led灯调光原理分析对比

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

看到论坛上有朋友问起LED调光原理,正好手头上有一份这样的资料,发上来大家一起看看。帖子主要对大电流LED调光原理进行了对比分析,是一篇

不错的文章。

一般来说,LED调光技术的运用不仅可以提高对比度,还可以减少耗电量。下面将对大电流LED调光原理进行对比分析。

对比度一般都被定义为系统可产生出的最亮色彩(白色)与最暗色彩(黑色)的发光度比率。可以通过控制进入的正向电流来调节LED的亮度级别,即模拟调光。LED的色彩可以随着正向电流的变化而位移,因此对于一些可容忍色彩位移的低档照明系统而言,模拟调光不失为一个合适的选择。但是,对于基于LED的LCD显示屏等的高端应用来说,为获得想要的色彩一致性和各种亮度级别,就必须采用更复杂的调光技术。针对高端应用的LED驱动器一般都采用固定频率工作模式与PWM调光机制。在PWM调光中,LED正向电流以减少的占空比在0%至100%间转换,以进行亮度控制。然而,PWM调光信号的频率必须大于100Hz,以免出现闪烁或抖动。为尽量降低可听到噪声和辐射,高端照明系统的调光频率范围一般要求几万赫兹。可是,更高的调光频率将大幅缩小驱动的调光范围,反而降低系统的最大亮度。本文将探讨在固定频率、时间延迟磁滞控制和固定导通时间的降压式LED驱动器中,高频PWM调光技术的性能表现,并通过测试数据来衡量不同配置下的性能。

LED调光范围

在PWM调光中,LED正向电流以受控的占空比(DDim)进行开/关(ON/OFF),以达到想要的亮度级别。DDim的动态范围定义了PWM调光配置所能实现的最大亮度级别。如上所述,LED亮度与LED正向电流成比例,因此,在使用PWM 调光配置时所得到的最高和最低LED电流平均值分别由式1和式2表示。

ILED_Max=DDim_Max×ILE D (1)

ILED_Min=DDim_Min×ILED (2)

其中,ILED为LED电流,ILED_Max为LED电流的平均最高值,ILED_Min 为LED电流的平均最低值,DDim_Max为最大调光占空比,DDim_Min为最小调光占空比。因此,最高和最低LED明亮的比率,又被看作PWM调光范围,用

式3表示。

调光范围=DDim_Max/DDim_Min (3)

式3表示PWM调光范围与最大、最小调光占空比之间的关系。对于给定的调光频率FDim,DDim_Max表示最大占空比,即LED电流在下一个调光周期开始前,从所需的正向电流降低至零的时间;DDim_Min表示最小占空比,即LED电流由零升至所需的正向电流(IF)的时间。

从图1(a)可见,DDim_Max和DDim_Min用式5表示。

DDim_Max=(T-tSD)/T (4)

DDim_Min=(tD+tSU)/T (5)

其中,T为调光周期(T=1/FDim),tD为从DIM脉冲上升沿到电源FET第一个脉冲之间的延迟,tSU为LED电流从零升至所需电流的上升时间,tSD为从DIM脉冲的下降沿到LED电流等于零之间的下降时间。

图1(a):最大和最小的PWM调光占空比;图1(b):最常用的PWM调光配

置。

式4和式5表达了DDim_Max、DDim_Min与LED驱动器的传动(power-train)特性和PWM调光方案之间的关系。下文将讨论几种不同的PWM调光方案。

PWM调光方案

可以采用多个不同的电路来实现正向LED电流的开/关切换,图1(b)是

最常用的PWM调光配置。

在使能调光方案(图1b(A))中,LED电流的开/关是通过把开关稳压器或者电源FET驱动器设置成使能(Enable)或失效(Disable)来实现的。使能调光的缺点是调光延迟较大(tD,tSU&tSD)。tD指需要启动开关稳压器电路所需的时间。如果利用调光信号去开/关电源FET驱动器,而不是去开关稳压器,则可以消除这种延迟。tSU和tSD指电感器电流上升至所需LED电流,并将电流下降到零电流所需的时间,这种延迟很大程度视乎LED驱动器的传动特性。使能调光方案可以在低调光频率下提供较大的调光范围。但是,由于调光延迟比较大,如果增加调光频率,会明显降低调光范围。

串行调光方案(图1b(B))将一个开关与LED串联在一起,这样,LED电流从IF和零之间的切换将随着串联开关的导通(ON)和断开(OFF)来执行。在这种配置中,当串行开关器导通时,峰值检测器被用来确保电压信号在反馈引脚(FB)处的连续性。串行调光没有延迟时间tD和tSD,因此要优于使能调光。不过,这种方法的tSU较大,在高调光频率下所能达至的调光范围比较小。

并行调光方案(图1b(C))把一个分流开关与LED并联在一起。一旦将这个开关设置成OFF或ON,立刻会有电流IF流进或者流出LED。并行调光能明显减少tD、tSU和tSD,因为它可长期维持连续的电感器电流,这个电流的平均值大约等于所需的LED正向电流。因此,这种调光配置适合那些在高调

光频率下要求宽调光范围的应用。但是,并行调光必须配合开关稳理器拓朴来使用,因为只有这种布局才可提供连续的输出电感器电流。此外,由于分流开关(shunt switch)的功率耗散,这种方式将降低整体系统的效率。下文将探讨与固定频率、磁滞和固定导通时间降压式LED驱动器一起工作时,使

能调光和并行调光方案的性能。

固定频率降压LED驱动器的调光

固定频率电流模式降压LED驱动器的简化框图如图2所示。驱动器可通过选用Enable_Dim控制或Shunt_Dim控制,配置成使能调光或并行调光。图3表示图2中的LED驱动器的典型使能调光波形,这些波形是用LM3045(1A 的16MHz固定频率LED驱动器)来产生的。

图2:固定频率的电流模式降压LED驱动器的简化框图。

在图3中,从DIM脉冲的上升沿到电源FET第一个脉冲,大约有50μs 的延迟tD。这个延迟正如前面所说与启动稳压器的电路有关。与LED电流由零到5A的上升时间有关的时延tSU,其测量出来的数值约为25μs,这个延迟很大程度受到了图2中固定频率LED驱动器的固有控制环路频宽限制的影响。tSD也是LED电流下降至零的DIM脉冲下降沿,其数值约为2.5μs。这个延迟则受开关稳压器的电感器大小和LED正向电压降的影响。

图3:图3中LED驱动器的典型使能调光波形(Vin=10V, IF=0.5A,

Fsw=1.6MHz, FDim= 5kHz, DDim=50%)。

图4给出了图2中的LED驱动器的并行调光波形。这种配置可以完全消除tD,因为驱动器会长期处于开关状态。此外,它还可以消除tSD,因为当开关被设置成ON时(Shunt_Dim为高),电感器电流IL几乎是立刻转向从LED 流入分流开关。另一方面,测度出来的tSU大约为10μs,这仍是一个相对

相关文档
最新文档