五年级数学最大公因数与最小公倍数练习题

合集下载

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数公因数问题1:用短除法求下列各组数的最大公因数。

①12和18 ②34和102 ③15和50 ④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。

两个数的最大公因数用( )表示。

1218269323①②34102217511713③④155053101224362612182369312(34、102)= 2×17=34(15、50)= 5(15、24、36)= 2×2×3=123试一试:求下列各组数的最大公因数(用短除法)①20和30②28和84③54和90④30、45和60问题2:求24、60和132三个数,共有多少个公因数?其中最大的公因数是多少?想:这道题可用列举法来解答,但比较麻烦。

我们可以用短除法求出这三个数的最大公因数,然后根据几个自然数最大公因数的因数个数等于这几个自然数公因数的个数的规律,找到这三个数的公因数。

24601322123066261533325(24、60、132)= 2×2×3=12,因为24、60和132的最大公因数是12,而12=22×3,得(2+1)×(1+1)=6,所以,24、60和132共有6个公因数,最大公因数是12。

解:11试一试:先用短除法求出每一组数的最大公因数,再求出每组数中公因数的总个数。

解:同时除以公因数2同时除以公因数2同时除以公因数3除到三个商只有公因数1为止(12、18)= 2×3=6①16和24 ②28和70 ③150和180 ④60、75和150问题3:有三根木棒,分别长12厘米,44厘米,56厘米,把它们都截成同样长的小棒(整厘米),不许有剩余,每根小棒最长能有多少厘米?想:把每根木棒截成同样长的小棒后不许有剩余,每根小棒的长度必须是各自木棒长度的因数;把三根小棒截成同样长的小棒,不许有剩余,每根小棒的长就是这三根小棒的公因数;每根小棒最长多少厘米,就是求这三根小棒的最大公因数。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。

把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。

最大公因数和最小公倍数练习的的题目

最大公因数和最小公倍数练习的的题目

一、写出下列各数的最大公因数和最小公倍数。

(1)4和6的最大公因数是________ ;最大公倍数是___________ ;⑵9和3的最大公因数是___________ ;最大公倍数是__________ ;⑶9和18的最大公因数是__________ ;最大公倍数是__________ ;(4)____________________________ 11和44的最大公因数是;最大公倍数是;(5)__________________________ 8和11的最大公因数是 ;最大公倍数是;⑹1和9的最大公因数是___________ ;最大公倍数是___________ ;(7)________________________________________________________ 已知A= 2 X2X3 X5 , B = 2 X3 X7,那么A、B的最大公因数是 __________________ ;最小公倍数是______ ;(8)__________________________________________________________ 已知A = 2 X3 X5 X5 , B = 3 X5 X5 X11,那么A、B的最大公因数是____________ ; 最小公倍数是 _______ 。

二•填空。

1•在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。

2. 在20以的质数中,()加上2还是质数。

3•如果有两个质数的和等于24,可以是()+ (),()+ ()或()+ ()。

4•把330分解质因数是()。

5•—个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。

6.在50以的自然数中,最大的质数是(),最小的合数是()。

最大公因数和最小公倍数练习题(专项练习)

最大公因数和最小公倍数练习题(专项练习)

最大公因数和最小公倍数练习题姓名:成绩一. 填空题。

1. A与B的最小公倍数是10,那么它们的下一个公倍数应该是()。

2、所有自然数的公因数为()。

3、都是自然数,如果,的最大公因数是(),最小公倍数是()。

4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。

5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

6. 分母是15的最简真分数一共有( )个。

三. 在左边写出每组数的最大公约数,右边写最小公倍数。

()26和13()()13和6()()4和6()()5和9()()29和87()()30和15()()13、26和52()()2、3和7()四. 用短除法求下面每组数的最大公因数和最小公倍数。

(注意格式完整)45和60 36和60 27和72 72和80五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关)1、五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?2、五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?3、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?4、7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?5、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

*六. 动脑筋,想一想:*1某数除以3、5、7时都余1,这个数最小是()。

*2)甲,乙,甲和乙的最大公因数是(),甲和乙的最小公倍数是()*3)学校买40支钢笔和50本练习本,平均奖给四年级三好学生,结果钢笔多4支,练习本多2本,三好学生有几人五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关)6、五年级同学参加植树活动,如果8人一组或14人一组,正好分配完,五年级最少有多少人?7、五年级某班学生在40—50人间,如果分成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?8、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?9、7路车每5分钟发一班车,12路车每8分钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?10、有饼干27千克、糖18千克,这些物品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?6、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数、最大公因子.指两个或多个整数共有约数中最大的一个。

a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法.常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]。

质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2、2、3.它们的积是2×2×3=12.所以.(24、60)=12。

把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30。

短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数。

短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12、15、18的最小公倍数。

五年级数学最大公因数与最小公倍数练习题 甄选

五年级数学最大公因数与最小公倍数练习题   甄选

五年级数学最大公因数与最小公倍数练习题(优选.)最大公因数与最小公倍数练习题1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块?3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不能有剩余,能锯成多少块?4)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?5)用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束花里最少有几朵花?6)从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?8)现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?10).有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?11).a、b两数的最大公因数是12,已知a有8个因数,b有9个因数,求a与b.12).两个数的积是6912,最大公因数是24,求它们的最小公倍数?13).甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?14).求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.最大公因数与最小公倍数练习题班级:姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。

五年级数学最大公因数和最小公倍数应用题

五年级数学最大公因数和最小公倍数应用题

1、一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?2、有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?3、王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?4、五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?5、张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?6、有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?7、某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路至少再车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,到什么时候又可以同时发车?8、一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?9、用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?10、把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3个,得奖的学生最多有几人?11、一个自然数,去除22少2,去除34也少2,这个自然数最大是几?12、一个数除73余1,除98余2,除147余3,这个数最大应是多少?13、有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?14、有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?15、五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?16、有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?17、有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?18、李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?19、缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?20、一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?21、某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?22、开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。

小学五年级最大公因数最小公倍数练习题

小学五年级最大公因数最小公倍数练习题

求最小公倍数,最大公因数练习题一、填空1、当两个数是互质数时,它们的最大公因数是(),它们的最小公倍数是()。

2、甲=2×3×6,乙2×3×7,甲和乙的最大公因数是()×()=(),甲和乙的最小公倍数是()×()×()×()=()。

3、所有自然数的公因数为()。

4、如果m和n是互质数,则它们的最大公因数是(),最小公倍数是()。

5、在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。

6、用一个数去除15和30,正好都能整除,这个数最大是()。

7、两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。

8、两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。

9、某数除以3、5、7时都余1,这个数最小是( )。

10、根据要求写互质数。

(1)、()质数和()奇数。

(2)、()合数和()合数。

(3)、( 9 )和()任意一自然数。

二、判断1、是互质数的两个数必须都是质数。

()2、最小的质数是所有偶数的最大公约数。

()3、有公约数1的两个数,一定是互质数。

()4、 a是质数,b也是质数,a×b-m,(m也是质数),一定是质数。

()5、最大公因数指几个数的共同的因数。

()三、用短除法求最小公倍数。

26和52 69和33 82和1811和77 16和24 688和3444和6 2和9 7和8四、想一想学校买来40支圆珠笔和50本练习本,平均分给四年级三好学生,结果圆珠笔多四支,练习本多二本,四年级有多少三好学生?他们各获得什么奖品?五、生活应用1、五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?2、两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?3、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?4、甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次,甲3天去一次,乙4天去一次,丙5天去一次。

五年级下册数学试题-最大公因数与最小公倍数应用题练习(无答案)人教版

五年级下册数学试题-最大公因数与最小公倍数应用题练习(无答案)人教版

最大公因数与最小公倍数应用题练习1、中心小学五年级学生分为6人一组8人一组或9人一组排队做早操都刚好分完这个年级至少有学生多少人?2、有一堆苹果,8千克一份,9千克一份或10千克一份都会多出3千克,这堆苹果至少有多少千克?3、有24个苹果32个梨。

要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里,苹果和梨各多少?4、把37支钢笔。

和38本书。

平均奖给几个学习成绩优秀的学生结果钢笔多出一只,书还缺两本,最多有几个学生成绩优秀的同学?5、数学兴趣小组有24个男同学。

20个女同学。

要分成小组,每个小组男女同学人数分别相同。

最多可以分成多少个小组?每组至少有多少个男同学?多少个女同学?6、两个数的最大公因数为12。

最小公倍数为180。

这两个数不是倍数求这两个数?7、一个数被2除余1。

被3除余2。

被4除余4。

被6除余5。

这个数最小是几?8、甲乙丙三人,早晨在体育场跑步,甲跑完一圈,要3分钟,乙跑完一圈要7分钟丙,跑完一圈要6分钟三人同时从起点出发经过多长时间,三人再次在起点处相遇?9、上一号,9月18号,五年级一班去划船,他们算一下,如果增加1条船正好每船坐6人,如果减少一条船正好每船坐9人,这个班有多少人?10、有一块长方形纸板长24厘米。

宽15厘米。

将这块纸板剪成同样大小的正方形不能有剩余。

每块小正方形的边长最长是多少厘米?可以截成多少块?11、一张长方形纸长96厘米。

宽60厘米。

如果把它截成同样大小且边长都为整厘米的最大正方形。

且保持纸张没有剩余每个正方形的边长是几厘米?每个正方形的面积是多少?可以截多少个这样的正方形?12、已知两数的最大公因数是31,两数的积是5766。

两个分别是多少?13、五一班和五二班两个班的同学去野炊吃饭时,他们三人一个菜碗,四人一个汤碗,他们共用了28个碗,这两个班参加野炊的同学共有多少人?14、王伯伯有三个小孩,老大3天回家一次,老二4天回家一次,老三6天回家一次,这次10月1日一起回家,上一次是几月几日一起回家?15、一路车每隔6分钟一辆,二路车,每隔10分钟一辆,三路车每隔12分钟一辆,在早上八点同时发车后至少再到什么时候又可以同时发车?16、用一个数去除52余4,再用这个数去除40也余4。

五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)

五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)

五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)一. 口算。

(1)1.5÷0.3=(2)1.8×0.4=(3)5.2×10=(4)4.2÷0.7=(5)3.6÷0.9=(6)0.32÷0.8=(7)14.7÷7=(8)3.5×0.2=(9)2.1×0.6=(10)9.5÷5=(11)12.5×0.8=(12)50×2.4=(13)0.38×10=(14)1.5×0.4=(15)2.8÷0.7=(16)30×1.2=(17)5.6÷0.7=(18)0.03×40=(19)0.5×0.12=(20)11.2×0.2=二、找出下列各组数的最大公因数。

(1)6和18 (2)12和28 (3)48和56 (4)33和55 (5)35和75 (6)40和95 (7)63和54 (8)120和125(9)42和63 (10)168和126 (11)24和58 (12)84和96 (13)270和405 (14)228和177 (15)25、45和75 (16)12、36和42 (17)40、20和35 (18)18、84和120三、找出下列各组数的最小公倍数。

(1)5和7 (2)9和12 (3)6和15 (4)4和12 (5)30和50 (6)45和25 (7)12和32 (8)28和18 (9)15和35 (10)24和18 (11)12和20 (12)45和75 (13)90和27 (14)24和120 (15)6、8和15 (16)12、36和40参考答案:一. 口算。

(1)1.5÷0.3=5 (2)1.8×0.4=0.72 (3)5.2×10=52 (4)4.2÷0.7=6 (5)3.6÷0.9=4 (6)0.32÷0.8=0.4 (7)14.7÷7=2.1 (8)3.5×0.2=0.7 (9)2.1×0.6=1.26 (10)9.5÷5=1.9 (11)12.5×0.8=10 (12)50×2.4=120 (13)0.38×10=3.8 (14)1.5×0.4=0.6 (15)2.8÷0.7=4 (16)30×1.2=36 (17)5.6÷0.7=8 (18)0.03×40=1.2(19)0.5×0.12=0.06(20)11.2×0.2=2.24二、找出下列各组数的最大公因数。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。

小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)

小学数学 五年级 最大公因数和最小公倍数  PPT+作业(带答案)

出现两两互质 [15,20,30]=5×3×2×1×2×1=60
总结:求三个数的最大公因数时,只要商出现互质即可; 求三个数的最,24,48)和 [18,24,48]。 (2)求(16,24,32)和 [16,24,32]。
2 18 24
48
39 3
例6
已知两个自然数的最大公因数是6,最小公倍数是120,求这两个自然数。 已知最大公因数和最小公倍数,通过短除法反推
分析芒果数量和梨的数量与小朋友人数的关系。
芒果和梨都能恰好平均分给小朋友们说明: 小朋友的人数是芒果数量和梨的数量的公因数 小朋友最多时,即求最大公因数
(24,32)=8 最多8个小朋友 芒果:24÷8=3(个) 梨:32÷8=4(个) 答:小朋友最多8个人,这时每个小朋友分到3个芒果,4个梨。
总结:区分题目中要求的量是“最小公倍数”还是“最大公因 数”。
总结:配对法找因数——使用乘积的形式一对一对地寻找因数。
例2
(1)求(12,18,24)和 [12,18,24]。 (2)求(15,20,30)和 [15,20,30]。
短除法找最大公因数与最小公倍数
5 15 20
30
3
4
6
出现互质 (15,20,30)=5
5 15 20
30
33
4
6
21
4
2
1
2
1
不满足“互质”
④a=4,b=8 ⑤a=5,b=7
不符合 符合 A=5×3=15 B=7×3=21
总结:两个自然数分别除以他们的最大公因数,所得的商互质。
练习5
运用短除法求A、B的最大公因数时,过程如下:
如果a+b=15,且a<b,那么A、B分别可能等于多少?

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数

五年级最大公因数和最小公倍数公因数问题1:用短除法求下列各组数的最大公因数。

①12和18 ②34和102 ③15和50 ④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。

两个数的最大公因数用( )表示。

试一试:求下列各组数的最大公因数(用短除法)①20和30 ②28和84 ③54和90 ④30、45和60问题2:求24、60和132三个数,共有多少个公因数?其中最大的公因数是多少?想:这道题可用列举法来解答,但比较麻烦。

我们可以用短除法求出这三个数的最大公因数,然后根据几个自然数最大公因数的因数个数等于这几个自然数公因数的个数的规律,找到这三个数的公因数。

2460132 2123066261533325(24、60、132)= 2×2×3=12,因为24、60和132的最大公因数是12,而12=22×3,得(2+1)×(1+1)=6,所以,24、60和132共有6个公因数,最大公因数是12。

解:1112 18 26 93 2 3①②341022 17 51 171 3③④155053101224362612182369312(34、102)= 2×17=34(15、50)= 5(15、24、36)= 2×2×3=123解: 同时除以公因数2 同时除以公因数2 同时除以公因数3 除到三个商只有公 因数1为止(12、18)= 2×3=6试一试:先用短除法求出每一组数的最大公因数,再求出每组数中公因数的总个数。

①16和24 ②28和70 ③150和180 ④60、75和150问题3:有三根木棒,分别长12厘米,44厘米,56厘米,把它们都截成同样长的小棒(整厘米),不许有剩余,每根小棒最长能有多少厘米?想:把每根木棒截成同样长的小棒后不许有剩余,每根小棒的长度必须是各自木棒长度的因数;把三根小棒截成同样长的小棒,不许有剩余,每根小棒的长就是这三根小棒的公因数;每根小棒最长多少厘米,就是求这三根小棒的最大公因数。

北师大版五年级数学上册典型例题系列之第五单元:求最大公因数和最小公倍数专项练习(解析版)

北师大版五年级数学上册典型例题系列之第五单元:求最大公因数和最小公倍数专项练习(解析版)

五年级数学上册典型例题系列之第五单元:求最大公因数和最小公倍数专项练习(解析版)1.求出下列各组数的最大公因数和最小公倍数。

(1)13和26 (2)10和15【答案】(1)最大公因数:13;最小公倍数:26(2)最大公因数:5;最小公倍数:30【分析】根据求最大公因数和最小公倍数的方法:对于一般的两个数来说,这两个数的公有质因数的连乘积是最大公因数,两个数的公有质因数与每个独有质因数的连乘积是最小公倍数;如果两个数为倍数关系,最大公因数为较小的数,较大的那个数是这两个数的最小公倍数;如果两个数位互质数,最大公因数是1,最小公倍数是两个数的乘积,据此解答。

【详解】(1)13和2613和26是倍数关系;最大公因数是13;最小公倍数是26;(2)10和1510=2×515=3×510和15的最大公因数:5最小公倍数是:2×5×3=302.写出下面每组数的最大公因数。

2和8 12和18 10和25 7和9【答案】2;6;5;1【分析】求两个数的最大公因数,把这两个数分解质因数,它们公有质因数的乘积就是最大公因数;当两个数是倍数关系时,最大公因数是较小数;当两个数是互质数时,它们的最大公因数是1;据此解答。

【详解】8÷2=4,8是2的倍数,2和8的最大公因数是2;12=2×2×3,18=2×3×312和18的最大公因数是2×3=6;10=2×5,25=5×510和25的最大公因数是5;7和9是互质数,7和9的最大公因数是1。

3.写出下面各组数的最大公因数和最小公倍数。

1和10 3和9 6和8【答案】最大公因数:1;3;2最小公倍数:10;9;24【分析】求两个数的最大公因数也就是这两个数的公有质因数的连乘积,最小公倍数就是这两个数的公有质因数与独有质因数的连乘积,由此解答即可。

【详解】1=1×110=1×2×51和10的最大公因数是1,1和10的最小公倍数是:1×2×5=2×5=103=1×39=3×33和9的最大公因数是3,3和9的最小公倍数是:3×3=9。

【典型例题】五年级数学下册第四单元:最大公因数和最小公倍数的应用专项练习(含答案)人教版

【典型例题】五年级数学下册第四单元:最大公因数和最小公倍数的应用专项练习(含答案)人教版

2021-2022学年五年级数学下册典型例题系列之第四单元:最大公因数和最小公倍数的应用专项练习(原卷版)1.有两条丝带,分别长32m,2m。

现在要将它们剪成同样长的小段做成中国结,每一条都不能有剩余,这样一共最少可以剪成多少段?2.一块长72厘米,宽32厘米的铁皮,剪成若干个同样大小的正方形,且没有剩余。

剪成的正方形边长最长是多少厘米?一共剪成这样的正方形几个?3.一张长方形木板长28dm,宽12dm。

在无剩余的前提下,将它裁成大小相等且尽可能大的正方形,正方形的边长是多少?4.小红家要给长16dm、宽为12dm的储藏室地面铺一种地砖(整块铺),市场上有边为4dm和6dm的正方形地砖两种。

(1)她选择边长是()dm的正方形地砖来铺更合适。

(2)这种正方形地砖需要多少块?5.王老师买了32枝铅笔和24本笔记本,平均奖给班里的“三好”学生,刚好全部奖完。

王老师班里最多有多少名“三好”学生?6.有24朵红花,9朵黄花要分给几个同学,要求每人分得的花的颜色及对应的数量都相同,最多可以分给多少人?7.有一张长16厘米,宽12厘米的长方形纸。

要剪成若干同样大小的正方形而没有剩余,剪出的正方形的边长最大是几厘米?可以剪多少个这样的正方形?8.有一块长24dm,宽18dm的布料,要把这块布料裁成正方形的手帕没有剩余,手帕的边长可以是多少分米?边长最大是多少分米?9.有两根木条,一根长36cm,一根长48cm,把它们剪成完全相等的小段且没有剩余,每小段最长是多少厘米?这两根木条一共能剪成多少段?10.高新二小利用假期修缮校舍。

给一间长80分米,宽55分米的教室内铺同样大小的正方形地砖,铺的时候地砖要完整而没有剩余,地砖边长最大是几分米?需要多少块这样的地砖?11.春蕾小学五年级70多名学生参加社区活动。

这些学生可以分成8人一组,也可以分成12人一组,都正好分完。

春蕾小学有多少名学生参加这次活动?12.一个长方形的长和宽分别是24cm和16cm,至少用多少个这样的长方形才能拼成一个正方形?这个正方形的边长是多少?13.李阿姨有一筐苹果,3个3个地数,多2个,5个5个地数,多2个,4个4个地数,还多2个。

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题

五年级下学期最大公因数和最小公倍数应用题及练习题应用题:1. 甲、乙两个人同时从一个城市出发,往同一方向走, 甲每三天走12公里,乙每四天走16公里,问他们在同时走了96公里后第一次相遇的位置,相遇时的时间是几天?解析:甲、乙在同时走了96公里后第一次相遇,说明他们走的总路程相等。

设他们相遇时走了x天,则有:甲走的路程:12 × x / 3 = 4 × x乙走的路程:16 × x / 4 = 4 × x因此,他们在走了4x公里后相遇。

根据题意,得到:4x = 96解得:x = 24因此,他们在走了24天后第一次相遇,相遇的位置为走了每人相应的步数。

甲和乙在这个位置所走的路程即为他们的最小公倍数,也就是:lcm(12, 16) = 48因此,他们在走了24天后第一次相遇的位置为48公里处。

2. 一支乐队有男、女成员各若干名。

如果男成员每6人排成一排,女成员每8人排成一排,排成的队伍的长度相等。

问这个乐队的男、女成员分别最少有多少人?解析:设男、女成员分别有x、y名,则男成员排成的队伍有x/6个,女成员排成的队伍有y/8个。

由题意得到:(x/6) × 6 = (y/8) × 8因此,x和y的最小公倍数为48。

同时,又要保证x和y都是正整数,所以x和y分别为48和48的约数。

因此,这个乐队的男、女成员分别最少有6名和8名。

练习题:1. 求下列各组数的最大公因数和最小公倍数:(1)24, 36(2)15, 25(3)18, 30(4)40, 60, 100解析:(1)24, 36的最大公因数为12,最小公倍数为72。

(2)15, 25的最大公因数为5,最小公倍数为75。

(3)18, 30的最大公因数为6,最小公倍数为90。

(4)40, 60, 100的最大公因数为20,最小公倍数为300。

2. 奶妈每隔4小时喂一次奶,夏天每隔6小时给婴儿喝一次水,如果他们同时开始工作,那么在何时第一次同时给婴儿喝奶和水?解析:奶妈每隔4小时给婴儿喝一次奶,夏天每隔6小时给婴儿喝一次水,因此,每过12小时就会同时给婴儿喝奶和水。

最大公因数-最小公倍数-练习题2

最大公因数-最小公倍数-练习题2

最大公因数和最小公倍数一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。

1.在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。

2.在20以内的质数中,()加上2还是质数。

3.如果有两个质数的和等于24,可以是()+(),()+()或()+()。

4.把330分解质因数是()。

5.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。

6.在50以内的自然数中,最大的质数是(),最小的合数是()。

7.既是质数又是奇数的最小的一位数是()。

二、判断题1.两个质数相乘的积还是质数。

()2.成为互质数的两个数,必须都是质数。

()3.任何一个自然数,它的最大约数和最小倍数都是它本身。

()4.一个合数至少得有三个约数。

()5.在自然数列中,除2以外,所有的偶数都是合数。

()6.12是36与48的最大公约数。

()三、选择题1.15的最大约数是(),最小倍数是()。

①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的()。

①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大公因数与最小公倍数练习题
1)有一个自然数,被6除余1,被5除余1,被4除余1,这个自然数最小是几?
2)把长120厘米,宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少
块?
3)把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后
不能有剩余,能锯成多少块?
4)一盒钢笔可以平均分给2、3、4、5、6个同学,这盒钢笔最小有多少枝?
5)用96朵红花和72朵白花做成花束,如果各花束里红花的朵数相同,白花的朵数也相同,每束
花里最少有几朵花?
6)从小明家到学校原来每隔50米安装一根电线杆,加上两端的两根一共是55根电线杆,现在改成每隔60米安装一根电线杆,除两端的两根不用移动外,中途还有多少根不必移动?
7)每筐梨,按每份2个梨分多1个,每份3个梨分多2个,每份5个梨分4个,则筐里至少有多少个梨?
8)现在有香蕉42千克,苹果"2千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?每个班至少分到了三种水果各多少千克?
9)有三根铁丝,一根长54米,一根长72米,一根长36米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?
1. 有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装
袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?
2. a、b两数的最大公因数是12,已知a有8个因数,b有9个因数,求a与b.
3. 两个数的积是6912 ,最大公因数是24,求它们的最小公倍数?
4. 甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次, 如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时
间是几月几日?
5. 求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.
最大公因数与最小公倍数练习题8 3个连续自然数的最小公倍数是60,这三个数是(
班级:_______ 姓名: _________
一、填空:
1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最
小公倍数是()。

2、最小质数与最小合数的最大公因数是(),最小公倍数是()。

3、能被5、7、16整除的最小自然数是()。

4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()
(2)(25,15)最大公因数(),[25、15 ]最小公倍数()
(3)(140, 35)最大公因数(),[140, 35 ]最小公倍数()
(4)(24, 36)最大公因数(),[24、
36 ]最小公倍数()
(5)(3, 4, 5)最大公因数(),[3, 4, 5 ]最小公倍数()
(6)(4, 8, 16)最大公因数(),[4, 8, 16 ]最小公倍数()
5、5和12的最小公倍数减去()就等于它们的最大公因数。

91和13的最小公倍数
是它们最大公因数的()倍。

&已知两个互质数的最小公倍数是153,这两个互质数是()和(
)。

7、甲数=2X 3X 5X 7,乙数=2X 3X11,甲乙两数的最大公因数是(),最小公
)、()和()
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。

10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。

11、三个连续偶数的和是42,这三个数的最大公因数是()。

12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。

13、自然数m和n, n= m+1, m 和n的最大公因数是(),最小公倍数是())
14、把自然数a与b分解质因数,得到a=2X 5X 7X m, b=3X 5X m,如果a与b的最小公倍数是2730,那么m = ()0
15、(273, 231, 117)最大公因数(),[273, 231, 117]最小公倍数()
16、三个数的和是312,这三个数分别能被7、8 9整除,而且商相同。

这三个数分别
是()、()和()
17、已知(A, 40)=8, [A , 40]=80,那么A=()
18、找一个与众不同的数(三个方法)并说明理由):1、2、3、5、7、9、15
1:选____________ ,因为 _________________________________________
2:选____________ ,因为 _________________________________________
3:选____________ ,因为 _________________________________________
19、按要求写互质数
倍数是()
两个都是质数()和();两个都是合数()和();一个质数和一个奇数()和();一个偶数5和一个合数()和();一个质数
和一个合数()和();一个偶数和一个合数()和()。

二、解决下列的问题:
有一行数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55……,从第三个数开始,每个数
都是前两个数的和,在前100个数中,偶数有多少个?
2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共
有多少种?
3、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖?
4、有一个长80厘米,宽60厘米,高"5厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块?
5、已知某小学六年级学生超过100A,而不足140人。

将他们按每组12人分组,多3
人;按每组8人分,也多3人。

这个学校六年级学生多少?
6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360o他们中年龄最大是多少岁?
7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车?其中有几辆中巴车?
8、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少?被剪成几块?
1 >王老师把25本作文和39本数学分别平均分给第一组的同学,结果作文本多1 本,数学本多3本,第一组最多有几位同学?
2、一张长方形纸长16厘米,宽12厘米,把它裁成大小一样的正方形,而没有剩余,最少可以裁成多少个正方形?每个正方形的边长是多少?
3、某班同学,排成7排多3人,排成8排少4人,这个班至少多少人?
4、五(1 )班同学做操,排成8排少1人,排成10排也少1人,这个班至少多少人?。

相关文档
最新文档