平杆传给立杆的竖向作用力设计值;上部荷载没有通过纵向或横向水平杆传给立杆,无需计算。
四、立杆的稳定性计算立杆的稳定性计算公式其中 N ——立杆的轴心压力设计值,它包括:横杆的最大支座反力 N1=17.69kN (已经包括组合系数1.4)脚手架钢管的自重 N2 = 1.2×0.173×29.500=6.138kNN = 17.691+6.138+0.000=23.830kN——轴心受压立杆的稳定系数,由长细比 l0/i 查表得到;i ——计算立杆的截面回转半径 (cm);i = 1.58A ——立杆净截面面积 (cm2); A = 4.89W ——立杆净截面抵抗矩(cm3);W = 5.08——钢管立杆抗压强度计算值 (N/mm2);[f] ——钢管立杆抗压强度设计值,[f] = 205.00N/mm2; l0 ——计算长度 (m);如果完全参照《扣件式规范》不考虑高支撑架,由公式(1)或(2)计算l0 = k1uh (1)l0 = (h+2a) (2)k1 —计算长度附加系数,按照表1取值为1.167; u —计算长度系数,参照《扣件式规范》表5.3.3;u = 1.70a —立杆上端伸出顶层横杆中心线至模板支撑点的长度;a = 0.20m;公式(1)的计算结果: = 158.22N/mm2,立杆的稳定性计算 < [f],满足要求!公式(2)的计算结果: = 83.91N/mm2,立杆的稳定性计算< [f],满足要求!如果考虑到高支撑架的安全因素,适宜由公式(3)计算l0 = k1k2(h+2a) (3)k2 ——计算长度附加系数,按照表2取值为1.090;公式(3)的计算结果:= 119.83N/mm2,立杆的稳定性计算 < [f],满足要求!五、模板结构计算书已知:模板高度H=2500mm,面板δ=6mm,横肋为8#槽钢横、竖背楞为双向12#槽钢,横肋布置间距为300毫米,模板为整体式大钢模板,横背楞布置间距见下图,现计算模板的强度与刚度。
1、荷载计算恒载计算采用内部振捣器振捣的新法砼侧压力标准值:F=0.22rtOβ1β2V1/2其中r:为砼重力密度,普通钢砼取24KN/m3to:新浇砼初凝时间,to=200/(T+15),T为砼温度,T:常温下取15℃ to=6.67V:砼浇注速度1.5m/hβ1:外加剂影响系数,加外加剂时取1.2β2:砼坍落度修正系数,泵送砼取1.15所以:F=0.22rtOβ1β2V1/2=0.22×24×6.67×1.2×1.15×1.51/2=50KN/m2混凝土側压力设计值:F1=F×1.2=50×1.2=60KN/m2活荷载的计算①倾倒混凝土时产生的荷载标准值按容量大于0.8M3的运输工具计算,取6KN/m2②活荷载设计值F2=6×1.4=8.4KN/m21.4为动荷载系数,所以F3=60+8.4=68.4KN/m2面板的计算面板是以横肋为支撑的多跨连续梁,其计算简图为:将其简化为三跨连续梁3、强度计算取1mm板条为计算单元,并考虑到对荷载设计值乘以0.85荷载调整系数,则恒载F1=60×0.85=51KN/m2=0.051N/mm2q1=0.051×1=0.051N/mm活荷载F2=8.4×0.85=7.14KN/m2=0.0714N/mm2q2=0.0714×1=0.0714N/mm取 Mmax=max{M1max,M2max}M1max =(0.08×0.051+0.101×0.0714)×3002=1016.23N.mm M2max =(0.025×0.051+0.075×0.0714)×3002=596.7N.mm WX=1/6×1×62=6mm3σ=Mmax/(γ.WX)=1016.23/(1×6)=169.37N/mm<215N/mm2(γX为塑性发展系数, γx=1.0)挠度验算ωmax=max{ω1 max,ω2 max }所以ωmax=ω1max=0.677×0.051×3004/(100×2.06×105×18)=0.743mm又允许挠度[V]=300/250=1.2mm>0.743mm即满足要求.4、穿墙螺栓计算:根据《建筑施工手册》中穿墙螺栓的计算公式N≤An×fbfb为A3钢抗拉强度设计值选用Φ=18穿墙螺栓An=560.6㎡Fb=215N/mm2An×fb=560.6mm2×215N/mm2=120.53KN按穿墙螺栓横向最大间距0.9m,纵向最大间距0.5m计算穿墙螺栓承受的拉力为N=0.9×0.50×68.4=30.78KN<An×fb故穿墙螺栓满足要求。
5、横背楞的计算:强度的计算横背楞是以穿墙螺栓为支座的连续梁,其计算简图为:q=F3×L=68.4×0.9=61.56KN/mf:砼侧压力最大值1:穿墙螺栓最大间距所以竖背楞最大弯距为Mmax=1/8q12σ=Mmax/Wx其中:查表得双向[10#槽钢的净截面抵抗距为Wx=39.7×2=79.4×103mm3σ=Mmax/W=(1/8)×61.56×1.12×106/79400=117.3N/mm2依据手册Q235钢抗拉强度设计值为[f]=215N/mm2σ<[f] 故强度满足要求刚度计算:依<建筑施工手册>:q1竖背楞承受的是水平荷载标准值q1=50×1.1=55KN/m6、悬臂部分:ωmax =q1a4/8E×Ix其中:E为弹性模量,其值为2.06×105Ix惯性矩,其值为396.6cm4a=150mm(模板两边最大悬臂长度)则:ωmax =55×1504/8×2.06×396.6×109=0.0043mm允许用挠度[ω]=150/500=0.3mmωmax <[ω] 故悬臂部分满足要求!7、跨中部分:依《建筑施工手册》:ωmax=q1l4[5-24(a/1)2]/384EIx其中:a/1=150/1100=0.136ωmax=50×11004(5-24×0.1362)/384×2.06×396.6×109 =1.06mmωmax<[ω]=1/500=1100/500=2.2mm故跨中部分刚度满足要求!8、横肋计算:横肋是支承在竖背楞上的连续梁,其计算间图为强度计算:横肋布置间距一般L=300mm左右考虑q=F1×h=68.4×0.3=20.52KN.m依据《建筑施工手册》,考虑载荷最为不利时Mmax=KmqL2式中Km为弯矩影响系数,最不利情况下取0.125查表得 [ 8# Wx=25300cm3 Ix=1010000 cm4Mmax=0.125×20.52×14002=50.27N.mmα=M max/(γx×Wx)=50.27×105/1.0×1.01×25.3×103=196.7N/mm2<[f]=215N/mm2故强度满足要求!刚度计算:悬臂部分:而ωmax=q1×h×14/8EIxq=f×h=50×0.30=15KNh为横肋最大悬臂长度取300mmωmax=15×3004/(8×2.06×101.3×109)=0.073mm许用挠度[ω]=300/400=0.75mmωmax<[ω]跨中部分:ωmax=q1×h24(5-24a2)/384EIx其中:a悬臂部分与跨中部分长度之比a=300/1400=0.21h2为垮中最大垮距1400mmωmax=15×14004×(5-24×0.212)/ 384×2.06×101×109=2.84mm许用挠度 [ω]=1400/400=3.5mmωmax<[ω]吊钩的计算:依据《砼结构设计规范》(GBJ10-89)规定,吊钩计算拉应力不应大于50KN/m2,吊钩的截面面积An=Px/2×50(mm2)Px吊装时所承受大模板的自重载荷值,按模板块最大尺寸为6400×2950模板自重按120Kg/m2考虑P=120×6×2.7=2265.6KNPx=1.3×2265.6=2945.28KN式中1.3为动荷载系数An=294.52mm2而An的设计值:吊钩采用φ=20mm圆钢,其净截面面积为314mm2,每块模板装两个吊钩An1=628mm2>An 故吊钩满足要求!说明:因砼侧力即受温度影响,又受浇注速度影响,因此当夏季施工温度较高时,可适当增大砼浇筑速度,但最大不能超过2米/小时,秋冬季施工温度降低,砼浇筑速度也要适当降低。