流体力学实验报告 (4)
流体力学实验报告
实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。
2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。
在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。
在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。
流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。
若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。
三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。
水的流量由出口阀门调节,出口阀关闭时流体静止。
四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。
思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。
浙江大学实验报告(流体力学)
本科实验报告(流体力学)姓名:学院:系:专业:学号:指导教师:2019年12 月30 日实验报告课程名称:流体力学实验类型:验证性实验项目名称:(一)流体静力学综合型实验实验日期:2019 年11月13日一、实验目的和要求1.掌握用测压管测量流体静压强的技能;2.验证不可压缩流体静力学基本方程;3.测定油的密度;4.通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理解,提高解决静力学实际问题的能力。
二、实验内容和原理1.在重力作用下不可压缩流体静力学基本方程z + p/ρg = C 或p = p0 + ρgh式中:z——被测点相对基准面的位置高度;p——被测点的静水压强(用相对压强表示,以下同)p0——水箱中液面的表面压强;ρ——液体密度;h——被测点的液体深度。
2.油密度测量原理方法一:测定油的密度ρ0,简单的方法是利用实验装置的U型测压管8,再另备一根直尺进行直接测量。
实验时需打开通气阀4,使p0 =0。
若水的密度ρw为已知值,由等压面原理有ρ0/ρw = h1/H方法二:不另备测量尺,只利用测管2的自带标尺测量。
先用加压打气球5打气加压使U型测压管8中的水面与油水交界面齐平,有p01 =ρw gh1 = ρ0gH再打开减压放水阀11降压,使U型测压管8中的水面与油面齐平,有p02 = -ρw gh2 = ρ0gH-ρw gH联立两式则有ρ0/ρw = h1/(h1+h2)三、主要仪器设备图.1 流体静力学综合型实验装置图1. 测压管2. 带标尺测压管3. 连通管4. 通气阀5. 加压打气球6. 真空测压管7. 截止阀8. U型测压管9. 油柱10. 水柱11. 减压放水阀四、操作方法与实验步骤1.定性分析实验(1)测压管和连通管判定。
按测压管和连通管的定义,实验装置中管1、2、6、8都是测压管,当通气阀关闭时,管3无自由液面,是连通管。
(2)测压管高度、压强水头、位置水头和测压管水头判定。
流体力学动量定理实验报告
实验报告:流体力学动量定理实验实验目的:本实验旨在通过测量流体在不同条件下的速度和压力,验证流体力学动量定理,并分析流体的流动特性。
实验原理:流体力学动量定理表明,流体在作用力作用下的动量变化等于作用力对流体的压力和重力的贡献之差。
即动量的变化等于合力乘以时间。
根据流体流动的连续性方程和动量守恒方程,可以推导出动量定理的数学表达式。
实验步骤:1.准备工作:确保实验仪器及设备正常运行,并校准各个测量装置。
2.设置实验装置:安装流体管道和流量计,并连接传感器以测量流体的速度和压力。
3.调整流体流动条件:调节流量控制阀门,使流体在管道中稳定流动,并记录流量、速度和压力的基准值。
4.改变流动条件:调节流体控制阀门,改变流量和速度,并记录相应的压力和速度数据。
5.测量数据:使用传感器和测量仪器记录流体流动过程中的速度和压力数据,并进行实时记录或记录存储。
6.分析数据:根据测量数据计算流体的动量变化,并与实验条件进行对比和分析。
7.绘制实验结果:根据实验数据绘制流体速度和压力随时间变化的曲线,并进行数据分析和讨论。
实验结果:根据测量数据和数据分析,得出流体速度和压力随时间变化的曲线。
对比实验条件和理论预期结果,可以验证流体力学动量定理的准确性。
实验讨论:根据实验结果和对流体力学动量定理的分析,讨论流体流动的特性,如流体的加速度、压力分布等,并讨论实验误差和改进方案。
结论:通过本实验,验证了流体力学动量定理的准确性,并对流体的流动特性进行了分析和讨论。
实验结果与理论预期相符,证明了流体力学动量定理的适用性和可靠性。
附录:实验数据和曲线图、实验装置照片等(如果有)。
这是一个基于流体力学动量定理的实验报告的基本结构,具体内容和格式可以根据实际情况进行调整和完善。
流体力学综合实验报告
流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。
本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。
实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。
通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。
实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。
实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。
实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。
同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。
实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。
通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。
实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。
这表明不同液体的粘度是不同的。
实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。
实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。
同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。
结论:通过以上实验,我们深入了解了流体的性质和运动规律。
我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。
此外,我们还发现,流体的流量和流速之间存在一定的关系。
这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。
流体力学实验报告总结与心得
流体力学实验报告总结与心得1. 实验目的本次流体力学实验的目的是通过实验方法,对流体的流动进行定性和定量分析,掌握基本的流体流动规律和实验操作技能。
2. 实验内容本次实验主要分为两个部分:流体静力学的实验和流体动力学的实验。
在流体静力学实验中,我们测定了液体的密度、浮力、压力与深度的关系,并验证了帕斯卡定律。
在流体动力学实验中,我们测量了流体在管道中的速度分布,获得了流速与压强变化的关系,并通过管道阻力的实验验证了达西定理。
3. 实验过程与结果在实验过程中,我们依次进行了密度的测量、液体的浮力测定、压力与深度关系的测定、流速分布的测量和管道阻力的实验。
通过各项实验得到的数据,我们进行了数据处理和分析,得出了相应的曲线和结论。
在密度的测量实验中,我们使用了称量器和容量瓶,通过测定液体的质量和体积,计算出了液体的密度。
在测量液体的浮力时,我们使用了弹簧测量装置,将液体浸入弹簧中,通过测量弹簧的伸长量计算出液体所受的浮力。
在压力与深度关系的测定实验中,我们使用了压力传感器和水桶,通过改变水桶的水深,测量压力传感器的输出信号,得出了压力与深度的关系曲线。
在流速分布的测量实验中,我们使用了流速仪和导管,将流速仪安装在导管中不同位置,通过读出流速仪的示数,绘制出流速与导管位置的关系曲线。
在管道阻力的实验中,我们通过改变导管的直径和流速,测量压力传感器的输入信号,计算出阻力与流速的关系。
4. 结论与讨论通过以上实验和数据处理,我们得出了以下结论:1. 密度的测量实验验证了液体的密度与质量和体积的关系,得到了各种液体的密度数值,并发现不同液体的密度差异较大。
2. 测量液体的浮力实验验证了浮力与液体所受重力的关系,进一步加深了我们对浮力的理解。
3. 压力与深度关系的测定实验验证了帕斯卡定律,即液体的压强与深度成正比,且与液体的密度无关。
4. 流速分布的测量实验揭示了流体在导管中的流动规律,得到了流速随着导管位置的变化而变化的曲线,为后续的流体动力学研究提供了基础。
流动流体综合实验报告(3篇)
第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
流体力学实验报告
附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。
2.掌握一种测量流体流速的方法。
二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。
2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。
三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。
图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。
2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。
3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
5.整理实验数据。
五、注意事项数据测定必须待流体流动稳定时方可读数。
六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。
(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。
流体实验综合实验报告
实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。
2. 掌握流体力学实验的基本方法和步骤。
3. 培养学生的实验操作技能和数据处理能力。
4. 培养学生严谨的科学态度和团队合作精神。
二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。
实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。
三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。
2. 数据采集系统:用于采集实验数据。
3. 计算机软件:用于数据处理和分析。
四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。
2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。
b. 在管道不同位置安装压力计,测量压力值。
c. 在管道出口处安装流量计,测量流量值。
d. 记录实验数据,包括流量、压力、管道直径等。
3. 实验数据处理:a. 利用伯努利方程计算流速。
b. 利用连续性方程计算流量。
c. 分析实验数据,验证理论公式。
4. 实验结果分析:a. 分析流速分布、压力分布的特点。
b. 分析流量测量误差。
c. 总结实验结论。
五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。
b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。
c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。
六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体的综合实验报告
一、实验目的1. 了解流体力学的基本概念和基本规律;2. 掌握流体实验的基本方法和实验设备的使用;3. 通过实验验证流体力学的基本定律,提高实验技能和数据分析能力;4. 培养团队协作精神和严谨的实验态度。
二、实验原理1. 流体力学基本定律:质量守恒定律、动量守恒定律、能量守恒定律;2. 流体流动的基本方程:连续性方程、伯努利方程、动量方程;3. 流体流动的实验研究方法:量纲分析、相似理论、模型实验。
三、实验仪器与设备1. 流体力学实验台:包括管道、阀门、流量计、压力计、水槽等;2. 计算机及数据采集系统:用于实验数据采集、处理和分析;3. 实验器材:测力计、计时器、温度计等。
四、实验内容1. 管道流量实验:测量不同流量下的管道流速、流量和压力损失;2. 伯努利方程实验:验证伯努利方程在流体流动中的应用;3. 动量方程实验:验证动量方程在流体流动中的应用;4. 能量守恒方程实验:验证能量守恒方程在流体流动中的应用;5. 流体阻力实验:测量不同形状、不同尺寸的物体在流体中的阻力系数。
五、实验步骤1. 管道流量实验:(1)开启阀门,调节流量,使管道内流速稳定;(2)使用流量计和压力计测量流量和压力;(3)记录实验数据,进行数据分析。
2. 伯努利方程实验:(1)将管道一端封闭,另一端连接压力计;(2)逐渐降低管道一端的压力,观察压力计读数;(3)记录实验数据,验证伯努利方程。
3. 动量方程实验:(1)使用测力计和计时器测量流体对物体的冲击力;(2)记录实验数据,验证动量方程。
4. 能量守恒方程实验:(1)使用温度计测量流体进入和流出管道的温度;(2)记录实验数据,验证能量守恒方程。
5. 流体阻力实验:(1)将不同形状、不同尺寸的物体放入流体中;(2)使用测力计测量物体在流体中的阻力;(3)记录实验数据,分析阻力系数。
六、实验结果与分析1. 管道流量实验:根据实验数据,绘制流量-流速、流量-压力损失曲线,分析管道流量与流速、压力损失的关系。
流体力学实验报告
流体力学实验报告引言流体力学是应用力学研究流体运动规律的学科,包括流体的运动、变形、分布和相互作用等方面。
流体力学在实际应用中涉及到很多领域,如建筑设计、航空航天、海洋工程等。
而在流体力学研究领域,实验是探究流体运动规律的重要途径之一。
本报告将介绍一项流体力学实验——高速旋转圆环的空气动力学特性研究。
实验目的本实验旨在通过对高速旋转圆环的空气动力学特性进行研究,探究圆环旋转对气流运动的影响,验证流体力学理论。
实验原理当空气流经圆环时,由于圆环的旋转,空气也将随之旋转。
研究表明,圆环旋转的方式和转速都会对气流运动方式产生影响,从而影响气体的流动特性。
在实验中,我们将设定不同的圆环旋转速度,通过对气流的测量和分析,探究圆环旋转对空气的影响规律。
实验设备本实验所用设备为实验室专门研究流体力学的高速风洞实验设备。
设备主要由风洞、测量系统和数据采集系统组成。
实验步骤1. 将圆环放置于风洞中央,设定不同的圆环旋转速度,记录气体流动的变化情况。
2. 通过压力探头测量空气流动的压力分布情况,并记录数据。
3. 通过激光干涉仪对气流运动情况进行测量,记录数据。
4. 通过数据采集系统对实验数据进行整理和处理,得出实验结论。
实验结果与分析根据实验数据,我们可以看到,当圆环旋转速度较低时,气流运动的强度较弱,流体的能流分布情况较为均匀,压力分布也较为平缓。
而当圆环旋转速度逐渐加快时,气流中的涡流、湍流等非稳定现象逐渐增多,能流分布情况和压力分布情况也出现了明显的变化。
此外,我们还发现,当圆环旋转速度大到一定程度时,尽管涡流、湍流等现象增多,但气流却会呈现出一定的规则性和稳定性,即轴对称现象。
结论本实验通过对高速旋转圆环的空气动力学特性进行研究,验证了流体力学中有关旋转流体运动规律的理论。
实验结果表明,在圆环旋转的条件下,气流会出现涡流、湍流等非稳定现象,但同样也会呈现出一定的稳定性和规则性。
这一实验结果为相关领域的研究提供了参考和支持。
华东工程流体力学实验报告
华东工程流体力学实验报告华东工程流体力学实验报告引言:流体力学是研究流体运动规律及其力学性质的学科,广泛应用于工程领域。
华东工程流体力学实验是一项重要的实验课程,旨在通过实验研究和数据分析,加深对流体力学理论的理解,并培养学生的实验操作能力。
本文将对华东工程流体力学实验进行详细的报告和分析。
实验一:流体静力学实验流体静力学实验是流体力学实验的基础,通过测量液体静压力和压力分布,探究流体静力学的基本原理。
在实验中,我们使用了U型管、压力计等实验仪器,通过调整液体高度和测量压力差来研究流体静力学的特性。
实验二:流体动力学实验流体动力学实验是流体力学实验的进一步延伸,通过测量流体在管道中的流速、流量和压力等参数,研究流体在运动中的行为。
实验中,我们使用了流量计、压力传感器等仪器,通过改变管道截面积和流速等条件,研究流体动力学的规律。
实验三:流体阻力实验流体阻力实验是研究物体在流体中运动时所受到的阻力大小和变化规律的实验。
在实验中,我们使用了流体阻力测量仪器,通过改变物体形状、尺寸和流体流速等条件,测量阻力的大小,并分析阻力与这些条件之间的关系。
实验四:流体波动实验流体波动实验是研究流体中波动现象的实验,通过观察和测量波浪的传播和干涉现象,研究流体波动的特性。
在实验中,我们使用了水槽、波浪发生器等仪器,通过改变波浪频率和振幅等条件,研究流体波动的规律和特性。
实验五:流体粘性实验流体粘性实验是研究流体粘性特性的实验,通过测量流体的黏度和粘滞阻力等参数,研究流体粘性的大小和变化规律。
在实验中,我们使用了粘度计等仪器,通过改变温度和流体类型等条件,测量流体的黏度,并分析黏度与这些条件之间的关系。
实验六:流体力学模拟实验流体力学模拟实验是通过计算机模拟流体力学实验过程和结果的实验,可以更加直观地观察流体力学现象。
在实验中,我们使用了流体力学模拟软件,通过调整参数和观察模拟结果,研究流体力学的规律和特性。
结论:通过华东工程流体力学实验的学习和实践,我们深入了解了流体力学的基本原理和实验方法。
流体力学综合实验报告(DOC)
流体力学-离心泵性能的测定一.实验目的1. 熟悉离心泵的构造和操作。
2. 测定离心泵在一定转速下的特性曲线。
二.基本原理离心泵的主要性能参数有流量Q 、压头H 、效率η和轴功率Na ,通过实验测出在一定的转速下H-Q 、Na-Q 及η-Q 之间的关系,并以曲线表示,该曲线称为离心泵的特性曲线。
特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。
1. 流量Q 的测定 在一定转速下,用出口阀调节离心泵的流量Q ,用涡轮流量计计量离心泵的流量Q (m 3/h )2. 压头H 的测定 离心泵的压头是指泵对单位重量的流体所提供的有效能量,其单位为m 。
在进口真空表和出口压力表两测压点截面间列机械能衡算式得gu u h g P g P H 2212212-++-=ρρ(m 液柱) (1) 式中:1P ——泵进口处真空表读数(负值), Pa ; 2P ——泵出口处压力表读数, Pa ;h ——压力表和真空表两测压截面间的垂直距离, m ; 1u ——吸入管内水的流速, m/s ; 2u ——压出管内水的流速, m/s ; g ——重力加速度, m/s 2。
3. 轴功率Na 的测定 离心泵的轴功率是泵轴所需的功率,也就是电动机传给泵轴的功率。
在本实验中不直接测量轴功率,而是用三相功率表测量电机的输入功率,再由下式求得轴功率传电ηη⋅⋅=N N a (2)式中: N ——电动机的输入功率, kW电η——电动机的效率,由电机样本查得 传η——传动效率,联轴节联接 传η=14. 离心泵的效率η 泵的效率为有效功率与轴功率之比aeN N =η (3) 式中:e N ——泵的有效功率, kW ; a N ——轴功率, kW 。
e N ——用kW 来计量,则:,102100081.9ρρρe e e e QH QH g QH N =⨯== ae N QH 102ρη= (4)式中:Q ——泵的流量, m 3/s ; e H ——泵的压头, m ;ρ——水的密度, kg/m 3;g ——重力加速度, m/s 2。
流体力学实验报告
实验目的1.掌握用液式测压及测量流体静压强的技能。
2.验证不可压缩流体静力学基本方程,加深对位置水头,压力水头和测压管水头的理解。
3.观察真空度(负压)的生产过程,进一步加深对真空度的理解。
4.测量油的相对密度。
5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。
实验环境常温室内实验注意事项1.用打气球加压,减压需缓慢,以防液体溢出及油滴吸附在管壁上。
打气后务必关闭加压气球下端的阀门,以防漏气。
2.在实验过程中,装置的气密性要求保持良好。
实验步骤1.了解仪器的组成及其用法,包括:(1)各阀门的开关。
(2)加压的方法:关闭所有阀门,然后用打气球充气。
(3)减压方法:开启筒底减压放水阀们11放水(4)检查仪器是否密封:加压后检查测压管1,2,8的夜面高程是否恒定。
若下降,则查明原因并加以处理。
2.记录仪器编号及各常数。
3.进行实验操作,记录并处理数据。
完成表1-1及表1-2。
4.量测点静压强。
(1)打开通气阀4(此时po=0),记录水箱液面高标▽0和测压管的液面标高▽H(此时▽o=▽H)(2)打开通气阀4及截止阀7,用打气球加压使po>0,测记▽o及▽H。
(3)打开减压放水阀11,使p o<0(要求其中一次p B<0,即▽H<▽B),测记▽0及▽H。
5.测出测压管6插入水杯中水的深度。
6.测定油的相对密度do。
(1)开启通气阀4,测记▽0.(2)关闭通气阀4,用打气球加压(p o>0),|微调放气螺母使U型管中水面与液面齐平,测记▽0及▽H(此过程反复进行3次)。
(3)打开通气阀4,待液面稳定后,关闭所有阀门,然后开启减压放水阀11降压(po<0),使U型管中水面与油面相齐平,测记▽0及▽H(此过程反复进行3次)。
实验结论与数据实验心得通过这次试验,让我更深刻的体会到了流体静力学的奥妙,也验证了流体在重力作用下的平衡作用,很好的将基本理论与实验联系起来,也对相关公式有了更深的理解,更再次体会到了团队合作的重要性。
流体力学综合实验实验报告
流体力学综合实验实验报告一、实验目的流体力学综合实验是为了通过实验操作,结合理论知识,提高学生对流体力学理论的理解,以及培养学生分析和解决问题的能力和实验操作技能。
二、实验原理流体力学是研究流体运动规律和相应力学问题的学科。
流体力学综合实验主要涉及流体力学的基本理论和方法,如流体静力学实验、流速测量实验和流体动力学实验等。
主要实验装置包括流量计、细管、不同形状的孔洞等。
三、实验内容流体力学综合实验包括以下几个实验内容:1.流体静力学实验:通过水柱和压力计器测量水平管道的压力,验证其与高度和流速的关系。
2.流速测量实验:通过使用流量计和测速仪器,测量不同位置和不同孔径处的流速,探究流速与孔径大小的关系。
3.流体动力学实验:通过流过不同形状的孔洞的流体,测量不同孔洞形状的流速和流量,以及分析孔形对流速的影响。
四、实验步骤1.流体静力学实验:安装水柱和压力计器,利用压力计器测量不同高度处的压力值,并记录下来。
根据实测数据,绘制压力与高度的关系曲线。
2.流速测量实验:选择不同位置和不同孔径的流量计和测速仪器,测量流体在这些位置和孔径处的流速,并记录下来。
将实测数据整理成表格,并分析不同孔径大小对流速的影响。
3.流体动力学实验:利用不同形状的孔洞,将流体流过孔洞,同时测量流体在不同孔洞处的流速和流量。
绘制不同孔洞形状的流速和流量曲线,并分析孔形对流速的影响。
五、实验结果与分析根据实验结果的分析和计算,可以得出以下结论:1.流体静力学实验表明,水平管道的压力与高度呈线性关系,压强随高度的增加而增加。
2.流速测量实验结果显示,流速随孔径的减小而增加,即孔径越小,流速越大。
3.流体动力学实验结果表明,孔洞形状对流速存在影响。
如孔洞形状为圆形时,流速较大;而孔洞形状为方形时,流速较小。
六、实验结论通过流体力学综合实验的操作与分析,得出以下结论:1.流体力学中的流体静力学理论得到了实验的验证,水平管道的压力与高度呈线性关系。
工程流体力学实验报告
工程流体力学实验报告工程流体力学实验报告引言工程流体力学是研究流体在工程领域中的运动和力学性质的学科。
实验是工程流体力学研究中不可或缺的一部分,通过实验可以验证理论,探究流体的行为和特性。
本实验报告旨在介绍并分析工程流体力学实验的设计、方法、结果和讨论。
一、实验目的本次实验的目的是研究流体在管道中的流动特性,通过测量流体的压力、流速和管道摩阻系数等参数,探究不同条件下的流体流动规律。
二、实验装置和方法本次实验使用的装置包括一段直径为D的水平圆管、压力传感器、流速计和流量调节阀等设备。
实验方法主要分为以下几个步骤:1. 准备工作:根据实验要求选择合适的管道直径和长度,将管道安装在实验台上,并连接好压力传感器、流速计等设备。
2. 流量调节:通过调节流量调节阀控制流体的流量,保持一定的实验条件。
3. 测量压力:利用压力传感器测量管道中的压力,并记录下来。
在不同流量条件下进行多次测量,确保数据的准确性。
4. 测量流速:使用流速计测量管道中的流速,并记录下来。
同样地,在不同流量条件下进行多次测量。
5. 数据处理:根据测量得到的数据,计算出流体的摩阻系数、雷诺数等参数,并进行数据分析和比较。
三、实验结果和讨论根据实验数据,我们可以绘制出不同流量条件下的压力-流速曲线和压力-摩阻系数曲线。
通过观察曲线的变化趋势,我们可以得出以下结论:1. 流体的摩阻系数与流速成正比,即流速越大,摩阻系数越大。
这与工程流体力学中的理论预测相符合。
2. 随着流速的增加,管道中的压力也随之增加。
这是由于流体在管道中的摩擦力增加导致的。
3. 在一定流速范围内,压力和流速之间存在线性关系。
然而,在流速达到一定阈值后,压力增加的速率会减缓,这是由于流体达到了临界状态,流动变得不稳定。
通过实验结果的分析,我们可以更好地理解流体在管道中的流动特性,为工程实践提供参考和指导。
四、实验误差和改进在实验过程中,可能会存在一些误差,例如仪器的精度限制、实验条件的不完全控制等。
流体力学综合实验报告
流体力学综合实验报告一、实验目的本次实验旨在通过对流体力学的实验操作,掌握流速、流量、压力、阻力和流体力学定律等内容的研究方法和实验技巧,进一步加深对流体力学的理解,培养实验设计和数据分析的能力。
二、实验仪器与材料1.流量计2.压力计3.流速计4.直管段5.U型管6.PVC水管三、实验原理1.流速的测量流速是单位时间内流体通过其中一截面的速度,可以采用流速计进行测量。
2.流量的测量流量是单位时间内通过其中一截面的流体量,可以通过流速计算得出。
3.压力的测量压力是单位面积上受到的力的大小,可以通过压力计进行测量。
4.阻力的测量阻力是流体通过管道时受到的阻力,可以通过流速和流量的测量计算得出。
5.流体力学定律通过实验可以验证贝尔劳定律和弗侖定律,贝尔劳定律:流体通过管道时速度越大,压力越低;弗侖定律:流体通过管道时流量与压力成反比。
四、实验步骤1.测量直管段内的流速:在直管段上安装流速计,流量计读数固定,在一分钟内记录流速读数,取平均值。
2.测量U型管的压力:将U型管一个端口与直管段相连,另一个端口与压力计相连,调整高度使液面平衡,记录液面高度差。
3.测量不同液面高度下的流量:调整U型管液面高度,记录流量计读数,计算流量。
4.计算阻力:根据流速、流量和压力计算出阻力。
五、实验结果与分析1.流速的测量结果表明,流体在直管段内的速度是均匀的,流速测量值较为接近,说明测量结果准确可靠。
2.U型管的压力测量结果表明,压力与液面高度呈线性关系,验证了贝尔劳定律的准确性。
3.不同液面高度下的流量测量结果表明,流量随着液面高度的增加而减小,验证了弗侖定律的准确性。
4.阻力的计算结果表明,阻力与流速、流量和压力成正比,符合阻力的定义。
六、实验结论通过本次综合实验,我们掌握了流速、流量、压力、阻力和流体力学定律的测量方法和计算方法,进一步加深了对流体力学的理解。
实验结果验证了贝尔劳定律和弗侖定律的准确性。
流速、流量和压力之间存在一定的关系,阻力与流速、流量和压力成正比。
流体力学实验报告
伯努利实验报告一、实验目的观察流体流经伯努利方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对伯努利方程的理解。
二、实验原理伯努利方程w h gvg p z g v g p z ++ρ+=+ρ+2222222111其中w h 为管路横截面1至横截面2的能量损失,包括局部能量损失与沿程能量损失。
本实验中可以通过测压管指示4个位置的静水头和总水头,两两比较静水头的大小,并用伯努利方程解释静水头差异的原因。
如图所示,四个测压点位置从左至右标记为1、2、3、4,每个测压点连接2根测压管,分别指示静水头(gp z ρ+)和总水头(g v g p z 22++ρ),方便进行原理分析。
图3 伯努利实验管2点与1点相比,位置水头一致,但是由于管径增加,流速减小,因此2点速度水头减小,若不计能量损失,导致压强水头增加。
3点与1点相比,位置水头、速度水头均一致,但是由于能量损失,导致3点压强水头减小。
4点与3点相比,速度水头一致,位置水头减小,导致压强水头增加,但是由于能量损失原因,压强水头增加幅度有所降低,静水头降低。
在实验过程当中,同学们可以随意选取两点,分析其水头变化的原因。
三、实验数据记录四、实验数据处理(1)流量大小(2)各测点静水头与总水头的高度差(总水头-静水头)五、实验分析与讨论(1)选择两测点,比较能量损失与总水头的大小关系,并计算能量损失占总水头的百分比。
(2)哪个测点总水头与静水头的差值最小,试分析原因。
(3)在实验过程中,为何需要事先把测压管上端阀门全都打开?(4)测压皮管测量总水头,若皮管最边缘的铜管开口没有与伯努利管轴线垂直,则测量出来的总水头比真实数值偏大还是偏小?为什么?六、实验中出现的问题汇总并思考如何避免这些问题文丘里实验报告一、实验目的掌握文丘里流量计测量管道流量的原理。
二、实验原理文丘里流量计原理如图所示管道中,1和2为两测点,其中测点2处横截面直径明显减小,假设1点横截面静压强为p 1,流速为v 1,直径为d 1;测点2横截面静压强为p 2,流速为v 2,直径为d 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验仪器:测压管、U型测压管、差压计
仪器元件:打气球、通气阀、放水阀、截止阀、量杯
流体介质:水、油、气
实验装置如图:
四、实验步骤
实验过程中基本操作步骤如下:
1.熟悉实验装置各部分的功能与作用;
2.打开通气阀,保持液面与大气相通。观测比较水箱液面为大气压强时各测压管液面高度;
3.液面增压:关闭通气阀、放水阀、截止阀,用打气球给液面加压,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p0;
1
9.60
7.80
5.70
10.70
13.70
7.80
7.80
7.80
2
9.60
6.50
4.40
9.40
12.40
6.50
6.50
6.50
3
9.60
4.75
2.65
7.65
10.65
4.75
4.75
4.75
表2油的容重测量与计算成果表
实验条件
次数
水箱液面高程
测压管液面高程
-
-
的平均值
且U型测压管中水面与油水交界面齐平
2.静止流体中,不同断面测压管水头线如何变化?
为常数,静止流体中,不同断面测压管水头线保持不变,测压管水头均相等。
3.根据等压面原理,找出几个等压面。
等压面,在充满平衡流体空间,连接压强相等的各点所组成的面,即空间气压相等的各点所组成的面。根据实验过程,油面与水平面相平时存在一个等压面,a处的连通管液面与容器中液面构成等压面。
使得U型管中油面与水面平齐,记录测压管液面。根据实验结果计算油的容重。
五、实验过程原始记录(数据、图表、计算等)
实验测定与计算值如下内容:
p0=0,a、b、c各测压管与U型测压管液面标高 、压强水头 、测压管水头 ;
p0>0,a、b、c各测压管与U型测压管液面标高 、压强水头 、测压管水头 ;
p0<0,a、b、c各测压管与U型测压管液面标高 、压强水头 、测压管水头 ;填入见下表1、2。
二、实验原理
1.重力作用下不可压缩流体静力学基本方程
2.静压强分布规律:
式中:z——被测点相对于基准面的位置高度;
p——被测点的静水压强,用相对压强表示,以下同;
p0——水箱中液面压强;
——液体容重;
h——被测点在液体中的淹没深度。
3.等压面原理:对于连续的同种介质,流体处于静止状态时,水平面即等压面。
4.当 ,求出 绝对压强与相对压强;当 ,求出 的相对压强、绝对压强和真空值。
时,绝对压强 ,相对压强 ;
时,绝对压强 ,相对压强 ,真空值
《流体力学》实验报告
开课实验室:DS2A1262013年4月26日
学院
年级、专业、班
姓名
成绩
课程
名称
流体力学实验
实验项目
名称
流体静力学实验
指导教师
江岸
教师评语
教师签名:
年月日
一、实验目的
1.验证静力学的基本方程
2.学会使用测压管与差压计的量测技能
3.理解绝对压强与相对压强及毛细管现象
4.灵活应用静力学的基本知识进行实际工程量测
9.80
7.70
12.70
15.70
9.80
9.80
9.80
1
9.60
20.60
18.50
23.50
26.50
20.60Hale Waihona Puke 20.6020.60
2
9.60
25.40
23.30
28.30
31.30
25.40
25.40
25.40
3
9.60
31.10
29.00
34.00
37.00
31.10
31.10
31.10
以零刻度线为基准面,则 =2.1cm, =-2.9cm, =-5.9cm;水容重 =9.807 。
其中 ,
根据实验测得的数据,代入相应的公式进行计算,最后将所得结果填入表1表2如下图所示。
计算:
表1压强水头与测压管水头测量成果表单位:cm
实验条件
次数
水箱液面高程
测压管液面高程
压强水头
测压管水头
1
9.70
4.液面减压:关闭通气阀,打开截止阀,放水阀放出一定水量后,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p0。
5.测定油容重:关闭通气阀、放水阀、截止阀,用打气球给液面加压,调节液面使得U型管中油水界面与水面平齐,记录测压管液面,如此重复3次,三次误差控制在2mm为宜;
打开通气阀,保持液面与大气相通,然后关闭通气阀、放水阀、截止阀,开启放水阀减压,
1
9.60
22.65
13.05
13.48
8.105
2
9.60
22.80
13.20
3
9.60
22.80
13.20
且U型测压管中水面与油水交界面齐平
1
9.60
6.80
2.80
2.83
2
9.60
6.80
2.80
3
9.60
6.70
2.90
六、实验结果及分析
1.在毛细管现象影响下,测压管的读数如何减少误差?
液柱读数以液面中心为准,视线要和凹液面最低处相切,即在同一高度。