预应力混凝土等截面连续梁桥毕业设计

合集下载

80m140m80m公路预应力混凝土连续刚构桥设计毕业设计

80m140m80m公路预应力混凝土连续刚构桥设计毕业设计

80m+140m+80m公路预应力混凝土连续刚构桥设计毕业设计目录第1章绪论 (1)1.1 预应力混凝土连续刚构桥概述 (1)1.2 本桥式结构的特点 (1)1.2.1 设计特点 (1)1.2.2 受力特点 (2)1.2.3 构造特点 (2)1.2.4 施工工艺方法 (3)1.3 毕业设计的目的和意义 (3)1.4 毕业设计主要容 (3)第2章结构初步设计 (5)2.1 设计概述 (5)2.1.1主要技术指标 (5)2.1.2 材料规格 (5)2.1.3 设计规 (6)2.2 桥梁总体布置及结构主要尺寸 (7)2.2.1 立面布置 (7)2.2.2 横截面尺寸拟定 (8)2.3 主梁和桥墩的施工分段 (10)2.4 施工注意事项 (12)第3章主梁力计算 (13)3.1 MIDAS模型建立 (13)3.1.1 计算单元的划分 (14)3.1.2 荷载信息 (14)3.1.3 施工顺序设计 (15)3.2 恒载力计算 (16)3.2.1 毛截面几何特性 (16)3.2.2 恒载力计算 (17)3.3 活载力计算 (20)3.3.1 计算方法 (20)3.3.2 设计荷载 (21)3.4 恒活载力短期效应组合 (25)第4章预应力钢束的估算与布置 (28)4.1 预应力筋的估算原理 (28)4.2 预应力筋的估算方法 (28)4.2.1 按承载能力极限计算时满足正截面强度要求 (28)4.2.2 按正常使用极限状态的应力要求估算 (29)4.2.3 按正常使用状态抗裂性要求进行配束 (31)4.3 预应力筋的估算 (32)4.4 纵向预应力钢束的布置 (34)4.5 竖向预应力钢束布置 (35)第5章预应力损失及有效预应力计算 (36)5.1 预应力损失计算原理 (37)5.1.1 管道摩阻损失的计算 (37)5.1.2 锚头变形损失计算 (37)5.1.3 弹性压缩损失的计算 (38)5.1.4 钢筋松弛损失 (38)5.1.5 混凝土收缩徐变损失 (38)5.2 有效预应力值计算 (39)第6章次力计算 (46)6.1 收缩、徐变次力 (46)6.2 预加力引起的次力 (50)6.2.1 预加力次力计算原理——等效荷载 (50)6.2.2 先期预应力束产生的徐变次力 (51)6.2.3 后期预应力束产生的弹性次力 (52)6.3 温度次力 (55)6.3.1 温度场对于预应力混凝土连续梁的影响 (55)6.3.2 温度场 (55)6.3.3 温差作用效应计算原理 (56)6.3.4 整体温度变化 (57)6.3.5 温度梯度 (59)6.4 支座不均匀沉降引起的次力 (62)第7章截面验算 (65)7.1 力组合与截面验算 (65)7.2 承载能力极限状态计算 (66)7.2.1 正截面抗弯承载能力计算 (66)7.2.3 斜截面抗剪验算 (72)7.3 正常使用极限状态计算 (78)7.3.1 使用阶段正截面抗裂验算 (78)7.3.2 使用阶段斜截面抗裂验算 (82)7.3.3 挠度验算 (85)7.4 持久状况和短暂状况构件的应力计算 (86)7.4.1 使用阶段正截面压应力验算 (86)7.4.2 使用阶段斜截面主压应力验算 (89)7.4.3 施工阶段正截面法向应力验算 (91)7.4.4 受拉区钢筋的拉应力验算 (95)第8章主要工程数量估算 (100)8.1 混凝土用量估算 (100)8.2 预应力钢绞线用量 (101)8.3 锚具用量估算 (103)第9章总结和讨论 (104)致谢 (105)参考文献 (106)附录实习报告 (107)第1章绪论1.1 预应力混凝土连续刚构桥概述连续刚构桥是预应力混凝土大跨梁式桥的主要桥型之一,它综合了连续梁和T形刚构桥的受力特点,连续钢构桥将主梁做成连续梁体系,并且与薄壁桥墩固结而成。

预应力混凝土等截面连续梁桥毕业设计

预应力混凝土等截面连续梁桥毕业设计
目标:提高桥梁的承载能力、 耐久性和安全性
方法:优化桥梁的截面形状 和尺寸,提高桥梁的承载能
力和稳定性
方法:采用高性能混凝土和 钢筋,提高桥梁的耐久性和
安全性
方法:优化桥梁的施工工艺 和施工方案,提高桥梁的施
工质量和效率
结构尺寸优化
确定桥梁跨度和跨径比 确定桥梁高度和宽度 确定桥梁截面形状和尺寸 确定桥梁支座类型和位置 确定桥梁预应力筋布置和锚固方式 确定桥梁施工工艺和材料选择
P预A应R力T混6凝土等截面连续梁桥
的工程实例
工程概况
工程名称:预应力 混凝土等截面连续 梁桥
工程地点:某城市
工程规模:全长 xx米,跨径xx米
工程特点:采用预 应力混凝土等截面 连续梁桥结构,具 有承载能力强、抗 震性能好等特点。
设计方案及要点
预应力混凝土等截面连续梁桥的设计方案应考虑桥梁的跨度、高度、荷载等因素。 设计方案应包括桥梁的平面布置、横断面设计、纵断面设计等。 设计方案应考虑桥梁的抗震性能,采用合理的抗震措施。 设计方案应考虑桥梁的耐久性,采用耐久性好的材料和施工工艺。
YOUR LOGO
预应力混凝土等截面 连续梁桥毕业设计
,a click to unlimited possibilities
汇报人:
时间:20XX-XX-XX
目录
01
添加标题
02
03
04
05
06
预应力混凝土 等截面连续梁 桥概述
预应力混凝土 等截面连续梁 桥的设计原理
预应力混凝土 等截面连续梁 桥的施工方法
结构材料优化
钢筋配置:优化钢筋布置, 提高抗弯、抗剪能力
混凝土强度:选择高强度混 凝土,提高承载能力

桥梁工程毕业设计——预应力混凝土简支T型梁桥

桥梁工程毕业设计——预应力混凝土简支T型梁桥

1 方案拟订与比选1.1 设计资料(1)技术指标:汽车荷载:公路—I级桥面宽度:26m采用双幅(12+2×0.5)m(2)设计洪水频率:百年一遇;(3)通航等级:无;(4)地震动参数:地震动峰值加速度0.05g,地震动反应谱特征周期0。

35s,相当于原地震基本烈度VI度。

1.2 设计方案鉴于展架桥地质地形情况。

该处地势平缓,故比选方案主要采用简支梁桥和连续梁桥形式。

根据安全、适用、经济、美观的设计原则,我初步拟定了三个方案。

1。

2。

1 方案一:(8×40)m预应力混凝土简支T型梁桥本桥的横截面采用T型截面(如图1—1).防收缩钢筋采用下密上疏的要求布置所有钢筋的焊缝均为双面焊,因为该桥的跨度较大,预应力钢筋采用特殊的形式(如图1—2)布置,这样不仅有利于抗剪,而且在拼装完成后,在桥面上进行张拉,可防止梁上缘开裂。

优点:制造简单,整体性好,接头也方便,而且能有效的利用现代高强材料,减少构件截面,与钢筋混凝土相比,能节省钢材,在使用荷载下不出现裂缝等。

缺点:预应力张拉后上拱偏大,影响桥面线形,使桥面铺装加厚等。

施工方法:采用预制拼装法(后张法)施工,即先预制T型梁,然后用大型机械吊装的一种施工方法。

其中后张法的施工流程为:先浇筑构件混凝土,并在其中预留孔道,待混凝土达到要求强度后,将预应力钢筋穿入预留的孔道内,将千斤顶支承与混凝土构件端部,张拉预应力钢筋,使构件也同时受到反力压缩.待张拉到控制拉力后,即用夹片锚具将预应力钢筋锚固于混凝土构件上,使混凝土获得并保持其预压应力.最后,在预留孔道内压注水泥浆。

,使预应力钢筋与混凝土粘结成为整体.桥中心桩号1:1000立 面卵石卵石卵石亚粘土亚粘土亚粘土淤泥质土淤泥质土淤泥质土细砂细砂亚砂土亚砂土亚砂土 立面图(尺寸单位:cm )图2图1图1—1 (尺寸单位:cm ) 图1—21。

2。

2 方案二:(86+148+86)m 预应力混凝土连续箱形梁桥本桥采用单箱单室(如图1—3)的截面形式及立面图(如图1-4),因为跨度很大(对连续梁桥),在外载和自重作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩大于跨中截面的正弯矩,因此,采用变截面梁能符合梁的内力分布规律,变截面梁的变化规律采用二次抛物线。

预应力混凝土连续梁桥设计 (毕业设计)

预应力混凝土连续梁桥设计 (毕业设计)

第一章绪论第一节桥梁设计的基本原则和要求一、使用上的要求桥梁必须适用。

要有足够的承载和泄洪能力,能保证车辆和行人的安全畅通;既满足当前的要求,又照顾今后的发展,既满足交通运输本身的需要,也要兼顾其它方面的要求;在通航河道上,应满足航运的要求;靠近城市、村镇、铁路及水利设施的桥梁还应结合有关方面的要求,考虑综合利用。

建成的桥梁要保证使用年限,并便于检查和维护。

二、经济上的要求桥梁设计应体现经济上的合理性。

一切设计必须经过详细周密的技术经济比较,使桥梁的总造价和材料等的消耗为最小,在使用期间养护维修费用最省,并且经久耐用;另外桥梁设计还应满足快速施工的要求,缩短工期不仅能降低施工费用,面且尽早通车在运输上将带来很大的经济效益。

三、设计上的要求桥梁设计必须积极采用新结构、新设备、新材料、新工艺利新的设计思想,认真研究国外的先进技术,充分利用国际最新科学技术成果,把国外的先进技术与我们自己的独创结合起来,保证整个桥梁结构及其各部分构件在制造、运输、安装和使用过程中具有足够的强度、刚度、稳定性和耐久性。

四、施工上的要求桥梁结构应便于制造和安装,尽量采用先进的工艺技术和施工机械,以利于加快施工速度,保证工程质量和施工安全。

五、美观上的要求在满足上述要求的前提下,尽可能使桥梁具行优美的建筑外型,并与周围的景物相协调,在城市和游览地区,应更多地考虑桥梁的建筑艺术,但不可把美观片面地理解为豪华的细部装饰。

第二节计算荷载的确定桥梁承受着整个结构物的自重及所传递来的各种荷载,作用在桥梁上的计算荷载有各种不同的特性,各种荷载出现的机率也不同,因此需将作用荷载进行分类,并将实际可能同时出现的荷载组合起来,确定设计时的计算荷载。

一、作用分类与计算为了便于设计时应用,将作用在桥梁及道路构造物上的各种荷载,根据其性质分为:永久作用、可变作用和偶然作用三类。

(一)永久作用指长期作用着荷载和作用力,包括结构重力(包括结构附加重力)、预加力、土重力及土的侧压力、混凝土收缩徐变作用、水的浮力和基础变位而产生的影响力。

预应力混凝土连续梁桥的设计尺寸拟定

预应力混凝土连续梁桥的设计尺寸拟定

预应力混凝土连续梁桥的设计1.1总体布置结构总体设计主要包括桥梁跨径分配、主梁截面形式的拟定以及梁高等方面的内容。

1.1.1跨径布置目前,设计工程师认为预应力混凝土连续梁桥的最大理论跨度为250~300m,经济跨度为100~240m。

–布置原则:减小弯矩、增加刚度、方便施工、美观要求–不等跨布置——大部分大跨度连续梁边中跨比为0.5~0.8,最好为0.65–等跨布置——中小跨度连续梁–短边跨布置——特殊使用要求1.1.2主梁截面–板式截面——实用于小跨径连续梁–肋梁式——适合于吊装–箱形截面——适合于节段施工–其它1.1.3箱梁梁高梁高——与跨径、施工方法有关等高度梁——实用于中、小跨径连续梁,一般跨径在50~60米以下变高度梁——实用于大跨径连续梁,100米以上,90%为变高度连续梁桥型公路桥铁路桥支点梁高(m)跨中梁高(m)支点梁高(m)跨中梁高(m)等高梁(1/15~1/25)l(1/16~1/18)l变高(折线)梁(1/16~1/20)l(1/22~1/28)l(1/12~1/16)l(1/22~1/28)l变高(曲线)梁(1/16~1/25)l(1/30~1/50)l(1/12~1/16)l(1/30~1/50)l对于变高梁,一般对于公路桥,支点梁高是跨中梁高的2~3倍;对于铁路桥,支点梁高是跨中梁高的1.5~2倍。

1.2细部设计主梁细部设计包括顶板、底板、腹板等部位尺寸的拟定,横隔板的设置,齿块和承托等构件的设计等。

1.2.1顶板、底板及腹板箱形截面的顶板和底板是结构承受正负弯矩的主要工作部位。

当悬臂施工时,箱梁底板特别是靠近桥墩附近的底板将承受很大的压应力。

在发生变号弯矩的截面中,顶板和底板也都应各自发挥承压的作用。

(1)顶板顶板厚度一般考虑两个因素:满足桥面板横向弯矩的要求;满足布置纵向预应力钢束和横向预应力钢束的构造要求。

另外传统的设计理念认为,顶板厚度与腹板间距相关。

桥面板的悬臂长度也是调节板内弯矩的重要参数,在布置横向预应力时可考虑桥面板的横向坡度和板截面的变高度,以发挥预应力束的偏心效应。

桥梁毕业设计任务书

桥梁毕业设计任务书

桥梁毕业设计任务书一、设计的目的及意义学生应通过本次毕业设计,综合运用所学过的基础理论知识,深入了解公路桥梁在桥式方案比选、结构内力计算及施工架设等方面的设计规范、计算方法及设计思想等内容。

为学生在毕业后从事桥梁技术工作打好基础。

二、设计可采用的题目1、公路预应力混凝土连续梁桥(连续刚构桥)2、公路钢筋混凝土连续梁桥3、公路装配式钢筋混凝土简支梁桥4、与工程实际相结合的其他桥式(如拱桥、施工栈桥、斜拉桥等)三、设计的主要内容1、根据已有的水文地质资料,确定桥式方案,并进行桥梁纵、横断面设计(包括桥梁分跨、分孔、纵坡、基础形式及埋深、横断面形式、横坡等),绘桥梁总体图(桥型立面图)。

2、进行详细的上部结构尺寸拟定并进行工程量的计算。

3、施工方案设计。

4、结构内力计算,可以运用常规的静定、超静定混凝土桥梁分析程序计算结构内力,布置预应力钢筋及普通钢筋,进行正常使用极限状态的设计与检算。

5、结构承载能力极限状态的内力及按强度计算。

6、桥面板的横向内力计算(选作)。

7、绘制主梁的一般构造图及配筋图,完成设计说明书一本。

四、设计的主要技术标准1、设计荷载:(1)汽车荷载:公路Ⅰ级(或与实际工程相对应)(2)人群荷载:3.5KN/m22、桥梁净空:总宽18m(或与实际工程相对应)双向4车道(宽度:4×3.75=15m),人行道宽2×1.5m3、坡度:纵坡1.5%,双向横坡1.5~2%4、截面形式:等截面箱梁、变截面箱梁、分片式T梁或板梁5、材料:混凝土:上部结构: 预应力混凝土桥梁C50;钢筋混凝土桥梁C30下部结构桥墩C30,桩及基础C25钢筋:预应力混凝土桥梁:预应力钢筋9-7Φ5钢铰线;普通钢筋:HPB335钢筋(Ⅱ级钢)钢筋混凝土桥梁;主钢筋及箍筋、斜筋:HPB335钢筋(Ⅱ级钢)构造及架立钢筋:R235(Ⅰ级钢)6、设计规范:•《公路桥涵设计通用规范》(JTJ D60—2004)中华人民共和国交通部,2004,人民交通出版社•《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ D62—2004)中华人民共和国交通部,2004,人民交通出版社《公路桥涵地基与基础设计规范》(JTJ 024—85),中华人民共和国交通部,1985,人民交通出版社五、设计的基本要求:1、编写设计说明书,内容包括(1)中英文摘要(2)桥式方案选定、工程量估算,施工方案确定(3)选定桥式的内力分析结果(4)承载能力极限状态的内力及强度计算(5)纵向预应力钢筋配筋或纵向主筋、箍筋、斜筋的设计及检算(6)横向内力计算及配筋结果(选作)2、设计图纸(图幅:A3图或A3图加长)(1)桥型立面布置图:1张(2)主桥选定桥式一般构造图: 1张(3)梁部结构预应力钢筋布置图(预应力混凝土桥):1张(4)主钢筋布置图(钢筋混凝土桥) 1~2张(5)选作内容:普通钢筋布置图(预应力混凝土桥):1张或:墩、台基础一般构造图: 1张或:桩基础钢筋布置图:1张六、设计的计划进度安排1、2012.4~2012.5桥梁纵断面设计、桥式方案比选、结构尺寸拟定及工程量计算、施工方案设计。

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

桥梁工程毕业设计计算书(五跨等截面连续梁桥)

1 设计基本资料1.1概述跨线桥应因地制宜,充分与地形和自然环境相结合。

跨线桥的建筑高度选取除保证必要的桥下净空外,还需结合地形以减少桥头接线挖方或填方量,最终再谈到经济实用的目的。

如果桥两端地势较低,主要采用梁式桥;略高的则主要采用中承式拱肋桥;更高的则宜采用斜腿刚构、双向坡拱等形式。

在桥型的选择时,一方面从“轻型”着手,以减少圬工体积,另一方面结合当地的资源材料条件,以满足就地取材的原则。

随着社会和经济的发展,生态环境越来越受到人们的关注与重视,高速公路跨线桥将作为一种人文景观,与自然相协调将会带来“点石成金”的效果。

高速公路上跨线桥常常是一种标志性建筑物,桥型本身具有的曲线美,能够与周围环境优美结合。

茶庵铺互通式立体交叉K65+687跨线桥,必须遵照“安全、适用、经济、美观”的基本原则进行设计,同时应充分考虑建造技术的先进性以及环境保护和可持续发展的要求。

1.1.1设计依据按设计任务书、指导书及地质断面图进行设计。

1.1.2技术标准(1)设计等级:公路—I级;高速公路桥,无人群荷载;(2)桥面净宽:净—11.75m + 2×0.5 m防撞栏;(3)桥面横坡:2.0%;1.1.3地质条件桥址处的地质断面有所起伏,桥台处高,桥跨内低,桥跨内工程地质情况为(从上到下):碎石质土、强分化砾岩、弱分化砾岩,两端桥台处工程地质情况为:弱分化砾岩。

1.1.4采用规范JTG D60-2004《公路桥涵设计通用规范》;JTG D62-2004 《公路钢筋砼及预应力砼桥涵设计规范》;JTG D50-2006 《公路沥青路面设计规范》JTJ 022-2004 《公路砖石及砼桥涵设计规范》;1.2桥型方案经过方案比选,通过对设计方案的评价和比较要全面考虑各项指标,综合分析每一方案的优缺点,最后选定一个最佳的推荐方案。

按桥梁的设计原则、造价低、材料省、劳动力少和桥型美观的应是优秀方案。

独塔单索面斜拉桥比较美观,但是预应力混凝土等截面连续梁桥桥梁建筑高度小,工程量小,施工难度小,可以采用多种施工方法,工期较短,易于养护。

三跨预应力混凝土等截面连续箱梁桥设计

三跨预应力混凝土等截面连续箱梁桥设计

三跨预应力混凝土等截面连续箱梁桥设计目录1 工程概况 (1)1.1 自然地理概况 (1)1.1.1 桥梁建设规模 (1)1.1.2 主要工程材料 (1)1.1.3 气候及水文条件 (2)1.1.4 地层及岩性 (2)1.1.5 地质构造及特征 (3)1.1.6 岩体工程地质特征 (4)1.2 设计依据 (4)1.3 主要设计技术规范与标准 (4)1.4 设计标准 (5)2 连续梁桥构造设计 (6)2.1 总体设计 (6)2.2 主梁设计 (6)2.3 主要材料及基本数据 (7)2.4 毛截面几何特性计算 (8)3 行车道板计算 (10)3.1 桥面板荷载效应计算 (10)3.1.1 单向桥面板的内力 (10)3.1.2 悬臂端桥面板内力计算 (12)3.2 桥面板承载能力极限状态计算 (15)3.2.1 简支桥面板承载能力极限状态计算 (15)3.2.2 悬臂段桥面板承载能力极限状态计算 (16)3.3 持久状况抗裂计算 (18)3.3.1 简支桥面板抗裂计算 (18)3.3.2 悬臂端桥面板抗裂计算 (19)4 施工阶段内力分析(结构自重作用效应计算) (21)4.1 满堂支架施工流程及操作要点 (21)4.1.1 工法流程 (21)4.1.2 操作要点 (21)4.2 施工过程模拟模型的建立 (23)4.3 结构自重作用效应计算 (24)5 主梁内力计算 (27)5.1 汽车荷载作用效应计算 (27)5.1.1 冲击系数和折减系数 (27)5.1.2 汽车荷载横向分布影响的增大系数计算 (28)5.1.3 汽车荷载效应内力计算 (28)5.2 温度应力 (30)5.2.1 温差应力计算 (30)5.2.2 整体温度效应 (32)5.3 基础沉降次内力计算 (33)5.4 内力组合 (34)5.4.1 按承载能力极限状态设计 (34)5.4.2 按正常使用极限状态设计 (35)5.4.3 作用长期效应组合 (36)5.5 组合包络图 (41)5.5.1 基本组合包络图 (41)5.5.2 作用长短期效应组合包络图 (42)5.5.3 短期作用组合包络图 (43)6 预应力钢束估算及布置 (44)6.1 钢束估算 (44)6.1.1 按正常使用极限状态的正截面抗裂验算要求估束 (44)6.1.2 按正常使用极限状态截面压应力要求估算 (45)6.1.3 按承载能力极限状态的应力要求计算 (46)6.2 钢束布置 (50)7 预应力损失计算 (51)7.1 基本理论 (51) (51)7.2 预应力钢筋张拉(锚固)控制应力con7.3 预应力损失计算 (51)8 验算 (57)8.1 截面强度验算 (57)8.1.1 基本理论 (57)8.1.2 使用阶段正截面抗弯验算 (57)8.1.3 使用阶段斜截面抗剪验算 (61)8.2 施工阶段正截面法向应力验算 (65)8.3 抗裂验算 (68)8.3.1 规范要求 (68)8.3.2 正截面抗裂验算 (69)8.3.3 斜截面抗裂验算 (70)8.4 正截面混凝土压应力验算 (73)8.5 预应力钢筋拉应力验算 (77)8.6 使用阶段斜截面主压应力验算 (78)8.7 验算说明 (82)1 工程概况1.1 自然地理概况1.1.1 桥梁建设规模南京市六合区复兴桥工程位于南京市六合区复兴路,复兴路为南北向主干道,南接商城路,北接长江路,跨越滁河,是六合区连接滁河主要通道,道路全长918.571m,主桥宽26m。

简支梁桥毕业设计

简支梁桥毕业设计

第一章设计方案比选1.1 设计资料青岛高新区科技大道桥:规划河道宽度76m,河底标高-0.05m,设计洪水水位高程2.45m,河岸标高3.5m;设计洪水频率1/100,桥下不通航,不需考虑流冰;双向4车道,设计时速60km/h,设计荷载为公路I级;地震烈度为6度。

1.2 方案编制初步确定装配式预应力混凝土简支T梁桥、钢筋混凝土拱桥、等截面预应力混凝土连续梁桥三种桥梁形式。

(1)装配式预应力混凝土简支T形梁桥图1-1 预应力混凝土简支T形梁桥(尺寸单位:cm)孔径布置:26m+26m+26m,桥长78米,桥宽2×12m(分离式)。

桥面设有1.5%的横坡,不设纵坡,每跨之间留有4cm的伸缩缝。

结构构造:全桥采用等跨等截面预应力T形梁,主梁间距2.4m。

预制T梁宽1.8m,现浇湿接缝0.6m,每跨共设10片T梁,全桥共计30片T梁。

下部构造:桥墩均采用双柱式桥墩,基础为钻孔灌注桩基础,桥台采用重力式U形桥台。

施工方法:主梁采用预制装配式施工方法。

(2)钢筋混凝土拱桥图1-2 钢筋混凝土拱桥(尺寸单位:cm)孔径布置:采用单跨钢筋混凝土拱桥,跨长78m。

结构构造:桥面行车道宽15m,两边各设1.5m的人行道,拱圈采用单箱多室闭合箱。

下部构造:桥台为重力式U形桥台。

(3)装配式预应力混凝土连续梁桥图1-3 预应力混凝土连续梁桥(尺寸单位:cm)孔跨布置:24m+30m+24m,桥长78m,桥面宽18m(整体式),设有2m的中间带,桥面设有1.5%的横坡,其中中间标高高于外侧标高。

主梁结构:上部结构为等截面板式梁。

下部结构:上、下行桥的桥墩基础是连成整体的,全桥基础均采用钻孔灌注摩擦桩,桥墩为圆端型形实体墩。

施工方案:全桥采用悬臂节段浇筑施工法。

1.3 方案比选表1-1 方案比选表选择第一方案经济上比第二方案好;另外第一方案工期较短,施工难度较小;在使用性与适用性方面均较好。

所以选择第一方案作为最优方案。

预应力混凝土连续梁桥设计

预应力混凝土连续梁桥设计

摘要本设计根据设计要求及地理地质情况对该桥的设计,本着“适用性、舒适与安全性、经济性、先进性、美观”的原则,本论文拟定了三种不同的桥型方案进行比较和选择:方案一为简支梁桥方案,方案二为连续梁方案,方案三为梁拱组合桥。

经由以上的几点原则以及设计施工等多方面考虑、比较确定预应力混凝土连续梁桥推荐方案。

预应力混凝土连续梁桥以能发挥高强材料特性,较高的刚度和抗裂性,养护维修工作少,抗震性强,运营噪声小,材料可塑性强等而成为预应力混凝土大跨径桥梁的主要桥型之一。

本设计进行了细部尺寸拟定,并利用桥梁专业软件Midas Civil建立了简化模型。

针对该模型进行了预应力钢束的估算及布置、静活载下的内力计算、应力验算及变形验算。

经分析比较证明该桥设计计算正确,内力分布合理,符合设计任务要求。

[关键词]:预应力混凝土、连续桥梁、方案设计、悬臂施工、截面检算ABSTRACTThis design according to the design requirements and the geography and geology condition of the design of the bridge, the spirit of " applicability, comfort and safety, economy, advanced, beautiful " principle, this paper developed three different bridge type scheme comparison and selection: a scheme for simply supported beam bridge scheme, scheme for continuous girder, scheme three as the girder and arch combination bridge. By the above a few principles and design construction and other aspects to consider, in comparison to determine the recommended scheme of prestressed concrete continuous beam bridge.Prestressed concrete continuous beam bridge in order to be able to play high strength material properties, high stiffness and crack resistance, less maintenance and repair work, strong shock resistance, low noise operation, material plasticity and become a prestressed concrete large span bridge of the main bridge of. The design of the size of the details worked out, and the use of bridge software Midas Civil established a simplified model. According to the model of prestressed steel beam estimates and arrangement, the internal forces calculation under static live load, stress calculation and deformation calculation. After analysis and comparison show that the bridge design and calculation is correct, rational distribution of internal force, comply with the design requirements.[ Key words]:prestressed concrete, continuous bridge, cantilever construction, scheme design, cross section calculation目录摘要 (1)ABSTRACT (2)目录 (3)第一章绪论 (5)1.1 桥梁概述 (5)1.1.2 桥梁的组成与分类 (5)1.1.3 我国桥梁建筑的成就及现状 (6)1.1.4 展望21世纪的桥梁工程发展趋势 (7)第二章方案比选 (9)2.1 比选原则 (9)2.2 比选方案 (9)2.2.1 方案设计 (9)2.2.2 方案比选及最终确定 (12)2.3 上部结构尺寸拟定及内力计算 (13)2.4 本桥主要材料 (14)2.5 悬臂浇筑施工程序 (15)2.6 设计计算依据 (17)第三章预应力混凝土连续梁桥主梁内力计算 (18)3.1 建立有限元模型 (18)3.2 最大悬臂时内力计算结果 (18)3.3 中跨合龙后的内力计算 (20)3.4 活载内力计算 (22)3.5 支座沉降次应力图 (28)3.6 活载组合 (34)3.6.1 主力组合 (34)3.6.2 主力+附加力组合 (40)第四章预应力钢束的估算及布置 (47)4.1 钢筋的估算 (47)4.2 实际采用的钢束布置 (51)4.3 钢束布置 (52)第五章截面检算 (53)5.1 强度检算 (53)5.2 应力检算 (54)5.2.1 可能造成预应力损失的因素 (54)5.2.2 对不允许开裂的构件 (54)5.2.3 边跨1/4截面的检算 (55)5.2.4 应力检算 (55)结束语 (65)致谢 (66)参考文献 (67)第一章绪论1.1 桥梁概述1.1.1 桥梁建设的重要性大力发展交通运输事业,建立四通八达的现代化交通网,对于加强全国各族人民的团结,发展国民经济,促进各地经济发展,促进文化交流和巩固国防,都具有非常重要的意义。

预应力混凝土连续箱梁桥设计

预应力混凝土连续箱梁桥设计

预应力混凝土连续箱梁桥设计一、预应力混凝土连续箱梁的特点1.结构简单,施工方便:预应力混凝土连续箱梁是由多节箱体组成的连续结构,箱体之间通过预应力钢筋连接,构造简单明了。

2.承载能力大:预应力混凝土连续箱梁采用预应力钢筋,使梁的承载能力得到有效提高,可以满足大跨度、大荷载的要求。

3.抗震性能好:预应力混凝土连续箱梁由于预应力钢筋的作用,具有良好的抗震性能,能够有效地减小地震力对桥梁的影响。

4.经济性好:预应力混凝土连续箱梁由于结构简洁,施工方便,能够降低工程成本。

二、预应力混凝土连续箱梁的设计要点1.跨度选择:预应力混凝土连续箱梁的跨度要根据桥梁的实际情况进行合理选择,考虑到交通流量、路线的复杂程度、设计速度等因素。

一般情况下,跨度较小的桥梁可以选择简支梁或连续梁结构,跨度较大的桥梁则需要选用连续箱梁结构。

2.箱梁几何尺寸设计:箱梁几何尺寸的设计包括箱梁的高度、宽度和翼缘板的厚度等。

根据桥梁的跨度和超载情况,结合梁段的布置要求,确定合理的几何尺寸。

3.梁段划分:预应力混凝土连续箱梁由于有多个梁段组成,因此需要对梁段进行合理划分。

划分梁段的原则是各个梁段中应力相对均匀,使得整个桥梁结构具有良好的力学性能。

4.预应力计算:预应力混凝土连续箱梁的预应力计算是桥梁设计过程中的关键环节。

需要根据桥梁的跨度、超载情况和设计要求,确定预应力的大小和布置方式。

5.砼块计算:预应力混凝土连续箱梁的砼块计算是为了确定梁的自重和大车荷载作用下的受力状态。

需要考虑到砼块在施工过程中的配重状态和工作状态。

三、预应力混凝土连续箱梁的施工过程1.模板安装:首先需要安装好箱梁的模板,确保模板的精度和稳定性。

2.钢筋预埋:在模板安装完成后,根据预应力设计要求,在箱梁的相应位置预埋好预应力钢筋。

3.砂浆浇注:钢筋预埋完成后,将砂浆浇注到模板内,形成箱梁的外形。

需要确保砂浆的流动性和充实性,以避免空洞和缺陷。

4.预应力成型:砂浆浇注完成后,根据预应力设计要求,通过拉力机对预应力钢筋进行拉拔,形成预应力。

桥梁工程毕业设计计算书

桥梁工程毕业设计计算书

第一章概述1.1预应力混凝土连续梁桥概述预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。

本章简介其发展:由于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地采用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。

为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。

这样就可以抵消外荷载作用下混凝土产生的拉应力。

自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。

预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,为节省钢材,各国开始竞相采用预应力结构代替部分的钢结构以尽快修复战争带来的创伤。

50年代,预应力混凝土桥梁跨径开始突破了100米,到80年代则达到440米。

虽然跨径太大时并不总是用预应力结构比其它结构好,但是,在实际工程中,跨径小于400米时,预应力混凝土桥梁常常为优胜方案。

我国的预应力混凝土结构起步晚,但近年来得到了飞速发展。

现在,我国已经有了简支梁、带铰或带挂梁的T构、连续梁、桁架拱、桁架梁和斜拉桥等预应力混凝土结构体系。

虽然预应力混凝土桥梁的发展还不到80年。

但是,在桥梁结构中,随着预应力理论的不断成熟和实践的不断发展,预应力混凝土桥梁结构的运用必将越来越广泛。

连续梁和悬臂梁作比较:在恒载作用下,连续梁在支点处有负弯矩,由于负弯矩的卸载作用,跨中正弯矩显著减小,其弯矩与同跨悬臂梁相差不大;但是,在活载作用下,因主梁连续产生支点负弯矩对跨中正弯矩仍有卸载作用,其弯矩分布优于悬臂梁。

虽然连续梁有很多优点,但是刚开始它并不是预应力结构体系中的佼佼者,因为限于当时施工主要采用满堂支架法,采用连续梁费工费时。

到后来,由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。

预应力混凝土连续梁桥和连续刚构桥毕业设计指导

预应力混凝土连续梁桥和连续刚构桥毕业设计指导

土木工程专业预应力混凝土连续梁桥和连续刚构桥毕业设计指导书预应力混凝土连续梁桥、连续刚构桥是应用广泛的公路和铁路桥梁形式,已经发展形成了相对成熟的设计施工技术方法,作为毕业设计的选择桥型,具有代表性。

一、设计题目1、毕业设计的目的经过毕业设计,使同学们了解预应力混凝土连续梁桥和连续刚构桥设计的基本过程,掌握预应力混凝土连续梁桥和连续刚构桥设计的基本要素,包括桥型的选择,桥跨尺寸的比选,主要结构尺寸的选择,结构受力计算分析,施工方法选择等。

通过毕业设计,同学们应对预应力混凝土连续梁桥和连续刚构桥设计有较全面的了解,能独立进行同类桥梁的计算分析,对预应力混凝土连续梁桥和连续刚构桥施工方法有一定的了解。

2、桥型的选择预应力混凝土连续梁桥、连续刚构桥属于梁式桥类型。

其基本承重结构为预应力混凝土主梁和墩柱。

顾名思义,连续梁和连续刚构桥桥跨结构主梁采用多跨连续体系,有三个或者三个以上支点;在结构自重与外荷载作用下,主梁承受着交变的正负弯矩作用;连续梁在连续的中间支点处设置大吨位竖向支座,因此连续梁的最大跨度受中间支点竖向支座吨位的限制;连续刚构桥采用主梁与中间支墩完全的结构性连接而实现墩梁直接固结传力,无中间支点竖向支座构造,但同时主梁与中间桥墩在支点处的变形必须协调一致,因此连续刚构桥要求中间桥墩的结构刚度能适应主梁变形,中间桥墩具有较大的高度,同时采用具有相对较低的抗弯刚度的所谓柔性墩结构体系,如双薄壁墩结构。

根据其一般的内力分配规律,为达到结构尺度分布协调、受力合理,并具有良好经济性的目的,中大跨度连续梁和连续刚构桥采用变截面的主梁结构,以期在结构刚度和内力分配上协调一致。

结合公路、铁路桥梁等桥面宽的实际情况,变截面采用改变截面高度的方法实现。

根据连续梁和连续刚构桥的特点,连续梁和连续刚构桥适宜于在跨越较大河流或深谷等障碍情况下,采用分段无支架悬臂施工;连续梁适合在墩高小、跨度适中的情况下使用,而连续刚构桥宜在大跨高墩情况下采用。

高速铁路(60+108+60)m预应力混凝土连续梁桥设计

高速铁路(60+108+60)m预应力混凝土连续梁桥设计

西南交通大学本科毕业设计(论文)高速铁路(60+108+60)m 预应力混凝土连续梁桥设计年级:学号:姓名:专业:指导老师:2013年 6 月院系专业年级姓名题目指导教师评语指导教师 (签章)评阅人评语评阅人 (签章) 成绩答辩委员会主任 (签章)年月毕业设计(论文)任务书班级学生姓名学号发题日期:2013年3月 4 日完成日期:2013年6月19日题目高速铁路(60+108+60)m预应力混凝土连续梁桥设计1.目的、意义培养土木工程专业本科毕业生综合应用大学所学的各门基础课和专业课知识,并结合相关设计规范,掌握桥梁设计的基本原理和方法,独立完成一座桥梁的设计工作的能力,熟悉有关设计规范的应用和相关桥梁专业计算软件的使用所做的设计工作应该满足相关规范的要求。

设计计算无误,数据表格化;文整说明简明扼要,条理清晰。

通过设计,提高学生分析问题、解决问题的能力,达到桥梁工程设计人员的初步水平,为将来走上工作岗位打下良好的基础。

2.设计基础资料(1) 设计标准:高速铁路,双线,设计速度350km/h,按ZK荷载设计;无碴轨道。

(2) 桥面布置:桥面宽度12m。

线间距5m。

建筑限界按净高为7.25m,双线净宽9.88m。

(3) 桥面线形:平面为直线,纵坡为平坡,中跨桥面跨中高程为500m。

桥面横坡:2%。

(4) 设计基准温度20°C,体系温度变化:±20°C。

(5) 基础变位:相邻墩台基础不均沉降1cm。

(6) 基本风压:500Pa。

其它基础资料见提供的附图(电子版)。

3.设计规范(1) 《铁路技术管理规程》(铁道部令第29号)(2) 《铁路桥涵设计基本规范》(TB10002.1-2005)(3) 《铁路桥梁钢结构设计规范》(TB 10002.2-2005)(4) 《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3-2005)(5) 《铁路桥涵砼和砌体结构设计规范》(TB-10002.4-2005)(6) 《铁路桥涵地基和基础设计规范》(TB10002.5-2005)(7) 《高速铁路设计规范》(试行)(TB 10621-2009)(8) 《铁路桥涵施工技术规范》(TB10203-2002)4.材料规格(1) 主梁混凝土:C55级混凝土;(2) 主墩混凝土:C50级混凝土;(3) 预应力钢筋及锚具:预应力钢绞线:符合美国ASTM A416—97A标准,270级高强度低松弛钢绞线,其标准强度fpk=1860Mpa,Ep=1.95×105Mpa,松弛率小于0.035,用于全桥纵向预应力钢束和主桥横桥向预应力钢束及部分竖向预应力钢束。

连续梁桥毕设论文

连续梁桥毕设论文

摘要: (2)Abstract: (3)1 引言 (4)第一章、设计资料及方案比选 (5)1.1设计概况 (5)1.1.1 桥梁概况 (5)1.1.2 技术标准 (5)1.1.3 工程地形地质 (6)1.2方案比选 (7)1.3推荐方案 (10)1.4设计规范 (11)第二章、方案简介及上部结构尺寸拟定 (12)2.1 主梁截面主要尺寸拟定 (12)2.2 本桥的主要材料 (13)第三章、单元的划分 (14)第四章、配筋设计及配筋结果计算 (15)4.1.预应力筋的估算 (15)4.1.1预应力筋的计算原理 (16)4.1.2 上、下缘布置预应力钢束的判别条件 (19)4.2 预应力钢束的布置 (20)4.3 配筋结果验算输出 (22)第五章、施工阶段描述 (23)5.1施工工艺概述 (23)5.2 施工阶段应力验算 (24)第六章、全桥内力验算 (28)6.1 正常使用极限状态应力验算 (28)6.1.1 短期效应组合 (29)6.1.2 长期效应组合 (35)6.1.3 基本组合 (40)6.2承载能力极限状态正截面强度验算 (46)结论 (49)谢辞 (50)[参考文献] (51)摘要:本设计主要是以某大桥作为工程背景,利用Dr.Bridge进行桥梁的结构设计。

设计总长为110m的公路直线预应力混凝土连续梁桥, 跨径组成30m+50m+30m,在设计中先用Dr.Bridge建立桥梁模型,然后按照实际情况和规范要求输入设计参数,按照过往工程经验进行预应力钢束布置;最后,调整至验算通过,经分析比较证明该桥设计计算正确,内力分布合理,达到预期的要求,符合设计任务要求。

关键词:预应力混凝土连续梁桥、有限元模型、配筋设计、内力Abstract:The design is under the engineering background of some bridge,using the Dr.Bridgesoftware to do the structure design.The Design is about a total length of 110m highwaylinear prestressed concrete continuous beam bridge composed of 30m+50m+30m. Firstly,using the Dr.Briage software to establish structural model, then according to the actualsituation and specification requirements to define some related parameters,,after that ,proceeded with the layouts of prestressed reinforcement.Finally, tinker up thereinforcement until the checking meets to the requirement. After calculation and checkingof the stress,distortion of model under dead load and living load ,the result show that thedesign is up to the demands。

预应力连续箱梁桥毕业设计计算书

预应力连续箱梁桥毕业设计计算书

预应力连续箱梁桥毕业设计计算书一、工程概况本次毕业设计的对象为一座预应力连续箱梁桥。

桥梁的跨径布置为具体跨径布置,桥面宽度为具体宽度。

设计荷载为具体荷载等级,设计车速为具体车速。

该桥所处地理位置重要,是连接起点位置和终点位置的交通要道。

桥梁的建设将极大地改善当地的交通状况,促进经济发展。

二、结构选型与布置(一)主梁结构形式主梁采用预应力混凝土连续箱梁结构,这种结构具有良好的抗弯和抗扭性能,能够适应较大的跨度和复杂的荷载条件。

(二)箱梁截面尺寸箱梁顶板厚度为具体厚度,底板厚度从跨中到支点逐渐加厚,腹板厚度也根据受力情况进行相应变化。

(三)预应力钢束布置预应力钢束采用高强度低松弛钢绞线,按照纵向、横向和竖向的布置方式,以提高箱梁的承载能力和抗裂性能。

三、材料参数(一)混凝土主梁采用具体强度等级的混凝土,其弹性模量为具体数值,抗压强度标准值为具体数值。

(二)预应力钢绞线预应力钢绞线的抗拉强度标准值为具体数值,弹性模量为具体数值。

(三)普通钢筋普通钢筋采用具体型号,其屈服强度为具体数值。

四、荷载计算(一)恒载包括箱梁自重、桥面铺装、护栏等附属设施的重量。

(二)活载根据设计荷载等级,计算车辆荷载产生的效应。

(三)温度荷载考虑整体升降温和梯度温度对结构的影响。

(四)风荷载根据桥位处的风速等参数,计算风荷载对桥梁的作用。

五、内力计算(一)结构自重内力计算采用有限元软件建立模型,计算箱梁在自重作用下的内力。

(二)活载内力计算通过影响线加载法,计算活载在不同工况下产生的内力。

(三)温度内力计算根据温度变化情况,计算温度引起的结构内力。

(四)内力组合按照规范要求,对各种内力进行组合,以确定结构的最不利内力。

六、预应力损失计算(一)锚具变形和钢筋回缩引起的预应力损失根据锚具类型和施工工艺,计算相应的损失值。

(二)摩擦损失考虑管道偏差、弯道影响等因素,计算预应力钢束与管道壁之间的摩擦损失。

(三)混凝土弹性压缩引起的预应力损失在分批张拉预应力钢束时,混凝土发生弹性压缩,从而引起预应力损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力混凝土等截面连续梁桥毕业设计Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT预应力混凝土等截面连续梁桥设计原始资料1.地形、地貌、气象、工程地质及水文地质、地震烈度等自然情况(1)气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。

四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化显着。

年平均气温,最冷月平均气温-40C,七月平均气温。

(2)工程地质:天津地铁一号线经过地区处于海河冲积平原上,地形平坦,地势低平,地下水位埋深较浅,沿线分布了较多的粉砂、细砂、粉土,均为地震可液化层,局部地段具有地震液化现象。

沿线地层简单,第四系地层广泛发育,地层分布从上到下依次为人工堆积层、新近沉积层、上部陆相层、第一海相层、中上部陆相层、上部及中上部地层广泛发育沉积有十几米厚的软土。

a.人工填土层,厚度5m,?k=100KP a;b.粉质黏土,中密,厚度15m,?k=150 KP a;c.粉质黏土,密实,厚度15m,?k=180KP a;d.粉质黏土,密实,厚度10m,?k=190KP a。

第一章方案比选一、桥型方案比选桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。

任选三种作比较,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。

桥梁设计原则1.适用性桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。

桥下应满足泄洪、安全通航或通车等要求。

建成的桥梁应保证使用年限,并便于检查和维修。

2.舒适与安全性现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。

整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。

3.经济性设计的经济性一般应占首位。

经济性应综合发展远景及将来的养护和维修等费用。

4.先进性桥梁设计应体现现代桥梁建设的新技术。

应便于制造和架设,应尽量采用先进工艺技术和施工机械、设备,以利于减少劳动强度,加快施工进度,保证工程质量和施工安全。

5.美观一座桥梁,尤其是座落于城市的桥梁应具有优美的外形,应与周围的景致相协调。

合理的结构布局和轮廓是美观的主要因素,决不应把美观片面的理解为豪华的装饰。

应根据上述原则,对桥梁作出综合评估。

梁桥梁式桥是指其结构在垂直荷载的作用下,其支座仅产生垂直反力,而无水平推力的桥梁。

预应力混凝土梁式桥受力明确,理论计算较简单,设计和施工的方法日臻完善和成熟。

预应力混凝土梁式桥具有以下主要特征:1)混凝土材料以砂、石为主,可就地取材,成本较低;2)结构造型灵活,可模型好,可根据使用要求浇铸成各种形状的结构;3)结构的耐久性和耐火性较好,建成后维修费用较少;4)结构的整体性好,刚度较大,变性较小;5)可采用预制方式建造,将桥梁的构件标准化,进而实现工业化生产;6)结构自重较大,自重耗掉大部分材料的强度,因而大大限制其跨越能力;7)预应力混凝土梁式桥可有效利用高强度材料,并明显降低自重所占全部设计荷载的比重,既节省材料、增大其跨越能力,又提高其抗裂和抗疲劳的能力;8)预应力混凝土梁式桥所采用的预应力技术为桥梁装配式结构提供了最有效的拼装手段,通过施加纵向、横向预应力,使装配式结构集成整体,进一步扩大了装配式结构的应用范围。

拱桥拱桥的静力特点是,在竖直何在作用下,拱的两端不仅有竖直反力,而且还有水平反力。

由于水平反力的作用,拱的弯矩大大减少。

如在均布荷载q的作用下,简直梁的跨中弯矩为qL2/8,全梁的弯矩图呈抛物线形,而拱轴为抛物线形的三铰拱的任何截面弯矩均为零,拱只受轴向压力。

设计得合理的拱轴,主要承受压力,弯矩、剪力均较小,故拱的跨越能力比梁大得多。

由于拱是主要承受压力的结构,因而可以充分利用抗拉性能较差、抗压性能较好的石料,混凝土等来建造。

石拱对石料的要求较高,石料加工、开采与砌筑费工,现在已很少采用。

由墩、台承受水平推力的推力拱桥,要求支撑拱的墩台和地基必须承受拱端的强大推力,因而修建推力拱桥要求有良好的地基。

对于多跨连续拱桥,为防止其中一跨破坏而影响全桥,还要采取特殊的措施,或设置单向推力墩以承受不平衡的推力。

由于天津地铁一号线所建位置地质情况是软土地基,故不考虑此桥型。

梁拱组合桥软土地基上建造拱桥,存在桥台抵抗水平推力的薄弱环节。

为此采用大吨位预应力筋以承担拱的水平推力;预应力筋的寄体是系梁,即加劲纵梁,从而以梁式桥为基体,按各种梁桥的弯矩包络图用拱来加强。

这样可以使桥梁结构轻型化,同时能提高这类桥梁的跨越能力。

这类桥梁不仅技术经济指标先进、造价低廉,同时桥型美观,反映出力与美的统一、结构形式与环境的和谐,增加了城市的景观。

斜拉桥斜拉桥的特点是依靠固定与索塔的斜拉索支撑梁跨,梁是多跨弹性支撑梁,梁内弯矩与桥梁的跨度基本无关,而与拉索的间距有关。

他们适用于大跨、特大跨度桥梁,现在还没有其他类型的桥梁的跨度能超过他们。

斜拉桥与悬索桥不同之处是,斜拉桥直接锚于主梁上,称自锚体系,拉索承受巨大的拉力,拉索的水平分力使主梁受压,因此塔、梁均为压弯构件。

由于斜拉桥的主梁通过拉紧的斜索与塔直接相连,增加了主梁抗弯、抗扭刚度,在动力特性上一般远胜于悬索桥。

悬索桥的主缆为承重索,它通过吊索吊住加劲梁,索两端锚于地面,称地锚体系。

斜拉桥具有施工方便、桥型美观、用料省、主梁高度小、梁底直线容易满足通航和排洪要求、动力性能好的优点,发展非常迅速,跨径不断增大。

但实际跨度不大,此桥型不予考虑。

目前我国城市轨道交通高架桥结构一般考虑简支梁和连续梁结构形式。

简支梁受力明确,受无缝钢轨因温度变化产生的附加力、特殊力的影响小,设计施工易标准化、简单化;但其梁高较大,景观稍差,行车条件也不如连续梁。

连续梁结构与同等跨度的简支梁相比,可以降低梁高,节省工程数量,有利于争取桥下净空,并改善景结构刚度大,具有良好的动力特性以及减震降噪作用,使行车平稳舒适,后期的维修养护工作也较少。

从城市美学效果来看,连续梁造型轻巧、平整、线路流畅,将给城市争色不少。

但连续梁对基础沉降要求严格,特别是由于联长较大,桥上无缝钢轨因温度变化而产生的水平力很大,使得梁体与墩台之间的受力十分复杂,加大了设计难度。

考虑到天津地铁工程地质条件,综合考虑,采用连续梁结构作为高架区间的标准型式。

上表可知,根据天津地铁一号线的情况,结合桥梁设计原则,选择第一方案经济上比第三方案好;跨径上满足要求,景观与环境协调,比第二方案好;工期上较短,对整个工程进度来说不会受其影响;施工难度较小,针对当地地质情况,采用桩基,加强基础强度。

所以选择第一方案作为首选。

二、梁部截面形式梁部截面形式考虑了箱形梁、组合箱梁、槽型梁、T型梁等可采用的梁型。

连续单箱梁方案该方案结构整体性强,抗扭刚度大,适应性强。

景观效果好。

该方案需采用就地浇筑,现场浇筑砼及张拉预应力工作量大,但可全线同步施工,施工期间工期不受控制,对桥下道路交通影响较其他方案稍大。

简直组合箱梁结构整体性强,抗扭刚度大,适应性强。

双箱梁预制吊装,铺预制板,重量轻。

但从桥下看,景观效果稍差。

从预制厂到工地的运输要求相对较低,运输费用较低。

但桥面板需现浇施工,增加现场作业量,工期也相应延长。

但美观较差,并且徐变变形大,对于无缝线路整体道床轨道结构形式来说,存在着后期维修养护工作量大的缺点。

槽型梁为下承式结构,其主要优点是造型轻巧美观,线路建筑高度最低,且两侧的主梁可起到部分隔声屏障的作用,但下承式混凝土结构受力不很合理,受拉区混凝土即车道板圬工量大,受压区混凝土圬工量小,梁体多以受压区(上翼缘)压溃为主要特征,不能充分发挥钢及混凝土材料的性能。

同时,由于结构为开口截面,结构刚度及抗扭性较差,而且需要较大的技术储备才能实现。

T型梁结构受力明确,设计及施工经验成熟,跨越能力大,施工可采用预制吊装的方法,施工进度较快。

该方案建筑结构高度最高,由于梁底部呈网状,景观效果差。

同时,其帽梁虽较槽型梁方案短些,但较其他梁型长,设计时其帽梁也须设计成预应力钢筋混凝土帽梁,另外预制和吊装的实施过程也存在着与其他预制梁同样的问题。

相比之下,箱型梁抗扭刚度大,整体受力和动力稳定性能好,外观简洁,适应性强,在直线、曲线、折返线及过渡线等区间段均可采用,且施工技术成熟,造价适中。

因此,结合工程特点和施工条件,选择连续箱型梁。

箱型梁截面图如下:三、桥墩方案比选桥墩类型有重力式实体桥墩、空心桥墩、柱式桥墩、轻型桥墩和拼装式桥墩。

重力式实体桥墩主要依靠自身重力来平衡外力保证桥墩的稳定,适用于地基良好的桥梁。

重力式桥墩一般用混凝土或片石混凝土砌筑,街面尺寸及体积较大,外形粗壮,很少应用于城市桥梁。

空心桥墩适用于桥长而谷深的桥梁,这样可减少很大的圬工。

柱式桥墩是目前公路桥梁、桥宽较大的城市桥梁和立交桥及中小跨度铁路旱桥中广泛采用的桥墩形式。

这种桥墩既可以减轻墩身重量、节省圬工材料,又比较美观、结构轻巧,桥下通视情况良好。

轻型桥墩适用于小跨度、低墩以及三孔以下(全桥长不大于20m)的公路桥梁。

轻型桥墩可减少圬工材料,获得较好的经济效益。

在地质不良地段、路基稳定不能保证时,不宜采用轻型桥墩。

拼装式桥墩可提高施工质量、缩短施工周期、减轻劳动强度,使桥梁建设向结构轻型化、制造工厂化及施工机械化发展。

适用于交通较为方便、同类桥墩数量多的长大干线中的中小跨度桥梁工点。

由上面的解释可知,柱式桥墩是最合适的墩型,与天津地铁一号线的要求非常吻合。

所以选择柱式桥墩。

第二章上部结构尺寸拟定及内力计算本设计经方案比选后采用三跨一联预应力混凝土等截面连续梁结构,全长100m。

根据桥下通航净容要求,主跨径定为40m。

上部结构根据通行2个车道要求,采用单箱双室箱型梁,箱宽8.8m。

1.主跨径的拟定主跨径定为40m,边跨跨径根据国内外已有经验,为主跨的0.5~0.8倍,采用0.75倍的中跨径,即30m,则全联跨径为:2.主梁尺寸拟定(跨中截面)(1)主梁高度预应力混凝土连续梁桥的主梁高度与起跨径之比通常在115~125之间,标准设计中,高跨比约在118~119,当建筑高度不受限制时,增大梁高是比较经济的方案。

可以节省预应力钢束布置用量,加大深高只是腹板加厚,增大混凝土用量有限。

根据桥下通车线路情况,并且为达到美观的效果,取梁高为2m,这样高跨比为 ,位于115~125之间,符合要求。

240120(2)细部尺寸在跨中处顶板厚取20cm ,底板厚取30cm ,腹板厚取60cm ;支座处为便于配置预应力筋,顶板厚取30cm ,底板厚取40cm ,腹板厚取100cm ;端部为了布设锚具,因此将腹板厚度设定为100cm 。

具体尺寸见下图: 一、本桥主要材料预应力混凝土连续梁采用50C 号混凝土;预应力钢筋采用1075φ⨯的钢绞线,pk f 1860MPa =;非预应力钢筋采用II 级钢筋,构造钢筋采用I 级钢筋。

相关文档
最新文档