往年广东省中考数学试题及答案
广东近年数学中考试卷真题
![广东近年数学中考试卷真题](https://img.taocdn.com/s3/m/7b5681353d1ec5da50e2524de518964bcf84d291.png)
广东近年数学中考试卷真题广东省中考数学试卷真题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个角的度数是30°,那么它的余角是多少度?A. 30°B. 45°C. 60°D. 90°3. 根据题目所给的方程2x + 5 = 17,解得x的值是多少?A. 3B. 4C. 6D. 84. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少?A. 30厘米B. 25厘米C. 20厘米D. 15厘米5. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. 26. 下列哪个选项是不等式3x - 5 > 10的解集?A. x > 4B. x < 4C. x > 3D. x < 37. 一个圆的半径是7厘米,它的直径是多少?A. 14厘米B. 21厘米C. 28厘米D. 35厘米8. 如果一个三角形的三个内角分别是40°、60°和80°,这个三角形是什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形9. 一个数的立方根是2,这个数是多少?A. 2B. 4C. 8D. 6410. 根据题目所给的不等式组\{x > 3, x < 5\},解集是什么?A. x = 3B. x = 5C. 3 < x < 5D. x ≤ 3二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是________。
12. 如果一个数的平方是25,那么这个数是________。
13. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是________。
14. 一个数的倒数是1/4,那么这个数是________。
15. 如果一个圆的面积是28.26平方厘米,那么它的半径是________。
广州历届中考真题数学试卷
![广州历届中考真题数学试卷](https://img.taocdn.com/s3/m/0addc56f657d27284b73f242336c1eb91a3733cf.png)
广州历届中考真题数学试卷第一卷第一部分:选择题1. 单选题(共15小题,每小题1分,共计15分)请在每小题的括号中填入相应的字母。
1) 设a = 2, b = -3, c = 4,则下列哪个等式成立?()A. a^2 - b^2 = -25B. a^3 + b^3 = -1C. a^2 - b^2 + c^2 = 7D. a^3 + b^3 + c^3 = 22) 下列哪个数是有理数?()A. √2B. πC. 0D. e3) 已知〈ABC〉是一条直线段,点X在〈AB〉上,点Y在〈BC〉上,若AX : XB = 1:2,BY : YC = 2:1,则∠AXY等于()A. 30°B. 45°C. 60°D. 90°4) 若2loga = log(a^2 - 4),则a的值是()A. -2B. 0C. 1D. 35) 已知函数y = 3x^2 + bx + 2的图象过点(1,4),则b的值是()A. -2B. 0C. 2D. 46) 若a + b + c + d = 10,且abcd = 9,则ab + ac + ad + bc + bd + cd 的最大值是()A. 16B. 18C. 19D. 207) (sinα + cosα)(sinα - cosα)的值等于()A. 1B. sin2α - cos2αC. sin2α - 2cos2αD. sin2α + cos2α8) 在函数y = 2^x + ax - 1的图象上,存在两点A和B,已知A(-1, -1)和B(0, 1),则a的值为()A. -3B. -2C. 2D. 39) 已知直线l过点A(6,3)及B(-2,5),P是l上的一点,且AP : PB = 2:3,则线段AB的中点坐标是()A. (2, 4)B. (3, 4)C. (4, 3)D. (4, 2)10) 一根长为10cm的软铁线,弯成一个圆形,再将该圆形展开形成一个圆环,圆环是否比圆形长?()A. 是B. 否11) 在锐角三角形ABC中,已知a/sinA = b/sinB = c/sinC = 2√3,其中a,b,c分别为BC,CA,AB的长度,则△ABC的面积等于()A. 3B. 6C. 9D. 1212) 在平面直角坐标系中,点A(-1,4),点B(5,2),点C(-3,-2)的图象与坐标轴所围成的面积是()A. 14B. 16C. 18D. 2013) 若a,b是正数,且a:(a+b) = 2:5,则a的值是()A. 2/3B. 1/3C. 3D. 514) 在菱形ABCD中,点E是AD边上的一点,且AE : ED = 1:2,则BE与CD的交点是()A. EB. 稍右上方区域C. 稍左下方区域D. 真菱形15) 在平行四边形ABCD中,点E在对角线AC上,若AE : EC = 1:3,则BE : ED的值是()A. 1:3B. 3:1C. 1:4D. 4:1第二部分:非选择题第二卷第三部分:解答题1. 解答题(共5小题,共计50分)解答下列各题。
2024年广东省广州市中考真题数学试卷含答案解析
![2024年广东省广州市中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/373812d385868762caaedd3383c4bb4cf7ecb7cd.png)
2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。
广东中考历年数学试卷真题
![广东中考历年数学试卷真题](https://img.taocdn.com/s3/m/1284896bec630b1c59eef8c75fbfc77da26997e7.png)
广东中考历年数学试卷真题一、选择题1. 下列哪个数是3的整数倍?A. 13B. 17C. 21D. 252. 已知正方形ABCD的边长为6cm,P为BC的中点,Q为DP的延长线与BC的交点,则BP的长度为:A. 1cmB. 2cmC. 3cmD. 4cm3. 若a + b = 10, a - b = 6,则a的值是:A. 1B. 3C. 5D. 7二、填空题1. 已知直角三角形的斜边长为5cm,一条直角边长为3cm,则另一直角边的长为______cm。
2. ABCD是一个平行四边形,AB=6cm,AD=4cm,BD的长度为______cm。
三、解答题1. 试求下列代数式的值:(1)3a - 2b,其中a = 5,b = 2。
(2)5x^2 + 2x - 3,其中x = 2。
2. 甲、乙两车同时从A地出发,甲车以每小时80km的速度向B地行驶,乙车以每小时60km的速度向B地行驶,A、B两地相距240km。
请问,甲、乙两车行驶多长时间后相遇?四、解析题有一只红球和两只白球放在一个不透明袋子里,将其中一只白球取出后,又将其中一只白球放入。
现在从袋子中随机取出一只球,发现是白球。
那么,另外一只白球在袋子中的概率是多少?解:设两只白球分别为白球1和白球2,红球为红球1。
取出其中一只白球后,剩余的球有红球1、白球1和白球2。
根据题意可知,从袋子中随机取出的球是白球,则情形有两种:1. 取到白球1;2. 取到白球2。
因此,另一只白球在袋子中的概率为1/2。
五、应用题某商场推出一项促销活动,下表是该活动的优惠力度:购买金额(元) | 优惠金额(元)1000及以上 | 200500~999 | 100300~499 | 50100~299 | 10小明购买了一件商品,价格为850元。
请问,他能享受到多少元的优惠?解:根据表格可知,小明购买的商品金额在500~999之间,因此能享受到的优惠金额为100元。
以上是广东中考历年数学试卷真题的部分内容。
广州中招数学试题及答案
![广州中招数学试题及答案](https://img.taocdn.com/s3/m/5b7f4691f80f76c66137ee06eff9aef8951e485c.png)
广州中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数?A. √2B. πC. 0.33333...D. i答案:D2. 如果一个二次函数的图像开口向上,且顶点坐标为(-1, 4),那么该函数的表达式可能是?A. y = (x + 1)^2 + 4B. y = -(x + 1)^2 + 4C. y = (x - 1)^2 + 4D. y = -(x - 1)^2 + 4答案:B3. 一个等差数列的前三项分别是2, 5, 8,那么这个数列的第n项的通项公式是?A. a_n = 2 + 3(n - 1)B. a_n = 2 + 3nC. a_n = 3n - 1D. a_n = 3n + 2答案:A4. 下列哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2答案:B5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:C6. 如果一个三角形的两边长分别为3和4,且这两边夹角为60°,那么这个三角形的面积是多少?A. 3√3/2B. 2√3C. 3√3D. 4√3/2答案:A7. 一个样本数据集的平均数是10,中位数是12,众数是8,那么这个数据集的方差可能是?A. 4B. 6C. 8D. 10答案:B8. 下列哪个选项是正多边形?A. 三角形B. 正方形C. 五边形D. 所有选项答案:D9. 一个函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -2 + 3B. -2C. 1D. -5答案:A10. 一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是多少?A. 10B. √(6^2 + 8^2)C. √100D. √(6^2 - 8^2)答案:B二、填空题(每题3分,共15分)11. 一个等比数列的前三项分别是2, 6, 18,那么这个数列的公比是________。
往年广东省珠海市中考数学试题及答案
![往年广东省珠海市中考数学试题及答案](https://img.taocdn.com/s3/m/542171e2b90d6c85ed3ac601.png)
往年广东省珠海市中考数学试题及答案(满分120分,考试时间100分钟)第一部分(选择题共30分)一、选择题(本大题5小题,每小题3分,满分15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选项涂黑.1. 实数4的算术平方根是A.-2B.2C. ±2D. ±4【答案】B2. 如图,两平行直线a、b被直线l所截,且∠1=60°,则∠2的度数为A.30°B.45°C.60°D.120°第2题图【答案】C3. 点(3,2)关于x轴的对称点为A. (3,-2)B. (-3,2)C. (-3,-2)D. (2,-3)【答案】A4. 已知一元二次方程:①x2+2x+3=0②x2-2x-3=0,下列说法正确的是A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解5.如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接BE,则∠AEB的度数为A.36°B.46°C.27°D.63°第5题图【答案】A二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填在答题卡相应的位置上.6. 使式子12 x 有意义的x 的取值范围是 .【答案】x ≥-21 7.已知函数y=3x 的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2(填“>”或“<”或“=”). 【答案】>8.若圆锥的母线长为5cm,底面圆的半径为3cm,则它的侧面展开图的面积为 cm2(结果保留π). 【答案】15π9.已知实数a 、b 满足a +b =3,ab =2,则a 2+b 2= .【答案】510.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1,又顺次连接正方形A 1B 1C 1D 1四边中点得到第二个正方形A 2B 2C 2D 2,…,以此类推,则第六个正方形A 6B 6C 6D 6周长是 . 【答案】21第10题图三、解答题(一)(本大题5小题,每小题6分,共30分)11. 计算:3221)13(3101-+--⎪⎭⎫⎝⎛-.【答案】解:原式=3-1+32-21=613. 12. (往年广东珠海,12,6)解方程:2-x x -412-x =1.【答案】解:方程两边乘(x +2)(x -2),得 x (x +2)-1=(x +2)(x -2).解得x =-23. 检验:x =-23时(x +2)(x -2)≠0,x =-23是原分式方程的解.13. 某初中学校对全校学生进行一次“勤洗手”问卷调查,学校七、八、九三个年级学生分别为600、700、600人.经过数据整理,将全校的“勤洗手”调查数据绘制成统计图: (1)根据统计图,计算八年级“勤洗手”学生人数,并补全下面的两幅统计图; (2)通过计算说明哪个年级“勤洗手”学生人数占本年级学生人数的比例最大?第13题图【答案】解:(1)300÷25%=1200(人),1200×35%=420(人). 所以八年级“勤洗手”学生人数为420人.九年级占得百分比为1―25%―35%=40%.补全两幅统计图如下:(2) 七年级“勤洗手”学生人数占本年级学生人数的比例为300÷600=50%,八年级“勤洗手”学生人数占本年级学生人数的比例为420÷700=60%,九年级“勤洗手”学生人数占本年级学生人数的比例为480÷600=80%,所以九年级“勤洗手”学生人数占本年级学生人数的比例最大.14.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E,求证:BC=DC.第14题图【答案】证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠BCA=∠DCE.∵AC=EC,∠A=∠E,∴△BCA≌△DCE(ASA).∴BC=DC.15.某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010―2012年每年平均每次捕鱼量的年平均下降率.【答案】解:设2010―2012年每年平均每次捕鱼量的年平均下降率为x ,根据题意,得10(1-x )2=8.1.x 1=0.1,x 2=1.9(不符合题意,舍去).答:2010―2012年每年平均每次捕鱼量的年平均下降率为10%.四、解答题(二)(本大题4小题,每小题7分,共28分)16.一测量爱好者,在海边测量位于正东方向的小岛高度AC .如图所示,他先在点B 测得山顶点A 的仰角是30°,然后然后沿正东方向前行62米到达D 点,在点D 测得山顶A 点的仰角为60°(B 、C 、D 三点在同一水平面上,且测量仪的高度忽略不计).求小岛的高度AC .(结果精确到1米,参考数据:2≈1.4,3≈1.7)第16题图【答案】解:由题意知,∠ADC =60°,∠ABC =30°,设AC =x 米. 在Rt △ACD 中,tan60°=CDAC, ∴CD=︒60tan AC=3x =33x .在Rt △ACB 中,tan30°=BCAC, 即33=3362x x +.解得x=313≈53.所以小岛的高度AC 为53米.17.如图,⊙O 经过菱形的的三个顶点A 、B 、C ,且与AB 相切于点A . (1)求证:BC 为⊙O 的切线; (2)求∠B 的度数.第17题【答案】(1)证明:如下图,连接AO、CO.∵AB是⊙O的切线,∴OA⊥AB.∴∠BAO=90°.∵四边形ABCD是菱形,∴AB=BC.∵AO=CO,BO=BO,∴△BAO≌△BCO(SSS).∴∠BCO=∠BAO=90°.即OC⊥BC.∴BC为⊙O的切线.(2)连接BD,由菱形、圆的对称性,BD过圆心,即B、O、D三点共线.∵四边形ABCD是菱形,∴AB=AD,∴∠ABO=∠ADO.∵OA=OD,∠OAD=∠ODA.∴∠AOB=2∠ADO=2∠ABO.∵∠ABO+∠AOB=90°,∴∠ABO+2∠ABO=90°.∴∠ABO=30°.∴∠ABC=2∠ABO=2×30°=60°.18. 把分别标有数字2、3、4、5的四个小球放入A 袋内,把分别标有数字31、31、41、51、61的五个小球放入B 袋内,所有小球的形状、大小、质地完全相同,A 、B 两个袋子不透明.(1)小明分别从A 、B 两个袋子中各摸出一个小球,求这两个球上的数字互为倒数的概率; (2)当B 袋中标有61的小球上的数字变为 时(填写所有结果),(1)中的概率为41. 【答案】解:(1)列表如下:有表可知,所有可能出现的结果共有20种,它们出现的可性相同,其中两个球上的数字互为倒数的有4种,所有P(两个球上的数字互为倒数)=204=51. (2)21或31或41或51. 19. (往年广东珠海,19,7)已知,在平面直角坐标系xoy 中,点A 在x 轴负半轴上,点B在y 轴正半轴上,OA =OB ,函数y =-x8的图象与线段AB 交于M 点,且AM =BM . (1)求点M 的坐标; (2)求直线AB 的解析式.第19题图【答案】解:(1)过点M 分别作MC ⊥OA 于C ,MD ⊥OB 于D . ∵AM =BM , ∴MC =21OB ,MD =21OA . ∵OA =OB ,∴MC =MD . 设点M 的坐标为(-a ,a ), ∵点M 在函数y=-x8的图象上, ∴a =-a-8. 解得a =22.∴点M 的坐标为(-22,22). (2)∵点M 的坐标为(-22,22), ∴MC =MD =22, ∴OA =OB =42.∴点A 的坐标为(-42,0), 点B 的坐标为(0,42). 设直线AB 的解析式为y =kx +b ,则有⎪⎩⎪⎨⎧==+-.24024b b k ,解得⎩⎨⎧==.241b k ,∴直线AB 的解析式为y=x+42.五、解答题(三)(本大题3小题,每小题9分,共27分) 20. 阅读下面材料,并解答问题.材料:将分式13224+-+--x x x 拆成一个整式与一个分式(分子为整数)的和的形式. 解:由于分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b .则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b ).∵对于任意x,上述等式均成立,∴⎩⎨⎧=+=-.311b a a ,∴a=2,b=1.∴13224+-+--x x x =11)2)(1(222+-+++-x x x =1)2)(1(222+-++-x x x +112+-x= x 2+2+112+-x .这样,分式13224+-+--x x x 被拆成了一个整式x 2+2与一个分式112+-x . 解答:(1)将分式186224+-+--x x x 拆成一个整式与一个分式(分子为整数)的和的形式. (2)试说明186224+-+--x x x 的最小值为8.【答案】解:(1) 解:由于分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b . 则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b ). ∵对于任意x ,上述等式均成立,∴⎩⎨⎧=+=-.861b a a ,∴a=7,b=1.∴186224+-+--x x x =11)7)(1(222+-+++-x x x =1)7)(1(222+-++-x x x +112+-x = x 2+7+112+-x .这样,分式186224+-+--x x x 被拆成了一个整式x 2+7与一个分式112+-x . (2)∵-x 2+1的最大值为1,∴112+-x 的最小值为1.又∵x 2+7的最小值为7,又∵186224+-+--x x x = x 2+7+112+-x , ∴186224+-+--x x x 的最小值为7+1=8.21. 如图,在Rt △ABC 中,∠C =90°,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点P ′),当AP 旋转至AP ′⊥AB 时,点B 、P 、P ′恰好在同一直线上,此时作P ′E ⊥AC 于点E .(1)求证:∠CBP =∠ABP ; (2)求证:AE =CP ; (3)当PE CP =23,BP ′=55时,求线段AB 的长.第21题图【答案】(1)证明:由旋转的性质可得AP =AP ′,∴∠APP ′=∠AP ′P . ∵∠BPC =∠APP ′,∴∠BPC =∠AP ′P . ∵ AP ′⊥AB ,∴∠ABP +∠AP ′P =90°.∵∠C =90°,∴∠CBP +∠BPC =90°.∴∠CBP =∠ABP .(2)证明:如下图,作PF ⊥AB 于F .∵∠CBP =∠ABP ,PC ⊥BC ,∴PF =CP .∵AP ′⊥AB ,PF ⊥AB ,∴∠AFP =∠P ′EA =90°.∴∠APF +∠PAF =90°,∠PAF +∠P ′AE =90°.∴∠APF =∠P ′AE .∵AP =AP ′,∴△AFP ≌△P ′EA (AAS).∴PF =AE .∵PF =CP ,∴AE =CP .(3)∵∠C =∠PEP ′,∠BPC =∠P ′PE ,∴△BCP ∽△P ′PE . ∴PE CP =P P BP ',即23=P P P P ''-55. ∴PP ′=25. ∵PE CP =23,AE =CP ,AP =AP ′, 设CP =3x ,则PE =2x ,AE =3x ,AP ′= AP =5x ,∴P ′E =4x .在Rt △PEP ′中,(2x )2+(4x )2=(25)2,∴x =1.∴AP ′=5x =5.在Rt △BAP ′中,AB =22P A P B '-'=225)55(-=10.22. 如图,在平面直角坐标系xoy 中,矩形OABC 的边OA 、OC 分别在y 轴和x 轴的正半轴上,且长分别为m 、4m (m >0),D 为边AB 的中点,一抛物线l 经过点A 、D 及点M (-1,-1-m ).(1)求抛物线l 的解析式(用含m 的式子表示);(2)把△OAD 沿直线OD 折叠后点A 落在点A ′处,连接OA ′并延长与线段BC 的 延长线交于点E ,若抛物线l 与线段CE 相交,求实数m 的取值范围;(3)在满足()2的条件下,求抛物线l 顶点P 到达最高位置时的坐标.【答案】(1)解:∵OA =m ,AB =4m ,D 为边AB 的中点,∴点A (0,m ),点D(2m ,m ).设抛物线l 的解析式为y =ax 2+bx +c .把点A (0,m ),点D (2m ,m ),M (-1,-1-m )代入y =ax 2+bx +c ,得 ⎪⎩⎪⎨⎧--=+-=++=.1242m c b a m c mb a m m c ,,解得⎪⎩⎪⎨⎧==-=.21m c m b a ,,∴抛物线l 的解析式为y =-x 2+2mx +m .由折叠可知,OA =OA ′=m ,A ′D =AD =2m ,∠ADO =∠ODA ′.∵AB ∥OC ,∴∠DOF =∠ADO ,∴∠DOF=∠ODA ′,∴OF =OD . 设OF =x ,则OD =x ,A ′F =2m -x .∴m 2+(2m -x )2=x 2.x =45m . ∴OF =45m ,A ′F =43m . 过点A ′作A ′H ⊥OF 于H .∵∠A ′OF =∠A ′OF ,∠A ′HO =∠O A ′F =90°, ∴△O A ′H ∽△OFA ′. ∴OF A O OA OH F A H A '=='',即m m m OH m H A 4543=='. ∴A ′H =53m ,OH =45m . ∴点A ′(45m ,53m ). 直线OA ′的解析式为y =-43x . ∵直线CE 的解析式为x =4m ,∴点E (4m ,-3m ).把点E (4m ,-3m )代入y =-x 2+2mx +m ,得m =2.把点C (4m ,0) 代入y =-x 2+2mx +m ,得m =81. ∴实数m 的取值范围为81≤m ≤2. (3) y =-x 2+2mx +m=-(x -m )2+m 2+m .显然当m =2时,抛物线l 顶点P 到达最高位置, ∴抛物线l 顶点P 到达最高位置时的坐标为(2,6).。
近五年广东省中考数学真题及答案
![近五年广东省中考数学真题及答案](https://img.taocdn.com/s3/m/1df98636fd4ffe4733687e21af45b307e871f9ea.png)
2022年广东中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|2|-=()A.﹣2 B.2 C.12-D.122.计算22()A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如题8图,在▱ABCD中,一定正确的是()A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 BDABDABCDC二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.12.单项式3xy 的系数为____________.13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15答案 123201π三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113x x ->⎧⎨+<⎩参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x <∴不等式组的解集:12x <<17.先化简,再求值:211a a a -+-,其中a =5.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+-将a =5代入得,2111a +=18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨== ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:设学生人数为x 人8374x x -=+7x =则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5 y151925(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15解得:2k =∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中222AC AB BC =+可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+可得:3DC = ∴CD 的长度是323.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:(1)∵A (1,0),AB =4∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨=-+⎩解得:23b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨-=-+⎩解得:22k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩解得:26k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨=-⎩解得:121m x y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)2021年广东省中考数学真题及答案一、选择题(本大题共10题,每小题3分,满分30分)1.下列四个选项中,为负整数的是()A.0 B.﹣0.5 C.﹣D.﹣22.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3 B.0 C.3 D.﹣63.方程=的解为()A.x=﹣6 B.x=﹣2 C.x=2 D.x=64.下列运算正确的是()A.|﹣(﹣2)|=﹣2 B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣45.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5 B.﹣3 C.﹣1 D.59.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C在函数y=﹣(x <0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)二、填空题(本大题共6小题,每小题3分,满分18分)11.代数式在实数范围内有意义时,x应满足的条件是.12.方程x2﹣4x=0的实数解是.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1y2(填“<”或“>”或“=”).15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=三、解答题(本大题共9小题,满分72分)17.解方程组.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2 (1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.参考答案与试题解析一.选择题(共10小题)1.下列四个选项中,为负整数的是()A.0 B.﹣0.5 C.﹣D.﹣2【分析】根据整数的概念可以解答本题.【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、﹣是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.2.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3 B.0 C.3 D.﹣6【分析】根据相反数的性质,由a+b=0,AB=6得a<0,b>0,b=﹣a,故AB=b+(﹣a)=6.进而推断出a=﹣3.【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.3.方程=的解为()A.x=﹣6 B.x=﹣2 C.x=2 D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.4.下列运算正确的是()A.|﹣(﹣2)|=﹣2 B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣4【分析】根据绝对值的定义、二次根式的运算法则、幂的乘方和积的乘方的运算法则,完全平方公式等知识进行计算即可.【解答】解:A、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意;B、3与不是同类二次根式,不能合并,原计算错误,故本选项不符合题意;C、(a2b3)2=a4b6,原计算正确,故本选项符合题意;D、(a﹣2)2=a2﹣4a+4,原计算错误,故本选项不符合题意.故选:C.5.下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)【分析】利用平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意;(2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;(3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意;(4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意,真命题为(1)(4),故选:B.6.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为=,故选:B.7.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm【分析】首先利用相切的定义得到∠OAC=∠OBC=90°,然后根据∠ACB=60°求得∠AOB=120°,从而利用弧长公式求得答案即可.【解答】解:由题意得:CA和CB分别与⊙O分别相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴=16π(cm),故选:B.8.抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5 B.﹣3 C.﹣1 D.5【分析】根据抛物线于x周两交点,及于y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.【分析】在Rt△ABC中,利用勾股定理可求AB,由旋转的性质可得AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,在Rt△BB'C'中,由勾股定理可求BB'的长,即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,∴BC'=4,∴B'B===4,∴sin∠BB′C′===,故选:C.10.在平面直角坐标系xOy中,矩形OABC的点A在函数y=(x>0)的图象上,点C在函数y=﹣(x <0)的图象上,若点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)【分析】如图,作AD⊥x轴于D,CE⊥x轴于E,通过证得△COE∽△OAD得到=,则OE =2AD,CE=2OD,设A(m,)(m>0),则C(﹣,2m),由OE=0﹣(﹣)=得到m﹣(﹣)=,解分式方程即可求得A的坐标.【解答】解:如图,作AD⊥x轴于D,CE⊥x轴于E,∵四边形OABC是矩形,∴∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠COE=∠OAD,∵∠CEO=∠ODA,∴△COE∽△OAD,∴=()2,,∵S△COE=×|﹣4|=2,S△AOD==,∴=,∴OE=2AD,CE=2OD,设A(m,)(m>0),∴C(﹣,2m),∴OE=0﹣(﹣)=,∵点B的横坐标为﹣,∴m﹣(﹣)=,整理得2m2+7m﹣4=0,∴m1=,m2=﹣4(舍去),∴A(,2),故选:A.二.填空题(共6小题)11.代数式在实数范围内有意义时,x应满足的条件是x≥6 .【分析】二次根式中被开方数的取值范围为被开方数是非负数.【解答】解:代数式在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.12.方程x2﹣4x=0的实数解是x1=0,x2=4 .【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为 2 .【分析】由线段垂直平分线的性质可得AD=BD,利用含30°角的直角三角形的性质可求解BD的长,进而求解.【解答】解:∵DE垂直平分AB,∴AD=BD,∵∠C=90°,∠A=30°,CD=1,∴BD=2CD=2,∴AD=2.故答案为2.14.一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【分析】由一元二次方程根的情况,求得m的值,确定反比例函数y=图象经过的象限,然后根据反比例函数的性质即可求得结论.【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为32°.【分析】先根据等腰三角形的性质得到∠A=∠B=38°,再利用平行线的性质得∠ADB′=∠A=38°,接着根据轴对称的性质得到∠CDB′=∠CDB,则可出∠CDB的度数,然后利用三角形内角和计算出∠BCD 的度数.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B关于直线CD的对称点为B′,∴∠CDB′=∠CDB=(38°+180°)=109°,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣39°﹣109°=32°.故答案为32°.16.如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(1)(3)(4)(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=【分析】(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)分别过H分别作HM⊥AD于M,HN⊥BC于N,由余弦三角函数和勾股定理算出了HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)余弦三角函数和勾股定理算出了FK,即可得DK.【解答】解:(1)在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H分别作HM⊥AD于M,HN⊥BC于N,∵AB=4,BE=3,∴AE==5,∵∠BAE=∠HAF=∠AHM,∴cos∠BAE=cos∠HAF=cos∠AHM,∴=,∴AH=,HM=,∴HN=4﹣=,即HM≠HN,∵MN∥CD,∴MD=CN,∵HD=,HC=,∴HC≠HD,∴△HGD≌△HEC是错误的,故(2)不正确;(3)由(2)知,AM==,∴DM=,∵MN∥CD,∴MD=HT=,∴==,故(3)正确;(4)由(2)知,HF==,∴,∴DK=DF﹣FK=,故(4)正确.三.解答题(共9小题)17.解方程组.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将①代入②得,x+(x﹣4)=6,∴x=5,将x=5代入①得,y=1,∴方程组的解为.18.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.【分析】欲证AE=DF,可证△ABE≌DCF.由AB∥CD,得∠B=∠C.又因为∠A=∠D,BE=CF,所以△ABE ≌△DCF.【解答】证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴△ABE≌DCF(AAS).∴AE=DF.19.已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.【分析】(1)根据分式的减法和除法可以化简A;(2)根据m+n﹣2=0,可以得到m+n=2,然后代入(1)中化简后的A,即可求得A的值.【解答】解:(1)A=(﹣)•===(m+n);(2)∵m+n﹣2=0,∴m+n=2,当m+n=2时,A=×2=6.20.某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2 (1)表格中的a= 4 ,b= 5 ;(2)在这次调查中,参加志愿者活动的次数的众数为 4 ,中位数为 4 ;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.【分析】(1)由题中的数据即可求解;(2)根据中位数、众数的定义,即可解答;(3)根据样本估计总体,即可解答.【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,故答案为:4,5;(2)该20名学生参加志愿者活动的次数从小到大排列如下:1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,∵4出现的最多,由6次,∴众数为4,中位数为第10,第11个数的平均数=4,故答案为:4,4;(3)300×=90(人).答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.21.民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.22.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【分析】(1)根据要求作出图形即可.(2)想办法证明EB=EF,∠BEF=60°,可得结论.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAC=45°,∴∠BAE=∠EAF=∠FAD=15°,∵∠ABC=∠AFC=90°,AE=EC,∵BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EFA=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EFA=30°,∴∠BEF=60°,∴△BEF是等边三角形.23.如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.【分析】(1)根据直线y=x+4分别与x轴,y轴相交于A、B两点,令x=0,则y=4;令y=0,则x =﹣8,即得A,B的坐标;(2)设P(x,),根据三角形面积公式,表示出S关于x的函数解析式,根据P在线段AB上得出x的取值范围;(3)将S△POQ表示为OP2,从而当△POQ的面积最小时,此时OP最小,而OP⊥AB时,OP最小,借助三角函数求出此时的直径即可解决问题.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠PQO=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小,则OP最小时,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.24.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【分析】(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=5,故点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),而=﹣(m﹣3)2+5,即得m=3时,纵坐标最大,此时顶点移动到了最高处,顶点坐标为:(2,5);(3)求出直线EF的解析式为y=2x+1,由得直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),因(2,5)在线段EF上,由已知可得(m+1,2m+3)不在线段EF上,即是m+1<﹣1或m+1>3,或(2,5)与(m+1,2m+3)重合,可得抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.25.如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【分析】(1)利用平行四边形的判定定理:两边平行且相等的四边形是平行四边形,(2)利用三角形相似,求出此时FG的长,再借助直角三角形勾股定理求解,(3)利用图形法,判断G点轨迹为一条线段,在对应点处求解.【解答】解:(1)连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB,∵四边形ABCD是菱形,∴EF∥AB,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=FA=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BC=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF²=CH²+FH²,即(2+2m)²=()²+(3+m)²,整理得:3m²+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)因H点沿线段AB直线运动,F点沿线段BA的延长线直线运动,并且CD∥AB,线段ED与线段CF的交点G点运动轨迹为线段AG,运动刚开始时,A、F、H、G四点重合,当H点与B点重合时,G点运动到极限位置,所以G点轨迹为线段AG,如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG²=()²+()²=,∴AG=.∴G点路径长度为.2020年广东中考数学真题及答案一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A.-9B.9C.19D.19- 2.一组数据2,4,3,5,2的中位数是( )A.5B.35C.3D.253.在半面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A.(3,2)-B.(2,3)-C.(2,3)-D.(3,2)-4.若一个多边形的内角和是540°,则该多边形的边数为( )A.4B.5C.6D.75.24x -在实数范围内有意义,则x 的取值范围是( )A.2x ≠B.2x ≥C.2x ≤D.2x ≠-6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为( )A.8B.22C.16D.4 7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A.22y x =+B.2(1)1y x =-+C.2(2)2y x =-+D.2(1)3y x =-- 8.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A.无解 B.1x ≤ C.1x ≥- D.11x -≤≤9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A.1B.2C.3D.2 10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A.4个B.3个C.2个D.1个二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -=_________.12.如果单项式3m x y 与35nx y -是同类项,那么m n +=_________. 13.若2|1|0a b -++=,则2020()a b +=_________. 14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC ∠=︒,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,4MN =,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求价:22()()()2x y x y x y x +++--,其中2x =3y =19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下: 等级非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.。
广东省年中考数学真题试题(含解析)
![广东省年中考数学真题试题(含解析)](https://img.taocdn.com/s3/m/b5769d3e84868762caaed5c3.png)
【答案】B2019年广东省初中学业水平考试数学说明:1 •全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、名、考场号、座位号•用 2B 铅笔把对应该号码的标号涂黑.3 •选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使 用铅笔和涂改液•不按以上要求作答的答案无效.5 •考生务必保持答题卡的整洁•考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 10小题,每小题3分,共30分)在每小题列出的四个选项中,只有 一个是正确的,请把答题卡上对应题目所选的选项涂黑.12的绝对值是A. 2B• - 2C1 • 2D. ± 2【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0【考点】绝对值【解析】a x 10n 形式,其中0w |a| v 10.2.某网店2019年母亲节这天的营业额为221 000元,将数 221 000用科学记数法表示为6A. 2.21 X 10 5B • 2.21 X 10C • 221 X 1036D • 0.221 X 10【答案】C【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是ABC D【答案】A【解析】从左边看,得出左视图【考点】简单组合体的三视图4•下列计算正确的是6.3.23.3.9222A. b 十 b =b B . b • b =b C . a +a =2a【答案】C【解析】合并同类项:字母部分不变,系数相加减【考点】同底数幕的乘除,合并同类项,幕的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A B C【解析】轴对称与中心对称的概念3、3D . (a ) =a【考点】轴对称与中心对称A. 3【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数•【考点】中位数的概念7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是-2 - 1 0 1 2【答案】D【解析】a是负数,b是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识&化简,42的结果是A.- 4 B . 4 C . ± 4 D . 2【答案】B【解析】公式..a2二a .【考点】二次根式9. 已知X i、X2是一元二次方程了x2- 2x=0的两个实数根,下列结论错误的是2A. X i M X2 B . X i - 2x i=0 C . X I+X2=2 D . X i • X2=2A. a>b B . C . a+b>0 D . - <0b6•数据3、3、5、8、11的中位数是3【答案】D【解析】因式分解 x (x-2 ) =0,解得两个根分别为 0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10. 如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2以EB 为边在上方作正方形 EFGB 延长FG 交DC 于M 连接AM AF , H 为AD 的中点,连接FH 分别与AB AM 交于点 N K.则 下列结论:①△ ANH^A GNF ②/ AFN=/ HFG ③ FN=2NK ④ S A AFN :S △ ADM =1:4 .其中正确 的结论有A. 1个 B . 2个 C . 3个 D . 4个【解析】AH=GF=2 / ANH=/ GNF / AHN / GFN △ ANH^A GNF(AAS ,①正确;由①得AN=GN=1 •/ NGL FG NA 不垂直于 AF,「. FN 不是/ AFG 的角平分线,二/ AFN^Z HFG ②错误;由厶 AKH TA MKF 且 AH:MF=1:3,A KH:KF=1:3,又T FN=HN 二 K 为 NH 的中点,1 1 即 FN=2NK ③正确;S A AFN =—AN ・ FG=1,S AAD =— DM- AD=4, A S A AFN S A AD ^1:4,④正确.22【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积、填空题(本大题 6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题 卡相应的位置上. 11. 计算 2019°+( 1)「1 = 【解析】1+3=4【考点】零指数幕和负指数幕的运算E a【答案】CH I)12. _________________________________________ 如图,已知a// b,/ 1=75 °,则/ 2 =【答案】105°【解析】180° -75 ° =105° .【考点】平行线的性质13. 一个多边形的内角和是1080°,这个多边形的边数是______________【答8案】【解(n-2 )x 180°=1080°,解得n=8.析】【考n边形的内角和=(n-2 ) x 180°点】14.已知x=2y+3,则代数式4x - 8y+9的值是【答案】21【解析】由已知条件得x-2y=3,原式=4 (x-2y ) +9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC与实验楼BD的水平间距CD=15* 3米,在实验楼的顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45 °,则教学楼AC的高度是_________________ 米(结果保留根号).【答案】15+15.3【解析】AC=CD tan30 ° +CD ・ tan45 ° =15+15^3.【考点】解直角三角形,特殊三角函数值16•如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 ____________________________ (结果用含a 、 b 代数式表示).^16-1 图【答案】a+8b【解析】每个接触部分的相扣长度为( a-b ),则下方空余部分的长度为 a-2 (a-b ) =2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+ (2b-a ) =a+2b ; 5个拼出来的图形有 2 段空余长度,总长度=3a+2 (2b-a ) =a+4b ; 7个拼出来的图形有 3段空余长度,总长度 =4a+3 (2b-a ) =a+6b ; 9个拼出来的图形有 4段空余长度,总长度 =5a+4 (2b-a ) =a+8b.【考点】规律探究题型 三、解答题(一)(本大题 3小题,每小题6分,共18 分)1 __ nn■16-:图17•解不等式组:'「-[2(x +1)>4 ②【答案】解:由①得x > 3,由②得x> 1,•••原不等式组的解集为x > 3.【考点】解一元一次不等式组18•先化简,再求值:----- ----- 1罕△,其中x= .. 2 .lx-2 x-2 丿x2-4【答案】解:原式=x-1 x2x -2 -4x-1 x x 2 x-2x-2 x x-1x +2x原式2 2=乙土=1+.2 2 2【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ ABC中,点D是AB边上的一点.(1 )请用尺规作图法,在△ABC内,求作/ ADE 使/ ADEN B, DE交AC于E;(不要求写作法,保留作图痕迹)(2 )在(1)的条件下,若AD =2,DB 求铤的值.ECIf【答案】解:(1)如图所示,/ ADE为所求.(2)•••/ ADEN B••• DE// BCAE ADEC DB【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21 分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 A B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示, 根据图表信息解答下列问题:ADDB=2AEEC=2I题20图衣(1)x = _______ , y = ______ ,扇形图中表示C的圆心角的度数为 _________ 度;(2 )甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】4解:(1)y=10 - 25%=40 x=40-24-10-2=4 , C 的圆心角=360°X 一=3640(2 )画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种P (甲乙)=—1答:同时抽到甲、乙两名学生的概率为丄.3【考点】数据收集与分析,概率的计算成绩等级頻数分信衣成绩等级频扇形兌计图成绩答级顺数A24B10C XD2合计y21 •某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x )个.由题意得70x+80 (60-x) =4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y个.由题意得70y < 80 (60-x ),解得y < 32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22. 在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ ABC的三个顶点均在格点上,以点A为圆心的E F与BC相切于点D,分别交AB、AC于点E、F.(1 )求厶ABC三边的长;(2)求图中由线段EB BC CF及FE所围成的阴影部分的面积.• S 阴影=20— 5 n【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式 五、解答题(三)(本大题 3小题,毎小题7分,共21 分)k 223.如图,一次函数y=k i x+b 的图象与反比例函解:(1)由题意可知,AB=.、22 62 =2. 10 , AC = 22 62 =2. 10 ,BC= 42 82 =4 一5(2)连接AD由(1)可知,AB2+AC2=BC 2 AB=AC•••/ BAC=90,且△ ABC 是等腰直角三角形•••以点A 为圆心的EF 与 BC 相切于点D• AD 丄 BC• AD=! BC=2 5 (或用等面积法 AB - AC=BC- AD 求出AD 长度) 2 S 阴影=Sx ABC — S 扇形 EAFS A AB (= — X 2.10 X 210 =202S 扇形EA F = 1 4■ : 2-5 2=5n【答4数 y= 2的图象相交于 A 、B 两点,其中点A x的坐标为(-1, 4),点B 的坐标为(4, n ).k(1)根据函数图象,直接写出满足k i x+b >二的x 的取值范围;x(2) 求这两个函数的表达式;(3) 点P 在线段AB 上,且AOP :S △BOP =1 : 2 ,求点P 的坐标.【答案】解:(1) x v -1 或 O v x v 4(2)•••反比例函数 y=^图象过点A (- 1 , 4)x••• 4=k 2,解得 k 2=- 4-1•反比例函数表达式为yx4• •反比例函数y =-图象过点B (4, n )x4•- n=-=- 1 ,.•• B (4,- 1)•••一次函数 y=k i x+b 图象过 A (- 1, 4)和 B (4,- 1)•/ AM L BC, PN L BCAP MN BP BN■/ MN=a+1 BN=4-aa=?• -a+3=7327 •••点P 坐标为(33"4 =也 +b-1 =4匕 +b解得/^-1Jb=3•••一次函数表达式为 y= - x+3(3)T P 在线段AB 上,设P 点坐标为(a , - a+3)•••△ AOP^n ^ BOP 的高相同AOP:S △ BO =1 : 2• AP : BP=1 : 2过点B 作BC// x 轴,过点 A 、P 分别作AM L BC, PN ^ BC 交于点M Na 1 4 -a2 2 | 2 2(或用两点之间的距离公式APq(a+1) +(-a + 3-4) , BP=$(4-a) +(-1+a-3),由AP 1解得a i= , a2=-6舍去)BP 2 3【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24. 如题24-1图,在△ ABC中,AB=AC O O是厶ABC的外接圆,过点C作/ BCD2 ACB交O0于点D,连接AD交BC于点E,延长DC至点F,使CF=AC连接AF.(1)求证:ED=EC(2) 求证:AF是O 0的切线;(3) 如题24-2图,若点G是厶ACD的内心,BC- BE=25,求BG的长.【答案】(1)证明:••• AB=AC•••/ BCD=/ ACB •••/ B=Z BCD•/ AC=AC••• ED=EC(2)证明:GSA24-1 谢连接AO并延长交O O于点G连接CG 由(1)得/ B=Z BCD• AB// DF•/ AB=AC CF=AC•AB=CF•四边形ABCF是平行四边形•••/ CAF=" ACB•/ AG为直径•/ ACG=90,即/ G+Z GAC=90 •••/ G=Z B,Z B=Z ACB•Z ACB+Z GAC=90•Z CAF+Z GAC=90 即Z OAF=90•/点A在O O上••• AF是O O的切线(3)解:迦24-2 N连接AG•••/ BCD" ACB / BCD" 1•••/ 1 = " ACB•••" B=" B•△ABE^A CBA•BE _ ABAB BC•/ BC- BE=25•A B"=25•AB=5•••点G是厶ACD的内心•••" 2=" 3•••" BGA" 3+ " BCA" 3+ " BCD" 3+" 1=" 3+ " 2=" BAG/• BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念, 相似三角形的应用,外角的应用,等量代换的意识25. 如题25-1图,在平面直角坐标系中,抛物线y -x2^^x -- 3与x轴交于点A B(点8 4 8A在点B右侧),点D为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F,A CAD绕点C顺时针旋转得到厶CFE点A恰好旋转到点F,连接BE(1)求点A B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如题25-2图,过顶点D作DD丄x 轴于点D,点P是抛物线上一动点,过点P作PM丄x轴,点M为垂足,使得△ PAM W^ DDA相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?题25-1囲题25-2圏【答案】(1)解:由y= — x2—— x - 7 - =—- x 3 - 2灯3 得点D坐标为(-3,8 4 8 8令y=0 得x i=- 7, X2=1•••点A坐标为(-7, 0),点B坐标为(1 , 0)(2)证明:世25-1圈过点D作DGL y轴交于点G,设点C坐标为(0, m)•••/ DGC W FOC=90,/ DCG W FCODG CGFO CO由题意得CA=CF CD=CE Z DCA M ECF OA=1 , DG=3 CG=m2< 3•••COL FA• FO=OA=1(或先设直线CD的函数解析式为y=kx+b,用D F两点坐标求出y= 3 x+ .3, 再求出点C的坐标)•••点C坐标为(0, ,3 )• CD=CE= 32 3 2 3 2=63 = m U ,解得m=. 31 mCO••• tan / CFO= = 3FO•••/ CFO=60•••△ FCA是等边三角形•••/ CFO M ECF•EC// BA•/ BF=BO- FO=6•CE=BF•四边形BFCE是平行四边形(3)解:①设点P坐标为(m, —3 m2• 3 3 m-7 3),且点P不与点A、B、D重合.若8 4 8△卩人“与厶DDA相似,因为都是直角三角形,则必有一个锐角相等.由(1 )得AD=4, DD=2.. 3(A)当P在点A右侧时,m> 1(a)当厶PAMh^DAD1,则/ PAM M DAD i,此时P、A D三点共线,这种情况不存在AD1(b)当厶PAMh^ADD i,则/ PAM M ADD i,AM DD i2 3 3 7、3m m --& 4 8 4,解得m=-5(舍去),m=1 (舍去),这种不存在m-1 2、3 3(B) 当P在线段AB之间时,-7 v m< 1(a)当厶PAMh^ DAD1,则/ PAM M DAD1,此时P与D重合,这种情况不存在21(b)当厶PAMh A ADD1,则M PAM M ADD1,AD1AM DD12223 3 2 3、3 7-3m m -- •'•- — ------- 4 --------- 8— =—戸,解得 m=- 37 , m=1 (舍去)m -1 2、3 35 37综上所述,点P 的横坐标为-—,-11,- ,三个任选一个进行求解即可.3 3②一共存在三个点 P,使得△ PAM 与厶DDA 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想3 23.373m m -- 8 4 8 m -1 4 5,解得m=- , m 2=1 (舍去)2、3 3(C) 当P 在点B 左侧时,m<- 7(a )当厶 PAMh A DAD i , 贝PAM M DAD i ,此时 PMAM DD 1AD i.3 2 3.37.3m m ------- 8 4 8 m -1 243,解得 m=- 11, m=1 (舍去)2 43(b )当厶 PAMh ^ADD 1, 则/ PAM / ADD 1,此时 PM AM AD 1DD 1。
2024年广东省广州市中考数学试卷正式版含答案解析
![2024年广东省广州市中考数学试卷正式版含答案解析](https://img.taocdn.com/s3/m/43840b3a0a1c59eef8c75fbfc77da26924c59652.png)
绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2024年广东省广州市中考数学试卷+答案解析
![2024年广东省广州市中考数学试卷+答案解析](https://img.taocdn.com/s3/m/6b129631ae1ffc4ffe4733687e21af45b307fed4.png)
2024年广东省广州市中考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.四个数,,0,10中,最小的数是()A. B. C.0 D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若,则下列运算正确的是()A. B. C. D.4.若,则()A. B. C. D.5.为了解公园用地面积单位:公顷的基本情况,某地随机调查了本地50个公园的用地面积,按照,,,,的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在这一组的公园个数最多C.用地面积在这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A. B.C. D.7.如图,在中,,,D为边BC的中点,点E,F分别在边AB,AC上,,则四边形AEDF的面积为()A.18B.C.9D.8.函数与的图象如图所示,当时,,均随着x的增大而减小.A.B.C.D.9.如图,中,弦AB的长为,点C在上,,所在的平面内有一点P,若,则点P与的位置关系是()A.点P在上B.点P在内C.点P在外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径l是5,则该圆锥的体积是()A.B.D.二、填空题:本题共6小题,每小题3分,共18分。
11.如图,直线l分别与直线a,b相交,,若,则的度数为______.12.如图,把,,三个电阻串联起来,线路AB上的电流为I,电压为U,则,当,,,时,U的值为______.13.如图,▱ABCD中,,点E在DA的延长线上,,若BA平分,则______.14.若,则______.15.定义新运算:例如:,若,则x的值为______.16.如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数的图象上,,将线段AB沿x轴正方向平移得线段点A平移后的对应点为,交函数的图象于点D,过点D作轴于点E,则下列结论:①;②的面积等于四边形的面积;③AE的最小值是;其中正确的结论有______填写所有正确结论的序号三、解答题:本题共9小题,共72分。
2024年广东省深圳市中考真题数学试卷含答案解析
![2024年广东省深圳市中考真题数学试卷含答案解析](https://img.taocdn.com/s3/m/60e2fc9c5ebfc77da26925c52cc58bd631869336.png)
2024年广东省深圳市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列用七巧板拼成的图案中,为中心对称图形的是()A .B .C .D .【答案】C【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A 、B 、D 均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C .2.如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3.下列运算正确的是()A .()523m m -=-B .23m n m m n ⋅=C .33mn m n-=D .()2211m m -=-【答案】B【分析】本题考查了同底数幂的乘法,合并同类项,积的乘方,完全平方公式.根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()6523m m m -=≠-,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n -≠,故该选项不符合题意;D 、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B .4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .12B .112C .16D .145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A .40︒B .50︒C .60︒D .70︒【答案】B【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A .①②B .①③C .②③D .只有①【答案】B【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A .()7791x y x y +=⎧⎨-=⎩B .()7791x y x y +=⎧⎨+=⎩C .()7791x y x y-=⎧⎨-=⎩D .()7791x y x y+=⎧⎨+=⎩【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A .8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m【答案】A【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠=,,以及Rt tan AN ACN ACN CN ∠= ,,运用线段和差关系,即∵MEF EFB CDF ∠=∠=∠∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=∴四边形EFBM 是矩形同理得四边形CDBN 是矩形故选:A二、填空题9.已知一元二次方程230x x m -+=的一个根为1,则m =.【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是.(写出一个答案即可)∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,13.如图,在ABC 中,AB BC =,tan 12B ∠=,D 为BC 上一点,且满足5BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴cos DM CD =⋅∵DE AD ⊥,CM ∴MC DE ∥,∴CE DM ==三、解答题14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+ ⎪⎝⎭.15.先化简,再求值:221111a aa a-+⎛⎫-÷⎪,其中1a=+16.据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【详解】(1)解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A 48.34883.299B 48.42547.5354.04(2)小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若56AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.观察图象知,函数为二次函数,20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE,请直接写出PE的值.第二种情况:作ABC ∠的平分线,取CH CB =线BA 上取AF AB =,连接DF 故A 为BF 的中点;第三种情况:作AD BC ∥,交BE 的延长线于点在DA 延长线上取点F ,使则A 为DF 的中点,同理可证明12AD BC =,从而②若按照图1作图,∠=∠,由题意可知,ACB ACP四边形ABCD是平行四边形,ACB PAC∴∠=∠,∴∠=∠,PAC PCA延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,故答案为:3414PE =或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的。
数学试题及答案中考广东
![数学试题及答案中考广东](https://img.taocdn.com/s3/m/e3bc8c127ed5360cba1aa8114431b90d6c8589d0.png)
数学试题及答案中考广东一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...B. √2C. 3.14D. 0.5答案:B2. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是:A. 15B. 20C. 25D. 30答案:C4. 已知一个二次函数的图像开口向上,且顶点坐标为(-1, -4),则该函数的解析式为:A. y = (x + 1)^2 - 4B. y = -(x + 1)^2 - 4C. y = (x - 1)^2 - 4D. y = -(x - 1)^2 - 4答案:B5. 若x = 2是方程2x - 3 = 7的解,则下列哪个选项是方程的另一个解?A. x = -2B. x = 1C. x = 0D. x = 5答案:B6. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y = 2x + 3的图像与x轴的交点坐标是:A. (-3/2, 0)B. (-3, 0)C. (3/2, 0)D. (3, 0)答案:B8. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是:A. 24B. 26C. 28D. 32答案:A9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个多项式与x^2 - 2x + 1相乘后得到x^3 - 2x^2 + x - 2,那么这个多项式是:A. x - 2B. x + 2C. x - 1D. x + 1答案:A二、填空题(每题3分,共15分)11. 一个数的平方根是2,那么这个数是 _______ 。
答案:412. 一个等差数列的前三项分别是1,3,5,那么这个数列的第10项是 _______ 。
答案:1913. 一个直角三角形的两直角边长分别为3和4,那么这个三角形的斜边长是 _______ 。
历年广东省广州市中考数学试卷(含答案)
![历年广东省广州市中考数学试卷(含答案)](https://img.taocdn.com/s3/m/998d790b48d7c1c709a14552.png)
2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点 D.三条高的交点7.(3分)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=.12.(3分)分解因式:xy2﹣9x=.13.(3分)当x=时,二次函数y=x2﹣2x+6有最小值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B 类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广州)如图,数轴上两点A,B表示的数互为相反数,则点B 表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)(2017•广州)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)(2017•广州)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)(2017•广州)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)(2017•广州)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点 D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)(2017•广州)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)(2017•广州)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF 的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)(2017•广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)(2017•广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2017•广州)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)(2017•广州)分解因式:xy2﹣9x=x(y+3)(y﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)(2017•广州)当x=1时,二次函数y=x2﹣2x+6有最小值5.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)(2017•广州)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)(2017•广州)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三③如图3,利用面积差求得:S△CFG角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8×4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,=;∴S四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)(2017•广州)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)(2017•广州)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)(2017•广州)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有5人,补全条形统计图;(2)D类学生人数占被调查总人数的36%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)(2017•广州)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)(2017•广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)(2017•广州)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)(2017•广州)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE 交CD 于K .∵四边形CODE 是菱形,∴DE ∥AC ,DE=OC=OA ,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt △ADK 中,AK===3, ∴sin ∠DAE==,②作PF ⊥AD 于F .易知PF=AP•sin ∠DAE=AP ,∵点Q 的运动时间t=+=OP +AP=OP +PF ,∴当O 、P 、F 共线时,OP +PF 的值最小,此时OF 是△ACD 的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==, ∴当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为,点Q 走完全程所需的时间为3s .【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)(2017•广州)如图,AB 是⊙O 的直径,=,AB=2,连接AC .(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
2024年广东数学中考卷子
![2024年广东数学中考卷子](https://img.taocdn.com/s3/m/51b18605302b3169a45177232f60ddccda38e693.png)
2024年广东数学中考卷子(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. (2分)下列选项中,既是有理数又是无理数的是:A. 0B. πC. √2D. 1.52. (2分)下列函数中,奇函数是:A. y = x²B. y = |x|C. y = x³D. y = x² + 13. (2分)在平面直角坐标系中,点A(2, 3)关于原点对称的点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)4. (2分)下列等式中,正确的是:A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a b)² = a² 2ab + b²D. a² b² = (a + b)(a b)5. (2分)已知三角形ABC中,AB=AC,∠BAC=40°,则∠ABC的度数是:A. 40°B. 70°C. 80°D. 100°二、判断题(每题1分,共20分)6. (1分)两个无理数相加一定是无理数。
()7. (1分)平行线的性质是同位角相等。
()8. (1分)一元二次方程的解一定是实数。
()9. (1分)三角形的中位线等于第三边的一半。
()10. (1分)函数y = 2x + 3的图象是一条直线。
()三、填空题(每空1分,共10分)11. (1分)若a² = 16,则a = _______。
12. (1分)在直角三角形中,若一个锐角为30°,则另一个锐角的度数是_______°。
13. (1分)若|3x 5| = 2,则x的值为_______或_______。
14. (1分)函数y = 2x的图象经过_______象限。
广东2024中考数学试卷
![广东2024中考数学试卷](https://img.taocdn.com/s3/m/9be7474954270722192e453610661ed9ac515511.png)
选择题:
下列哪个数是无理数?
A. √4
B. 3.14
C. √2(正确答案)
D. 1/3
下列哪个选项是方程x2 - 4x + 4 = 0 的根?
A. x = 1
B. x = 2(正确答案)
C. x = -2
D. x = 4
下列哪个图形是中心对称图形但不是轴对称图形?
A. 正方形
B. 等腰三角形
C. 平行四边形(正确答案)
D. 圆
下列哪个式子表示的是二次函数?
A. y = 2x + 1
B. y = x2 - 4x + 4(正确答案)
C. y = 1/x
D. y = √x
在直角三角形中,如果一个锐角是30°,那么另一个锐角的大小是?
A. 30°
B. 45°
C. 60°(正确答案)
D. 90°
下列哪个数集是实数集的子集但不是有理数集的子集?
A. 自然数集
B. 整数集
C. 无理数集(正确答案)
D. 有理数集
下列哪个选项是不等式2x - 5 > 3 的解?
A. x = 1
B. x = 2
C. x = 3
D. x = 4(正确答案)
下列哪个图形可以通过平移得到另一个与其全等的图形?
A. 等边三角形
B. 正方形(正确答案)
C. 等腰直角三角形
D. 等腰梯形(非特殊情况下不能通过平移得到全等图形)
下列哪个式子表示的是一元一次不等式?
A. x2 + 3x > 5
B. x/2 - 1 < 3(正确答案)
C. x + y > 7
D. 2x + 3y < 8。
2024年广东省深圳市中考数学试卷及答案解析
![2024年广东省深圳市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/fe659fd803d276a20029bd64783e0912a2167cfe.png)
2024年广东省深圳市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.(3分)下列用七巧板拼成的图案中,为中心对称图形的是()A.B.C.D.2.(3分)如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.a B.b C.c D.d3.(3分)下列运算正确的是()A.(﹣m3)2=﹣m5B.m2n•m=m3nC.3mn﹣m=3n D.(m﹣1)2=m2﹣14.(3分)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A.B.C.D.5.(3分)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为()A.40°B.50°C.60°D.70°6.(3分)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.①②B.①③C.②③D.只有①7.(3分)在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x间,房客y人,则可列方程组为()A.B.C.D.8.(3分)如图,为了测量某电子厂的高度,小明用高1.8m的测量仪EF测得顶端A的仰角为45°,小军在小明的前面5m处用高1.5m的测量仪CD测得顶端A的仰角为53°,则电子厂AB的高度为()(参考数据:,,A.22.7m B.22.4m C.21.2m D.23.0m二、填空题(本大题共5小题,每小题3分,共15分)9.(3分)一元二次方程x2﹣3x+a=0的一个解为x=1,则a=.10.(3分)如图所示,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD=10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可)11.(3分)如图,在矩形ABCD中,,O为BC中点,OE=AB=4,则扇形EOF的面积为.12.(3分)如图,在平面直角坐标系中,四边形AOCB为菱形,,且点A落在反比例函数上,点B落在反比例函数上,则k=.13.(3分)如图,在△ABC中,AB=BC,.D为BC上一点,且满足,过D作DE⊥AD交AC延长线于点E,则=.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.(5分)计算:.15.(7分)先化简,再代入求值:,其中.16.(8分)据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50学校B:(1)学校平均数众数中位数方差A 4883.299B48.4354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.(8分)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,如图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且共使用电梯5次,求:共有多少种运输方案?18.(9分)如图,在△ABD 中,AB =BD ,⊙O 为△ABD 的外接圆,BE 为⊙O 的切线,AC 为⊙O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE ⊥BE ;(2)若AB =5,BE =5,求⊙O 的半径.19.(12分)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的(x,y)描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a(x﹣h)2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a(x﹣h)2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B′的坐标为;②将点B′坐标代入y=ax2中,解得a=;(用含m,n的式子表示a)方案二:设C点坐标为(h,k).①此时点B的坐标为;②将点B坐标代入y=a(x﹣h)2+k中解得a=;(用含m,n的式子表示a)(3)【应用】已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2(x+h)2+k和C2:y2=a(x+h)2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,若AB∥x轴且AB=4,求a的值.20.(12分)垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图所示,四边形ABCD为“垂中平行四边形”,,CE=2,则AE=;AB =;(2)如图2,若四边形ABCD为“垂中平行四边形”,且AB=BD,猜想AF与CD的关系,并说明理由;(3)①如图3所示,在△ABC中,BE=5,CE=2AE=12,BE⊥AC交AC于点E,E为垂中点,请画出以BC为边的垂中平行四边形,要求:点A在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若△ABC关于直线AC对称得到△AB'C,连接CB',作射线CB'交①中所画平行四边形的边于点P,连接PE,请直接写出PE的值.2024年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.【分析】根据中心对称图形的定义即可得出结论.【解答】解:选项A、D中的图形既不是轴对称图形也不是中心对称图形,不符合题意;选项B中的图形是轴对称图形,不是中心对称图形,不符合题意;选项C中的图形是中心对称图形,符合题意;故选:C.【点评】本题考查了中心对称图形的定义,正方形的性质,熟知正方形是中心对称图形是解题的关键.2.【分析】观察a,b,c,d在数轴上的位置,根据实数在数轴上,从左到右是越来越大,从而进行解答即可.【解答】解:∵实数在数轴上,从左到右是越来越大,实数a在数轴的最左边,∴最小的实数为a,故选:A.【点评】本题主要考查了实数的大小比较,解题关键是熟练掌握实数在数轴上从左到右是越来越大.3.【分析】利用幂的乘方法则,单项式乘单项式法则,合并同类项法则,完全平方公式逐项判断即可.【解答】解:(﹣m3)2=m6,则A不符合题意;m2n•m=m3n,则B符合题意;3mn与m不是同类项,无法合并,则C不符合题意;(m﹣1)2=m2﹣2m+1,则D不符合题意;故选:B.【点评】本题考查幂的乘方,单项式乘单项式,合并同类项,完全平方公式,熟练掌握相关运算法则是解题的关键.4.【分析】直接由概率公式求解即可.【解答】解:从二十四个节气中选一个节气,则抽到的节气在夏季的概率为=,故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.5.【分析】由平行线的性质推出∠1=∠3,由反射定律得到∠3=∠4,因此∠4=∠1=50°.【解答】解:∵入射光线是平行光线,∴∠1=∠3,由反射定律得:∠3=∠4,∴∠4=∠1=50°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠1=∠3,由反射定律得到∠3=∠4.6.【分析】利用基本作图对三个图形的作法进行判断即可.【解答】解:根据基本作图可判断图1中AD为∠BAC的平分线,图2中AD为BC边上的中线,图3中AD为∠BAC的平分线.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.7.【分析】根据“如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵如果每一间客房住7人,那么有7人无房可住,∴7x+7=y;∵如果每一间客房住9人,那么就空出一间房,∴9(x﹣1)=y.∴根据题意可列方程组.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】根据题意可得:EF=BM=1.8m,CD=BN=1.5m,DF=5m,EM=BF,BD=CN,EM⊥AB,CN⊥AB,然后设BD=CN=x m,则EM=BF=(x+5)m,分别在Rt△AEM和Rt△ACN中,利用锐角三角函数的定义求出AM和AN的长,从而列出关于x的方程,进行计算即可解答.【解答】解:由题意得:EF=BM=1.8m,CD=BN=1.5m,DF=5m,EM=BF,BD=CN,EM⊥AB,CN⊥AB,设BD=CN=x m,∴EM=BF=DF+BD=(x+5)m,在Rt△AEM中,∠AEM=45°,∴AM=EM•tan45°=(x+5)m,在Rt△ACN中,∠ACN=53°,∴AN=CN•tan53°≈x(m),∵AM+BM=AN+BN=AB,∴x+5+1.8=x+1.5,解得:x=15.9,∴AN=x=21.2(m),∴AB=AN+BN=21.2+1.5=22.7(m),∴电子厂AB的高度约为22.7m,故选:A.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)9.【分析】将x=1代入一元二次方程,求出a的值即可.【解答】解:由题知,将x=1代入一元二次方程得,1﹣3+a=0,解得a=2.故答案为:2.【点评】本题主要考查了一元二次方程的解,熟知一元二次方程解得定义是解题的关键.10.【分析】根据正方形的面积公式得到AD=,GJ=1,得到1<DG<,于是得到结论.=10,S正方形GHIJ=1,【解答】解:∵S正方形ABCD∴AD=,GJ=1,∴1<DG<,∴正方形DEFG的边长可以是2,故答案为:2(答案不唯一).【点评】本题考查了相似图形,正方形的性质,正确地识别图形是解题的关键.11.【分析】根据已知条件求出BC,从而求出OB,根据三角形函数求出∠BOE,同理求出∠COF,进而求出∠EOF,再利用扇形的面积公式求出扇形EOF的面积即可.【解答】解:∵OE=AB=4,∴BC=AB=4,∵O为BC中点,∴OB=OC=BC=2,∵四边形ABCD为矩形,∴∠OBE=90°,∴cos∠BOE==,∴∠BOE=45°,同理,∠COF=45°,∴∠EOF=180°﹣∠BOE﹣∠COF=90°,=×π•OE2=4π.∴S扇形EOF故答案为:4π.【点评】本题考查扇形面积的计算等,掌握矩形的性质、三角函数和扇形的面积公式是解题的关键.12.【分析】过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由可设AD=4x,则OD =3x,根据点A落在反比例函数上得出x的值,再由勾股定理求出OA的长,根据菱形的性质可得出B点坐标,进而得出结论.【解答】解:如图,过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵,∴设AD=4x,则OD=3x,∵点A落在反比例函数上,∴4x•3x=3,解得x=±(负值舍去),∴3x=,4x=2,∴A(,2),∴OA===,∵四边形AOCB为菱形,∴AB=OA,∴B(+,2),即(4,2),∵点B落在反比例函数上,∴k=4×2=8,故答案为:8.【点评】本题考查的是反比例函数图象上点的坐标特征,菱形的性质及解直角三角形,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.13.【分析】根据问题分析:要求的值,可能需要构造相似或者平行线分线段成比例,所以作CM⊥AD于点M,从而将转化成,再根据题中条件去求解即可.【解答】解:方法一:如图,过点A作AH⊥CB于点H,作CM⊥AD于点M,∵AB=BC,,设BD=8a,则CD=5a,∴BC=AB=BD+CD=13a,∵tan B=,∴AH=5a,BH=12a,∴DH=BH﹣BD=4a,CH=a,在Rt△ACH中,AC==a,在Rt△ADH中,AD==a,∴cos∠ADC==,∴DM=CD•cos∠ADC=a,∴AM=AD﹣DM=a,∴.故答案为:.方法二:如图过A作AH⊥BC于点H,DM⊥AE于点M,同方法一∵AB=BC,,设BD=8a,则CD=5a,∴BC=AB=BD+CD=13a,∵tan B=,∴AH=5a,BH=12a,∴DH=BH﹣BD=4a,CH=a,在Rt△ACH中,AC==a,在Rt△ADH中,AD==a,=AH•CD=AC•DM∵S△ADC∴DM=a,AM==a,有射影定理可知:AD2=AM•AE,∴AE=a,CE=AE﹣AC=a,∴.故答案为:.方法三:如图所示建立直角坐标系,由前述方法可得OA=5,0D=4,BD=8,OC=1,∴A(0,5),C(1,0),D(﹣4,0),∴AC解析式:y=﹣5x+5,AD解析式为:y=x+5,∵AD⊥DE,∴DE解析式为:y=﹣x﹣,联立AE和DE解析式得:E(,﹣)∴=||=.故答案为:.【点评】本题主要考查了解直角三角形、平行线分线段成比例等知识点,作为填空压轴题有一定难度,其中熟练掌握相关知识和构造合适的辅助线是解题关键.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.【分析】首先计算零指数幂、负整数指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=﹣2×+1+﹣1+4=﹣+1+﹣1+4=4.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.15.【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子进行计算,即可解答.【解答】解:=•=•=,当时,原式===.【点评】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.16.【分析】(1)分别根据平均数、众数和中位数的定义解答即可;(2)根据平均数和方差的意义解答即可.【解答】解:(1)A学校的平均数为:(28+30+40+45+48+48+48+48+48+50)=43.3,B学校的众数为25,中位数为=47.5,故答案为:43.3,25,47.5;(2)小明爸爸应该预约A学校,理由如下:因为两所学校的平均数接近,但A学校的方差小于B学校,即A学校预约人数比较稳定,所以小明爸爸应该预约A学校.【点评】本题考查折线统计图、中位数、众数和方差,解答本题的关键是明确题意,利用数形结合的思想解答.17.【分析】任务1:根据“一辆购物车车身长1m,每增加一辆购物车,车身增加0.2m”列出函数关系式;任务2:把L=2.6代入解析式求出n的值即可;任务3:设用扶手电梯运输m次,直立电梯运输n次,根据题意得,求出m的取值范围即可.【解答】解:任务1:根据题意得:L=0.2(n﹣1)+1=0.2n+0.8,∴车身总长L与购物车辆数n的表达式为L=0.2n+0.8;任务2:当L=2.6时,0.2n+0.8=2.6,解得n=9,2×9=18(辆),答:直立电梯一次性最多可以运输18辆购物车;任务3:设用扶手电梯运输m次,直立电梯运输n次,∵100÷24=4,根据题意得:,解得m≥,∵m为正整数,且m≤5,∴m=2,3,4,5,∴共有4种运输方案.【点评】本题考查一次函数的应用和一元一次不等式的应用,关键是列出函数解析式和不等式.18.【分析】(1)连接BO并延长交AD于H点,如图,先证明BO垂直平分AD得到∠BHD=90°,再根据切线的性质得到∠OBE=90°,根据圆周角定理得到∠ADC=90°,于是可判断四边形BEDH为矩形,所以∠E=90°,从而得到结论;(2)先利用BO垂直平分AD得到AH=DH,再利用四边形BEDH为矩形得到DH=BE=5,接着在Rt△BDH中利用勾股定理计算出BH=5,设⊙O的半径为r,则OH=5﹣r,OD=r,所以(5﹣r)2+52=r2,然后解方程即可.【解答】(1)证明:连接BO并延长交AD于H点,如图,∵AB=BD,OA=OD,∴BO垂直平分AD,∴∠BHD=90°,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°∵AC为⊙O的直径,∴∠ADC=90°,∴四边形BEDH为矩形,∴∠E=90°,∴BE⊥DE;(2)解:∵BO垂直平分AD,∴AH=DH=AD,∵四边形BEDH为矩形,∴DH=BE=5,在Rt△BDH中,∵BD=AB=5,DH=5,∴BH==5,设⊙O的半径为r,则OH=5﹣r,OD=r,在Rt△ODH中,(5﹣r)2+52=r2,解得r=3,即⊙O的半径为3.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;灵活运用相似三角形的性质计算相应线段的长或表示线段之间的关系是解决问题的关键.也考查了圆周角定理、切线的性质.19.【分析】(1)描点连线绘制函数图象即可,再用待定系数法即可求函数表达式;(2)方案一:点B′(m,n);将点B′的坐标代入抛物线表达式即可求解;方案二:同方案一;(3)对于二次函数C1:m=4,由a=得:2=,解得:n=8,则C2距线段AB的距离的n=2,即可求解.【解答】解:(1)描点连线绘制函数图象如下:抛物线过点O,故设抛物线的表达式为:y=ax2+b,将(2,1)、(3,2.25)代入上式得:,解得:,则抛物线的表达式为:y=x2,(x≥0);(2)方案一:点B′(m,n);将点B′的坐标代入抛物线表达式得:n=a×m2,则a=;故答案为:(m,n),;方案二:点B(h+m,k+n),将点B的坐标代入抛物线表达式得:k+n=a(h+m﹣h)2+k,解得:a=;故答案为:(h+m,k+n),;(3)对于二次函数C1:m=4,由a=得:2=,解得:n=8,则C2距线段AB的距离的n=2,当a>0时,则a===;当a<0时,同理可得:a=﹣,综上,a=±.【点评】本题考查了二次函数综合运用,涉及到函数作图、方案探究等,理解题意,逐次求解是解题的关键.20.【分析】(1)理解题意,由△AEF∽△CEB得,AE=1,再用勾股定理求AB即可;(2)这一问是对上一问思路的顺延,利用△AED∽△FEB将线段之间的关系转化即可得证;(3)①根据题意作符合题意得平行四边形即可,但是不能漏情况;②画出图形之后在求解,这一问难度不大,主要在于建立在第一小问的基础上,之后用相似或者锐角三角函数把边长求出即可.【解答】解:(1)由题可知,AF=AD=BC,∵AF∥BC,∴△AEF∽△CEB,∴,∵CE=2,∴AE=1,∵BC=2AF=2,∴BE==4,∴AB==;故答案为:1,.(2)AF=CD,理由如下,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△AED∽△FEB,∴,设BE=x,则DE=2x,∴AB=BD=3x,AE==2x,∴EF=AE=x,∴AF=AE+EF=3x,∴AF=AB,∴AF=CD;(3)①作法一:如图所示,作平行四边形ABCH则为所求,作法提示:过A作AH∥BC,过C作CH∥AB,两条直线交于点H(也可不用尺规作图,其他工具亦可).作法二:如图所示,平行四边形CBQH即为所求,作法提示:过C作CH∥AB,延长BE交CH于点H,过H作HQ∥BC交BA延长线于Q,(因为题中并没有要求作图工具,所以尺规作图也行,其他工具也可以,只要符合题意.)作法三:如图所示,平行四边形BCDF即为所求,作法提示:作AD∥BC,交BE的延长线于点D,连接CD,作BC的垂直平分线,在DA延长线上取点F,使AF=AD,连接BF,②(Ⅰ)当垂中平行四边形是作法一时,方法一:如图所示,作PQ⊥AC,∵△ABC关于直线AC对称得到△AB'C,∴∠ACB=∠ACP,∵AH∥BC,∴∠PAC=∠ACB,∴∠ACP=∠PAC,∴PA=PC,∴AQ=AC=9,∴EQ=EC﹣CQ=3,∵tan∠ACB=tan∠PCQ,∴,即,解得PQ=,∴PE==.方法二:如图建立坐标系,以BB'为x轴,以AC为y轴,∴A(0,6),C(0,﹣12),B(﹣5,0),由tan∠BCE=得,k AH=﹣,k CB'=,∴直线AH解析式为:y=﹣x+6,直线CB'解析式为:y=x﹣12,联立解析式求解得P(,﹣3).∴PE==.(Ⅱ)当垂中平行四边形是作法二时,方法一:如图连接PA,延长CA交HQ延长线于点G,同理可得,PG=PC,∴PA垂直平分AC,∴AE=6,EC=12,∵△CPA∽△CB'E,∴PA=,∴PE=.方法二:建立坐标系法,同情况一建立坐标系可得PE=.(Ⅲ)若按照作法三作图,则没有交点,不存在PE(不符合题意).【点评】本题主要考查相似三角形的性质和判定、勾股定理、折叠与对称问题等知识,熟练掌握以上基础知识、添加合适的辅助线以及正确理解题意是解题关键。
往年广东省东莞市中考数学试题及答案
![往年广东省东莞市中考数学试题及答案](https://img.taocdn.com/s3/m/957125b51ed9ad51f11df21e.png)
往年广东省东莞市中考数学试题及答案说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,往年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D.2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分) 11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则2a b=________.13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB的中点D 逆时针旋转180°,点E 到了点E ′位置,则四边形ACE ′E 的形状是________. 16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是_____(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组128x y x y =+⎧⎨+=⎩18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC. 四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图); (2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.① ②21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的 面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空); (2)写出题22图中的三对相似三角形,并选择其中一对进行证明. 五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如图,当2=m 时,该抛物线与y 轴交于点C,顶点为D,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE ⊥DC 交DC的延长线于点E.(1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动. (1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M,则∠EMC=______度;(2)如图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC.20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y当0=y 时,23=x ,∴P(23,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD.FNMEDC BAGFN MEDCB AFEA(2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=30cos AC=6÷3423=(3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H, ∵AF=6-x ,∠AHF=∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
往年广东省中考数学试题及答案说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是 A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,往年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是 A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是 A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D.2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上 将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.① ②21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F ∠FDE=90°,DF=4,DE=3重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.FEDCBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π三、17.⎩⎨⎧==23y x ; 18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人). 21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;FNMEDC BAGFN MEDCB A (2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y当0=y 时,23=x ,∴P(23,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x ∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; 题25图(4)FA③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H, ∵AF=6-x ,∠AHF=∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=题25图(5)。