2mw双馈异步风力发电机的研究

2mw双馈异步风力发电机的研究
2mw双馈异步风力发电机的研究

2MW风力双馈异步电动机的研究设计

摘要

对一个2 MW商业风力发电机的设计,验证了以两种连接方式为标准的双馈异步电机,它能使其低速范围向下延伸到80%,在电子变换器额定功率没有增加的情况下下滑。这远远超出了正常的30%的下限。较低的速度连接被称作异步发电机模式而机器的操作是在短路定子绕组转动和所有的功率流在转子回路中的情况下进行的。有两个回路逆变器控制系统方案已经被设计完毕并且在各自的模式中已调整性能。本文的目的是演示仿真结果,说明该控制器的动态性能均为 2 MW异步风力发电涡轮机的连接方法。当设计这样的先进的控制策略时,一个简单的对转子和对双馈连接模式电压的分析在演示时应作为一个优势部分被考虑进去。

关键词:双馈电机、异步发电机、风力发电设备

列出的重要标志

vrdq 直交和正交转子电压

irdq 直交和正交转子电流

λsdq 直交和正交定子磁链

Ps 定子有功功率

Qs 定子无功功率

pfs 定子功率因数

Te 转矩

p 微分算子

Lm 电抗引入

Rr 转子电阻

Lr 转子电抗引入

σ总漏电感

ωsf 频率

‘s’定子简称

‘r’转子简称

‘*’参考值

1、介绍

对风力涡轮机的兴趣还在持续,尤其是那些拥有一个额定功率为许多兆瓦的。这个之所以流行主要是既环保,也有可用的化石燃料。所谓的立法鼓励减少碳足迹的地方,所以目前正在感兴趣的可再生能源。风力涡轮机仍然被看作是一种建立完善的技术,已形成从定速风力涡轮机,现在流行的调速技术基于双馈异步发电机(DFIGs)。一个双馈异步风力涡轮发电机的速度的变化与被控制的转子变频器的速度变化一致,使转子电压相位和大小得以调整以保持最佳扭矩和必要的定子功率因数。双馈异步发电机是目前技术发达,常用的风力涡轮机。一个双馈异步发电机的定子直接连接到有一个电力电子的转子变换器的高压电网上,该变换器在转子的转动和高压电网之间得到应用。这个变量速度范围与转子转换器的速率是成正比的因此其调速范围被限制在±30%。转子转换器只需要双馈异步发电机发出能量总量的30%的就能全面控制全部的发电机输出功率。这能导致显著的节省转子转换器的成本。滑动环连接,但必须保持转子绕组,性能安全可靠。电源发电机为2 MW风力汽轮机其速度特性如图1所示。

对于一个商业发电机来说其速度随风速变化,然而这种关系是设定的某一特定地点。当风速下降从风中提取的能量比损失在发电机和变频器中的少时,发电机的输出功率减少直至关闭,因此机器速度也会下降。一种操作模式已经由一个风力涡轮机制造者提出,他宣称延伸速度范围以便在较低的风速中提取的能量是比损

失在系统中的多,以至于该系统仍能保持联络。这个建议中提出的双馈连接的标准在正常的双馈调速范围中使用而所谓模式是用来延长低速运行。先前的工作已经显示了异步发电机模式能够使双馈异步发电机的运作下滑到80%。在运行时这一变化通过断开定子与双馈模式中的高压电网实现,然后使定子绕组短路使异步发电机运行。在模式中,所有的发电机组的发出的能量都流经转子变频器。异步发电机模式的曲线与双馈模式的曲线在±30% 滑动时相同。通过推断双馈模式的曲线,使异步发电机在低风速时提取到的能量达到估计值。控制器(双馈和异步发电机模式)所需要的参考扭矩,就可以很容易地从这样的曲线中得到。接着,扭矩-速度数据可以存储在一个可查表格中,因此参考转矩是随转速自动变化的。

现代双馈风力涡轮机的能力随无功功率吸收或产生的变化使风涡轮参与高压电网无功功率的平衡。

制造商提供的应用在双馈异步发电机中的参数是2MW, 690V,4极,本文旨在探讨应用这些参数的控制器在双馈和异步发电机模式中的性能。这是对在先前资料中已建立的且稳定性已被证明过的两种操作模式的进一步研究,这两种模式分别是双馈和异步发电机模式。作者探讨了双方连接的稳态效率。稳态性能的良好说明这台机器用这种连接方法运行时相对于其他方法是有利的。本文检视(即瞬态性能)的2千瓦风力涡轮机的控制能力。在双馈和异步发电机模式中全部动态控制器(电流调节、解耦控制方程和矢量控制)的结果被显示。有些元件形成了应用于整个操作过程中的转子电压且在双馈异步发电机模式中有涉及到,一份对这些元件的详细分析被呈现出来,因为它能使这些有很大控制力的元件被识别。当设计先进控制方案时这被作为对整个运行范围的一个概论能被确认是特别重要的。已经被证实的可在一台7.5kW实验室钻机中应用的仿真模型可应用于现实的2千瓦风力中,可得出结论是提议在真实的风力涡轮机中的异步发电机模式中使用。

2、连接方式

控制高压电网侧逆变器(GSI)来维持一个固定的直流环节电压,该电压在高压电网中有给定的功率因数。控制转子侧逆变器(RSI),从而能最大量的提取风的动能同时使定子的功率因数控制在高压电网所需要的限制范围之内,尽管通常取单位功率因数。高压电网侧逆变器就像在双馈模式中一样被控制。转子侧逆变器

的目的是为了当从风的动能中吸收最大的能量时控制定子磁链。

3、控制器性能

前期准备工作中,探讨了双馈模式和异步发电机模式中的一个闭环控制器,但只有一个7.5KW实验测试平台。2MW系统动态会有所不同,在本文讨论也有讨论。对一台2 MW风力涡轮机来说,其在双馈模式和异步发电机模式中的动态控制器的性能在这段显示了出来。

3.1双馈异步发电机模式(T和Q控制)

在双馈模式中控制器的参考值是扭矩(见图1)和能达到电网规范要求的定

子的无功功率。本部分研究了两种速度,使控制性能表现出来自电网规范要求的标称功率限制的上方和下方的20%。一个额定功率为320千瓦的发电机,可达1150转(小于标称功率的20%),一个额定功率是125千瓦的发电机可达1550转(超过20%的额定功率)。参考和实际的转矩、定子无功功率,都以两者的速度而显示在图5。

两者速度的转矩的参考值是特定的额定值,用一个给定的速度从图1中计算出;?2672Nm对应1150转速而?7701Nm对应1550转速。将一200Nm的阶跃信号应用于两者的速度中为了说明转矩对阶跃变化的动态响应。在1150转速时定子无功功率的参考值在电网规范要求下的特定的限制范围内变动;最初发出的功率比额定的少5%,在t =3.5s时,有一个阶跃变化, 多了+ 5%的电力。在1550转时,定子功率因数的参考值最初是0.95,在t = 3s时有一个阶跃变化,为单位

功率因数而最后一个阶跃是在t=4s时滞后到0.95。矢量控制回路的调整为一个0.1秒的时间常数,而转矩和定子无功功率回路各自调整为0.9s。矢量控制的设计是为了有一个比当前规定的较慢的带宽。

实际转子直交电流、irds、和正交电流、irqs、与图5对应的部件在图6

中显示。转矩参考值的阶跃变化的影响对于期望的正交电流(上标s指出变量是定子)是明显的。在在t =3s,1550转速时,这个正交电流部分包含小瞬态响应,而t = 4s时,它是由于的值发生阶跃变化。定子无功功率参考值的阶跃变化如图5,导致直交电流参考值快速变化的,图6,如在定子无功功率的参考值实际值之间有初步的误差,随着控制运行一段时间去调整。现行的规定,确保带宽能防止当控制器一直在获得一个合适的反应速度时,其反应太快。一个被调整好的用于设计控制器的方程给了一些相似的比例和积分所得的值,这些值在电流的直交和正交环中被赫德沃斯特用过。

3.2 异步发电机模式(转矩和磁通控制)

异步发电机模式中控制器的参考值是定子磁链和转矩。在异步发电机模式中对2MW发电研究其在两种条件下的启动和转矩的阶跃反应,两种条件分别是400转(最低异步发电机模式速度)和1420转(以这样的速度所产生的能量高于对应的转子转换器的600千瓦的额定功率)。由图1知,稳态的转矩和速度的额定值为320Nm,400转和4081Nm,1420转。一个必须建立在额定机器, 对通过一段斜坡给定的一个速度,为了在机器中建立额定的λsr值,设置启动顺序是必要的,在机器可以产生电力之前。

在机器中,一旦该控制器的参考λsr已建立,转矩的参考值就会通过一个给定额定速度的受控斜坡而增加,然后在400转速时一个50Nm的阶跃响应与1420转速时一个200Nm的阶跃响应被应用。控制器就像期望的那样控制机器跟踪转矩的参考值。

矢量控制回路决定转子电流的参考值,如图8。为了建立λsr,最初的部分迅速上升,大约是一个给定的负荷点稳态值的三倍。电流一直都在在额定的限制范围内。最初的转子直交电流能够显著降低,如果一个较慢的λsr反应被实现。

转子电流正交部分由转矩回路控制以便能得到所期望的能量。最初由于转子直交电流很高而通过交叉耦合规律影响了正交回路而有轻微的误差。在机器中,一旦λsr的额定值已确定,直接和正交回路就解耦了。并且一个转矩的阶跃信号可引起转子正交电流的短暂上升,尽管控制量的参考值调整的比这一变化慢。

4、转子的电压元件

双馈和异步发电机模式的性能已经在上一节说明过了。两者的控制器都是基于内部电流环和外部控制回路,而外部控制回路是由双馈模式中的转矩和定子无功功率回路以及异步发电机模式中转矩和定子磁链回路组成。解耦方程加入到PI控制器输出端以减小两回路之间交叉耦合的影响。最后一部分工作是研究转子电压稳态组件的贡献,对一台2兆瓦机器来说转子电压在解耦方程式中作为一个未知数来评估在不同的速度时的它重要性。转子电压、转子电流和方程式中给定的无差别的转子电压部分在双馈模式中的全部速度范围(1000到1950转)内被讨论,该范围是由图1中的额定转矩决定的,的范围从落后0.9上升到领先0.9。

只有假设电网侧逆变器维持单位定子功率因数且拥有此功率因数的转子变频器是连接到独立于转子侧逆变器的电网中时有

5、结论

本文首先分析了在2 MW双馈异步发风力涡轮机中双馈和异步发电机模式下控制器的响应。由制造商提供的机器参数在2MW电机中的使用以及作为一个有效的,商用的WRIM应用于风力涡轮机中。这项工作中,2MW机器的参数与在前期准备工作中的7.5千瓦电机的参数并不仅仅是一种线性比例,因此两个机器之间的特性没有被确认。

对进行了两个方面的调查分析。已经存在的仿真模型用于评估2MW的双馈异步发电机在双馈和异步发电机模式下的可控性、稳态和瞬态行为。

结果表明,异步发电机模式是一种可控的运作模式,当转子电压下降时(当速度减小时),这种模式将扩大低速运行,所以IGBTs对电压的限制就会被当作电机和变频器对电流和能量的限制。在2MW的的双馈模式中探讨了转子电压的组成。这显示了解耦方程在双馈异步发电机随速度变化时的重要性。

感谢作者对FKI 工业传动和EPSRC的支持表示感谢。

参考

1、佩纳R,柯赖J和艾歇GM. 双馈异步发电机在变速风能发电机中的应

用。1996年5月

2、科波C和斯库马彻W.可调速发动机/发电机对双馈异步电机的控制

3、雷恩L,博贝JR和塔纳PJ. 涡轮机的惯性在双馈异步风力发电涡轮

机生产能量中的应用。2004年3月

4、米勒S,德克M和德达克RW.风力涡轮机中的双馈异步发电机系统

5、汉森AD,艾劳F,布拉伯格F和汉森LH.当代风力涡轮机概念的评论

和它们的市场调查。风力工程2004年

6、程武L,冯翔W和勇T. 双馈异步风力发电机的风能控制系统的设计

和实现。国际能源系统技术会议2002年

简述双馈异步发电机的基本工作原理及其功率流向

题目:简述双馈异步发电机的基本工作原理及其功率流向 一、双馈异步发电机及其工作原理 1、双馈异步发电机 双馈异步风力发电机是一种绕线式感应发电机,是变频风力发电机组的核心部分,也是风力发电机组国产化的关键部件之一。该发电机主要有电机本体和冷却系统两大部分组成。电机本体有定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成“柔性连接”,即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 2、双馈异步发电机的工作原理 根据电机学理论,在转子三相对称绕组中通入三相对称的交流电,将在电机气隙间产生磁场,此旋转此磁场的转速与所通入的交流电的频率及电机的极对数p 有关。 p f n 2260= (1-1) 式(1-1)中,2n 为转子中通入频率为 2f 的三相对称交流励磁电流后所产生的旋转磁场相对于转子本身的旋转速度(r/min )。 从式(1-1)中可知,改变频率2f ,即可改变2n 。因此若设1n 为对应于电网频率50Hz (Hz f 502=)时发电机的同步转速,而n 为发电机转子本身的旋转速 度,只要转子旋转磁场的转速与转子本身的机械速度n 相加等于定子磁场的同步旋转速度1n ,即 12n n n =+ (1-2) 则定子绕组感应出的电动势的频率将始终维持为电网频率1f 不变。式(1-2)中,当2n 与n 旋转方向相同时,2n 取正值,当2n 与n 旋转方向相反时,2n 取负值。

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

双馈异步发电机原理

双馈异步发电机 双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。 双馈异步发电机变速恒频风力发电机的核心部件。此类发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。当双馈发电

机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。当发电机的转速高于气 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知

双馈异步风力发电机(讲)

1.引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包 括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW 的永磁直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPMF运行,目前流行的是双馈异步发电机,主要有1.25MV Y 1.5MV y 2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能, 发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱

变速,带动电机高速旋转,同时转子接变频器,通过变频器PW M控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也能发出功率出来。有个大致感觉是 1.5MW 发电机的定子发电量大概1200KV,转子大约300KV,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3.双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,风机运行环境非常恶劣,需要气温-30?55度之间正常运行,希望电机尺寸尽量小,风机对发电机重量有严格要求,部分厂家对转子转动惯量也有要求。发电机需要高速运行,但振速要小,通常要小于 2.8mm/s。此外对于水冷的电机入水温度较高,需要考虑维修和维护问题!比如轴承自动加油等!还有就是,整个发电机是倾斜运行的,大概4?5度的倾斜角度,这个在结构设计时候需要考虑??大家看到发电机的轴承就知道了。 电气设计难点:风机需要效率97%以上,由于转子绕组接变频 器,接变频器就会引发谐波电流,会引起铜耗,铁耗等!此外 定子转子承受很大冲击电压,提高绕组温升问题是优先考虑, 转子电流非常大,上千安培,滑环设计也是难点!电机会有轴 电流,需要考虑绝缘问题!同时高空运行需要防雷处理!转子 绕组线规非常大,成型困难!尽量控制转子输出功率尽量小于 30%,以缩小变频器的功率。

双馈发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位臵上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。 一、双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的 n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速 1

双馈发电机工作原理

双馈发电机工作原理 双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。 暂态建模资料 摘要 随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加 明显。联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要 的影响。 本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性 进行了研究分析,主要包括以下内容: 分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了 双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机 组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。 建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控 制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出 了PI控制器参数设置的方法。 提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模 型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计 算模型。 设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组 厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验, 仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。 研究现状 由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样 可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行 带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。同时由于风电 机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电 网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电 机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运 行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故 障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入 的研究。 目前联网运行的风电机组可分为恒速恒频风电机组(CSCF)及变速恒频风 电机组(VSCF)两种,恒速恒频风电机组是指在发电过程中保持转速不变的风 电机组,所采用的发电机主要是同步发电机及鼠笼式感应发电机,前者运行于同步转速,

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)简介 大明 双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国外的高度重视。双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。 一、双馈式感应发电机(DFIG)基本原理 双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。 双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。 从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。 一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态, (2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态 : (3)欠同步发电工作状态, (4)过同步电动工作状态。双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理 1.旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2.旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o 时,合成磁场方向:向下 ② ωt=60o 时,合成磁场方向顺时针转过60o 。 ③ωt=120o 时,合成磁场方向顺时针又转过60o ,共120 o 。 ④ωt= 180o 时,合成磁场方向顺时针又转过60o ,共180 o 。 当三相对称电流通入三相对称绕组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场。一个电流周期,旋转磁场在空间转过360°。则一个电流周期,旋转磁场在空间转过360°。 则160f n s =/P (转/分) 旋转磁场的旋转方向由通入三相绕组中的电流的相序决定的。即当通入三相对称绕组的对称三相电流的相序发生改变时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。 3.变速恒频发电原理 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωω ω

2mw双馈异步风力发电机的研究

2MW风力双馈异步电动机的研究设计 摘要 对一个2 MW商业风力发电机的设计,验证了以两种连接方式为标准的双馈异步电机,它能使其低速范围向下延伸到80%,在电子变换器额定功率没有增加的情况下下滑。这远远超出了正常的30%的下限。较低的速度连接被称作异步发电机模式而机器的操作是在短路定子绕组转动和所有的功率流在转子回路中的情况下进行的。有两个回路逆变器控制系统方案已经被设计完毕并且在各自的模式中已调整性能。本文的目的是演示仿真结果,说明该控制器的动态性能均为 2 MW异步风力发电涡轮机的连接方法。当设计这样的先进的控制策略时,一个简单的对转子和对双馈连接模式电压的分析在演示时应作为一个优势部分被考虑进去。 关键词:双馈电机、异步发电机、风力发电设备 列出的重要标志 vrdq 直交和正交转子电压 irdq 直交和正交转子电流 λsdq 直交和正交定子磁链 Ps 定子有功功率 Qs 定子无功功率 pfs 定子功率因数 Te 转矩 p 微分算子 Lm 电抗引入 Rr 转子电阻 Lr 转子电抗引入 σ总漏电感 ωsf 频率 ‘s’定子简称 ‘r’转子简称 ‘*’参考值 1、介绍

对风力涡轮机的兴趣还在持续,尤其是那些拥有一个额定功率为许多兆瓦的。这个之所以流行主要是既环保,也有可用的化石燃料。所谓的立法鼓励减少碳足迹的地方,所以目前正在感兴趣的可再生能源。风力涡轮机仍然被看作是一种建立完善的技术,已形成从定速风力涡轮机,现在流行的调速技术基于双馈异步发电机(DFIGs)。一个双馈异步风力涡轮发电机的速度的变化与被控制的转子变频器的速度变化一致,使转子电压相位和大小得以调整以保持最佳扭矩和必要的定子功率因数。双馈异步发电机是目前技术发达,常用的风力涡轮机。一个双馈异步发电机的定子直接连接到有一个电力电子的转子变换器的高压电网上,该变换器在转子的转动和高压电网之间得到应用。这个变量速度范围与转子转换器的速率是成正比的因此其调速范围被限制在±30%。转子转换器只需要双馈异步发电机发出能量总量的30%的就能全面控制全部的发电机输出功率。这能导致显著的节省转子转换器的成本。滑动环连接,但必须保持转子绕组,性能安全可靠。电源发电机为2 MW风力汽轮机其速度特性如图1所示。 对于一个商业发电机来说其速度随风速变化,然而这种关系是设定的某一特定地点。当风速下降从风中提取的能量比损失在发电机和变频器中的少时,发电机的输出功率减少直至关闭,因此机器速度也会下降。一种操作模式已经由一个风力涡轮机制造者提出,他宣称延伸速度范围以便在较低的风速中提取的能量是比损

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对 称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈风力发电机工作原理

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所 产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三 相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机 的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: (1) 亚同步运行状态。在此种状态下n

双馈异步发电机

有刷双馈式异步发电机 有刷双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,双馈异步发电机通常为4极或6极,转速为1500r/min、1000r/min,如此高的转速是通过多级增速齿轮箱来实现的。这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、德国Fuhrl?nder等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。我国甘肃兰州电机有限责任公司、北车集团永济电机厂、四川东风电机厂有限公司也都先后研制成功了兆瓦级双馈式异步发电机。 双馈式电机分鼠笼式和绕线式两种。但是,鼠笼式感应发电机因其无法最大限度地利用风能,在风力发电机组中没有得到广泛应用。在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。 双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。其原理图如图1所示。 双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。风力机的机械速度是允许随着风速而变化的。通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。 双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电

双馈异步发电机的所有资料

什么是双馈异步发电机,什么是异步电机,两者的区别 绕线电动机的转子铁心是不绝缘的,双馈电机的铁心是绝缘的,主要是双馈电机需要考虑转子交流励磁的工况,而绕线电机一般工作在转差率不高的异步状态。 使用绕线电动机替代双馈电机最大的问题就是转子涡流损耗较大,调速工作的范围非常有限,太宽的调速将导致转子励磁交流频率高,损耗就大了。 此外绕线电机的绕线转子线路的绝缘是很低的,正常工作时电机的无功必须依赖电网补充。作为双馈电机使用时,如果电机需要向电网发无功,则励磁的电压会比较大,可能会超出电机的极限引起击穿事故。使用绕线电机替代双馈电机是可行的,但调速范围要远远小于真正的双馈电机。 使用绕线电机替代主要是常规异步电机的漏磁要比发电机的大,磁场气隙也比较大。此外绕线电机因为转子不绝缘,相当于存在一个阻尼绕组,导致转子交流励磁磁场被涡流部分抵消(也会影响暂态过程),要接近双馈电机的状态,就只能在额定转速附近试验,转速调整的范围就很小,绕组励磁频率很低,没有意义。励磁频率越高,涡流影响越大,偏差也越大,影响实验结果。在调速运行时,转子与定子磁场存在差速,相当于一个磁场从转子表面扫过,会导致转子产生涡流,也会引起定子的功率损耗。要改造绕线电机几乎等于买几个新的,非常不划算了。

双馈发电机又被人们称之为交流励磁发电机.由于转子方采用交流电压励磁,使其具有灵活的运行方式,在解决电站持续工频过电压、变速恒频发电、抽水蓄能电站电动-发电机组的调速等问题方面有着传统同步发电机无法比拟的优越性。交流励磁发电机主要的运行方式有以下三种:1) 运行于变速恒频方式;2) 运行于无功大范围调节的方式;3) 运行于发电-电动方式。 异步发电机是指异步电机处于发电的工作状态,从其激励方式有电网电源励磁发电(他励)和并联电容自励发电(自励)两种情况。 1、电网电源励磁发电:是将异步电机接到电网上,电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速,电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能。在这种情况下,异步电机发出的有功功率向电网输送;同时又消耗电网的无功功率作励磁作用,并供应定子和转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并列电容器补偿的方式。 2、并联电容器自励发电:并联电容器的连接方式分为星形和三角形两种。励磁电容的接入在发电机利用本身的剩磁发电的过程中,发电机周期性地向电容器充电;同时,电容器也周期性地通过异步电机的定子绕组放电。这种电容器与绕组组成的交替进行充放电的过程,不断地起到励磁的作用,从而使发电机正常发电。励磁电容分为主励磁电容和辅助励磁电容,主励磁电容是保证空载情况下建立电压所需要

基于Matlab的双馈异步风力发电机风电场仿真

基于Matlab的双馈异步风力发电机风电场仿真 仿真对象是一个由6台1.5MW双馈异步风力发电机组组成的9MW的风电场。这个风电场连接着一个25kv的分布式发电系统,它的电能通过35km长,电压等级为25kv的馈线(B25)输入到120kv的电网上。 一、仿真过程及结果分析 1、风速变化,风机的反映。 初始风速设定为8m/s,时间到t=4s,风速增长到14m/s。开始仿真。 图1 风速突然变化时输出的曲线(voltage regulation 模式)

有功功率随转速平稳的增长,用了18秒的时间到达额定9MW。这段时间内风机转速从0.8pu增长到1.21pu。桨距角从0度增长到0.76度,用来限制机械功率。通过调控无功功率来维持电压在1pu。额定功率时,风机吸收了0.68Mvar,从而控制电压不变。 图2 风速突然变化时输出曲线(Var regulation 模式)无功控制模式下,保持功率因数不变,从电网吸收一部分无功来并网(达到同步转速),因吸收无功,电压上升。 2、110kv系统电压突然下降的仿真。 风速不变8m/s。设置5s发生一次0.15pu的电压下降(在Time variation of 中选择Amplitude)。确保风机为无功控制。

图3 110kv电压突然下降(Var Regulation 模式) 用电设备的电流降至0,电动机转速逐渐下降。用电设备被分离出电网。 图4 110kv电压突然下降(voltage regulation模式) 采用Voltage regulation控制模式,用电设备没有被分出电网。因为电压下降时,风电场发出无功功率。

双馈式风力发电机

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)简介 刘大明 双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国内外的高度重视。双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速范围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。 一、双馈式感应发电机(DFIG)基本原理 双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。 双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。 从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。 一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态, (2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态 : (3)欠同步发电工作状态, (4)过同步电动工作状态。双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。

2MW双馈异步风力发电机

Design Study of Doubly-Fed Induction Generators for a 2MW Wind Turbine ABSTRACT A design study for a 2 MW commercial wind turbine is presented to illustrate two connection methods for a standard doubly-fed induction machine which can extend the low speed range down to 80% ,slipping without an increase in the rating of the power electronic converter. This far exceeds the normal 30% lower limit. The low speed connection is known as induction generator mode and the machine is operated with a short circuited stator winding and with all power flow being through the rotor circuit. A two loop cascaded PI control scheme has been designed and tuned for each mode. The purpose of this paper is to present simulation results which illustrate the dynamic performance of the controller for both doubly-fed induction generator connection methods for a 2 MW wind turbine. A simple analysis of the rotor and the voltage for the doubly-fed connection method is included as this demonstrates the dominant components that need to be considered when designing such advanced control strategies. Keywords: Doubly-fed, Induction generator, Wind turbine LIST OF IMPORTANT SYMBOLS vrdq Direct and quadrature rotor voltage irdq Direct and quadrature rotor current λsdq Direct and quadrature stator flux linkage Ps Stator real power Qs Stator reactive power pfs Stator power factor Te Torque p Differential operator Lm Magnetising reactance Rr Rotor resistance Lr Rotor reactance σ Total leakage inductance ωsf Slip frequency ‘s’ Stator referred ‘r’ Rotor referred ‘*’ Reference value 1. INTRODUCTION There is continuing interest in wind turbines, especially those with a rated power of many megawatts.This popularity is largely driven by both environmental concerns and also the availability of fossil fuels. Legislation to encourage the reduction of the so called carbon footprint is currently in place and so interest in renewables is currently high. Wind turbines are still viewed as a well established technology that has developed from fixed speed wind turbines to the now popular variable speed technology based on doubly-fed induction generators (DFIGs). A

相关文档
最新文档