热力学统计物理 第三章

合集下载

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。

熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

这一判据称为自由能判据。

热力学统计物理知识点复习大全

热力学统计物理知识点复习大全

概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。

2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。

7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。

8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。

绝热过程中内能U 是一个态函数:A B U U W −=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=−;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。

13.定压热容比:p p T H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫⎝⎛∂∂= 迈耶公式:nR C C V p =−14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=−γγTp 。

热力学统计物理 第三章 课件

热力学统计物理 第三章 课件

故而,由δS=0可以得到平衡条件,由δ2S<0可以得到 平衡的稳定性条件。
熵判据是基本的平衡判据,适用于孤立系统。 自由能判据和吉布斯函数判据 自由能判据:等温等容系统处在稳定平衡状态的必要 和充分条件为 ΔF > 0
将F作泰勒展开,准确到二级,有 1 F F 2 F 2 由δF=0和δ2F>0可以确定平衡条件和平衡的稳定性条件。
在平衡曲线上两相的化学势相等,两相可以以任意比 例共存。两相平衡是一种中性平衡。
当系统缓慢地从外界吸收或放出热量时,物质将由一
相转变到另一相而始终保持在平衡态,称为平衡相变。
单元系三相共存时,三相的温度、压强和化学势都必须相等,即 Tα = Tβ = Tγ = T , p α = p β = p γ = p
δS = 0
因为δUα、δVα、δnα是可以独立改变的,这要求 1 1 p p 0, 0, 0 T T T T T T 即
Tα = Tβ(热平衡条件)
pα = pβ(力学平衡条件)
μα =μβ(相变平衡条件)
上式指出,整个系统达到平衡时,两相的温度、压强和化 学势必须分别相等。
吉布斯函数是一个广延量,当物质的量发生变化时,吉布斯函 数也将发生变化。
对于开系,上式应推广为
dG = -SdT + Vdp +μdn 式中第三项代表由于物质的量改变dn所引起的吉布斯函数 的改变,而
称为化学势。
G n T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物
H和F分别是以S、p、n和T、V、n为独立变量的特性函数。
定义一个热力学函数 J = F -μn 称为巨热力势。

热力学与统计物理答案第三章.(DOC)

热力学与统计物理答案第三章.(DOC)

第三章 单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1) 式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有0,đ0.S W δ==根据式(1),在虚变动中必有0.U δ< (2) 如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有0,đ0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为()()22222222δδ2δδδ0.S S S S U U V V U U V V ⎡⎤⎛⎫⎛⎫∂∂∂=++<⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎣⎦ (1)将2δS 改写为2δδδδδδδ.S S S S S U V U U V V U U V U U V V V ⎡∂∂∂∂⎤⎡∂∂∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ (2)但由热力学基本方程TdS dU pdV =+可得 1,,V U S S p U T V T∂∂⎛⎫⎛⎫== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 代入式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T ⎡∂∂⎤⎡∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1δδδδ0.p U V T T ⎡⎤⎛⎫⎛⎫=+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4) 以,T V 为自变量,有δδδV TU U U T V T V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ δδ,V V p C T T p V T ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦(5) 111δδδV TT V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 21δ,T T =- (6) δδδV Tp p p T V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 211δδ.V T p p T p T V T T T V ⎡⎤∂∂⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦(7) 将式(5)—(7)代入式(4),即得 ()()22221δδδ0,V TC p S T V T T V ∂⎛⎫=-+< ⎪∂⎝⎭ (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V ∂⎛⎫< ⎪∂⎝⎭证明0p C >及0.S p V ∂⎛⎫< ⎪∂⎝⎭ 解:式(2.2.12)给出 2.p V TVT C C ακ-= (1) 稳定性条件(3.1.14)给出 0,0,V Tp C V ∂⎛⎫>< ⎪∂⎝⎭(2) 其中第二个不等式也可表为 10,T TV V p κ⎛⎫∂=-> ⎪∂⎝⎭(3) 故式(1)右方不可能取负值. 由此可知0,p V C C ≥>(4) 第二步用了式(2)的第一式.根据式(2.2.14),有 .S SV T pTVpC C Vp κκ⎛⎫∂ ⎪∂⎝⎭==⎛⎫∂ ⎪∂⎝⎭(5) 因为Vp C C 恒正,且1VpC C ≤,故 0,S TV V p p ⎛⎫⎛⎫∂∂≤< ⎪ ⎪∂∂⎝⎭⎝⎭(6)第二步用了式(2)的第二式.3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪⎪∂∂⎝⎭⎝⎭ (b ),,.T pt n V p n μ⎛⎫∂∂⎛⎫=⎪⎪∂∂⎝⎭⎝⎭解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(b ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T p T n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ 解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有 ,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1) 但由自由能的全微分dF SdT pdV dn μ=--+可得 ,,,,,T VT V V n F n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.6 两相共存时,两相系统的定压热容量p pS C T T ∂⎛⎫= ⎪∂⎝⎭,体胀系数1p V V T α∂⎛⎫= ⎪∂⎝⎭和等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭均趋于无穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变. 两相系统吸取热量而温度不变表明它的(定压)热容量p C 趋于无穷. 在上述过程中两相系统的体积也将发生变化而温度保持不变,说明两相系统的体胀系 数1pV V T α∂⎛⎫= ⎪∂⎝⎭也趋于无穷. 如果在平衡温度下,以略高(相差无穷小)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积发生改变. 无穷小的压强导致有限的体 积变化说明,两相系统的等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭也趋于无穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭ 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,m dp L dT T V =∆ (3) 即 .m L dT V T dp∆= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp Lp dT RT = (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭ (7)3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T=- 液态氨的蒸气压力方程为 3063ln 24.38.p T =-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1) 由此解出195.2.t T K = 将t T 代入所给蒸气压方程,可得5934Pa.t p =将所给蒸气压方程与式(3.4.8)In L p A RT =-+ (2) 比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=⨯溶升汽3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p L C C Tββα=- 并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为 .m m m p TdS S S dp C T T T dT T p dT ββββα⎛⎫⎛⎫⎛⎫∂∂==+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出 ,.m p p m m T p S T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得 .m p p V dp C C T T dT βββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,m m V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为 .p L C C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C T β<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为 .m m m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出 ,,p pp T H C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dTβαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦ 将式中的dp dT用克拉珀龙方程(3.4.6)代入,可得 ,m m p p m m p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4)这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利用上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不大,定压热容量可以看作常量,试证明蒸气压方程可以表为ln ln .Bp A C T T=-+ 解: 式(3.4.7)给出了蒸气与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1) 一般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2) 在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代入式(1),得021,p pC C L dL p dT RT RTβα-=+ (4) 积分,即有ln ln ,Bp A C T T=-+ (5) 其中0,,p pC L B C A R C βα==是积分常数.3.12 蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积随温度的变化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV LV dT T RT⎛⎫=-⎪⎝⎭解:蒸气的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦(1) 将蒸气看作理想气体,m pV RT =,则有11,11.m p m m m T V V T T V V p p∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭ (2)在克拉珀龙方程中略去液相的摩尔体积,因而有2.m dp L LpdT TV RT== (3) 将式(2)和式(3)代入式(1),即有111.m m dV L V dT T RT⎛⎫=-⎪⎝⎭(4)3.13 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为2.m mRT ap V b V =-- (1) 求偏导数得()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭ 即()232,mm RTa V Vb =- 或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表示肥皂泡外气体的压强,p γ表示泡内气体的压强,p α表示肥皂液的压强,根据曲面分界的力学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表面张力系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表面的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义 ,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱氏对相变的分类,二级相变在相变点的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变. 因此,二级相变没有相变潜热和体积突变,在相变点两相的比熵和比体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的比熵和比体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)但v v v v .p Td υdT dp T p dT dp ακ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3) 同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭=- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出二级相变点压强随温度变化的斜率,称为爱伦费斯特方程.3.17 试根据朗道自由能式(3.9.1)导出单轴铁磁体的熵函数在无序相和有序相的表达式,并证明熵函数在临界点是连续的。

热力学与统计物理学第三讲

热力学与统计物理学第三讲

2、开系的热力学方程 、 (1)吉布斯函数 )吉布斯函数G 根据吉布斯函数的全微分式子: 根据吉布斯函数的全微分式子: dG = −SdT +VdP ——此式适用于物质的量不发生变化的情况 此式适用于物质的量不发生变化的情况 由于G是广延量,所以对于开系,上式推广为: 由于 是广延量,所以对于开系,上式推广为: 是广延量
δUα,δVα,δnα和δU β,δV β,δnβ
又孤立系统要求: 又孤立系统要求:
δUα +δUβ = 0,δVα +δV β = 0,δnα +δnβ = 0
又QdU = TdS − PdV + µdn dU + PdV − µdn ⇒dS = T
由此可得出:两相的熵分别为: 由此可得出:两相的熵分别为:
由前面讨论可知: 由前面讨论可知:
δ S〈0
2
为系统的平衡的稳定条件
而系统的总的熵函数的变化为: 而系统的总的熵函数的变化为:
~ δ S = δ 2S +δ 2S0 〈0
2
由于媒质比系统大得多,所以有: 由于媒质比系统大得多,所以有: 故此忽略
δ 2S0
δ S0 << δ S
2 2
∂2S δ 2S ∂2S 根据泰勒展开公式得: 根据泰勒展开公式得: δ 2S = [( )(δU)2 + 2 δUδV + ∂V
δ 2S
对于各种可能的虚变动都小于零,应有: 对于各种可能的虚变动都小于零,应有:
1 1 − 2 〈0 ⇒CV 〉0 T CV ——平衡的稳定条件之一 平衡的稳定条件之一
平衡的稳定条件之二: 平衡的稳定条件之二:
∂P ( )T 〈0 ∂V
同理可得。 同理可得。

热力学统计物理第三章1

热力学统计物理第三章1
第三章 单元系相变
§3.1 热动平衡判据
这一节的中心问题是如何判定一个系统是否达到了平衡状态。 这一节的中心问题是如何判定一个系统是否达到了平衡状态。 如何判定一个系统是否达到了平衡状态
一、熵判据
熵增加原理指出, 孤立系统的熵永不减少。 孤立系统中发 熵增加原理指出 , 孤立系统的熵永不减少 。 生的任何实际的宏观过程,包括趋向平衡的过程, 生的任何实际的宏观过程 , 包括趋向平衡的过程 , 都朝着使系 统的熵增加的方向进行。 统的熵增加的方向进行。 不平衡状态 熵
∆S < 0
将S为泰勒展开,准确到二级。有 为泰勒展开,准确到二级。
1 2 ∆ S = δS + δ S 2
根据数学上熟知的结果: 根据数学上熟知的结果:当熵函数的一级变分 δS = 0 ,熵 时 函数有极值;可以由此得到平衡条件。 函数有极值;可以由此得到平衡条件。当熵函数的一级变分 时熵函数有极大值, δS = 0 ,二级变分 δ 2 S < 0时熵函数有极大值,由可以得到 稳定条件。如果熵函数的极大不止一个, 稳定条件。如果熵函数的极大不止一个,则其中最大的极大 相应稳定平衡。 相应稳定平衡。
泰勒展开: 泰勒展开:
f ( x ) = f ( x 0 ) + f ′( x ) x = x0 ( x − x 0 ) +
f ( x , y ) = f ( x0 , y0 ) + ∂f ( x , y ) ∂x
f ′′ ( x ) x = x 0 ( x − x 0 ) 2!
2
+ ⋯⋯
x = x0
∂p 假如子系统的体积由于某种原因发生收缩, 假如子系统的体积由于某种原因发生收缩,根据平衡稳定条件 <0 ∂p ∂V T <0 ∂V T 子系统的压强将略高于媒质的压强,于是子系统膨胀而恢复平衡。 子系统的压强将略高于媒质的压强,于是子系统膨胀而恢复平衡。

热力学_统计物理学答案第三章

热力学_统计物理学答案第三章


pv 3 = a(v − 2b)
RT a ⎛ p + a ⎞(v − b ) = RT ; p= − 2 ⎜ 2 ⎟ v ⎠ v −b v ⎝
极值点组成的曲线:
RT 2a RT a = 3 ;由 = p+ 2 2 v−b (v − b ) v v
⎞ ⎟ ⎟ ⎠V
⎛ ∂S ⎞ ⎛ ∂µ ⎞ ⎜ ⎟ = −⎜ ⎟ ⎝ ∂n ⎠T ,V ⎝ ∂T ⎠V ,n (2) 由式(3.2.6)得:
⎛ ∂ 2G ⎞ ⎛ ∂ 2G ⎞ ⎛ ∂µ ⎞ ⎛ ∂V ⎞ ⎟ ⎜ ⎟ = =⎜ ⎟ ⎜ ⎟ =⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ ∂n ⎠T , p ⎝ ∂p∂n ⎠ T ⎝ ∂n∂p ⎠ T ⎜ ⎝ ∂p ⎠T , n
ww
=⎜
∂(T , S ) ∂ (V , T ) ∂(T , S ) ⎛ ∂p ⎞ ⋅ ⋅ ⎟ + ⎝ ∂V ⎠ S ∂ (V , T ) ∂(V , S ) ∂(V , T )
∂ (V , T ) ⎛ ∂p ⎞ ⋅ =⎜ ⎟ + ⎝ ∂V ⎠ S ∂(V , S ) ⎛ ∂p ⎞ ⎛ ∂T ⎞ =⎜ ⎟ + ⎜ ⎟ ⎝ ∂V ⎠ S ⎝ ∂S ⎠ V
∂V ⎞ ⎛ ∂p ⎞ ⎛ ⎟ ⋅ CV =⎜ ⎟ ⋅⎜ ⎜ ⎝ ∂V ⎠ S ⎝ ∂p ⎟ ⎠T
w.
kh da
后 课
⎛ ∂G ⎞ ⎜ ⎟ =µ ⎝ ∂n ⎠T ,V
证:
(1) 开系吉布斯自由能
答 案
∂µ ⎞ ⎛ ∂µ ⎞ ⎛ ∂S ⎞ 习题 3.4 求 证 : ( 1) ⎛ ⎜ ⎟ = − ⎜ ⎟ ;( 2) ⎜ ⎜ ∂p ⎟ ⎟ =− ⎝ ∂T ⎠ V , n ⎝ ∂n ⎠T ,V ⎝ ⎠T,n

热力学统计物理第三章

热力学统计物理第三章
可能的变动。孤立系统与外界没有热量和功的交换, 若只有体积功,其约束条件是内能和体积不变。
孤立系统处在稳定平衡状态的必要和充分条件是,虚 变动引起的熵变
S 0
将S作泰勒展开,准确到二级,有 S S 1 2S
2
由数学上的极值条件:
当 S 0, 2S 0 时,熵函数有极大值。
可得
S 0 2S 0
( 相变平衡条件)
即整个系统达到平衡时,两相的温度、压强和化 学势分别相等。
分析:若平衡条件未满足,复相系的变化将朝着熵增加 ( S 0 )的方向进行:
(1)若只有热平衡条件未满足,则向 的方向变化:
U
(
1 T
1 T
)
0
如 T T 则 U 0 即能量从高温的相传到低 温的相。
(2)若只有力学平衡条件未满足,则向 的方向变化:
•因为两相的化学势相等,所以两相可以以任意比例共存; •整个系统的吉布斯函数保持不变,系统处在中性平衡。
(3)单元三相平衡共存,必须满足
T T T p p p
(T , p) (T , p) (T , p)
由上面的方程可以唯一地确定温度和压强的一组解
TA和PA ,即单元系的三相平衡共存的三相点。 水的三相点为:TA = 273.16 K, pA = 610.9 Pa .
dH TdS Vdp
若S, p不变,则 dH 0 ,即过程向焓H减少的方向 进行,因此平衡态的焓H最小。
热力学判据 过程遵循规律
U
dU TdS pdV
H
dH TdS Vdp
F
dF SdT pdV
G
dG SdT Vdp
TdS dU pdV S
TdS dH Vdp

热力学统计物理第三章

热力学统计物理第三章
3、吉布斯判据的表述:
G0
系统的温度和压强不变的条件下,对于各种可能的变动,
系统的吉布斯永不增加,即平衡态的吉布斯最小。
4、泰勒展开:
G G 1 22 G G 2 G 0 0 确 平 定 衡 平 稳 衡 定 条 性 件 条 件
第十页,共87页
5、判断方法
趋向平衡态的变化过程中: G 0
G是T, p, n 以为独立变量的特性函数。
已知G(T, p, n),其它热力学量可通过下列偏导数求得:
d= G Sd V T+ d dPn
S (GT )p,n
V
(
G p
)T
,n
G ( n )T,p
第二十页,共87页
二、开系中内能
UGTSpV
内能的全微分
dU Td p Sd V d由n 于摩尔数的改变所
体积的变化 内能的变化
V+V0=0 U+U0=0
整个系统是孤立系统,则这些量一个变 大,另一个变小,总量不变。
子系统的熵变 S=S+2S
媒质的熵变 S0=S0+2S0
虚变动引起的系统的熵变 S总 = S +S0
稳定的平衡条件下,
S总 = S+S0=0
整个孤立系统的熵取极大值,
第十三页,共87页
对于一个孤立的均匀系统
热量传递将使子系统温度降低,从而恢复平衡。
3子系子统系的统压的强体将积增发高生,收缩大,于根媒据质的压强,( 于VP是)T子系0统将膨胀。系统恢复
平衡。
第十七页,共87页
3、单(多)元系,单(多)相系
【单元系】:指化学纯的物质系统.只含一种化学组分(组元).
【单相系】:一个均匀的部分称为一个相, 均匀系也称单相系.

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结第一篇:热力学与统计物理第三章知识总结§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,这相当于中性平衡了。

,该状态的熵就具有极大值,是熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

热力学与统计物理——第03章单元系的相变习题解ok

热力学与统计物理——第03章单元系的相变习题解ok

第三章 单元系的相变习题3.3试由0>v C 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp 。

证: 由式(2.2.1) T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P Cp T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= =dp dV V p T ⎪⎭⎫ ⎝⎛∂∂dT T p V⎪⎭⎫⎝⎛∂∂+=dp +⎪⎭⎫ ⎝⎛∂∂dV V p S dS S p V⎪⎭⎫ ⎝⎛∂∂=+⎪⎭⎫ ⎝⎛∂∂dV V p S V S p ⎪⎭⎫ ⎝⎛∂∂⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂dT T S dV V S V T⇒=⎪⎭⎫ ⎝⎛∂∂T V p VS p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂ (1) =⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫ ⎝⎛∂∂ (2) 由麦氏关系(2.2.3)代入(1)式中 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒=⎪⎭⎫ ⎝⎛∂∂T V p -⎪⎭⎫ ⎝⎛∂∂S V p SV T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂T V S -⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V S T ,,()()T V T S ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂T V S T ,,()()⋅∂∂S V T V ,,()()T V S T ,,∂∂ =+⎪⎭⎫⎝⎛∂∂S V p ()()⋅∂∂S V T V ,,()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T =+⎪⎭⎫ ⎝⎛∂∂S V p V S T ⎪⎭⎫ ⎝⎛∂∂()()2,,⎥⎦⎤⎢⎣⎡∂∂T V S T 由式(2.2.5) ⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是: 0>=⎪⎭⎫ ⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂S V p 正数于是: SV p ⎪⎭⎫⎝⎛∂∂<0=P C P T S T ⎪⎭⎫ ⎝⎛∂∂()()=∂∂=p T p S T ,,()()⋅∂∂V S p S T ,,()()=∂∂p T V S ,,⋅⎪⎭⎫ ⎝⎛∂∂SV p T ()()p T V S ,,∂∂ ⋅⎪⎭⎫ ⎝⎛∂∂=S V p T ()()⋅∂∂V T V S ,,()()=∂∂p T V T ,,⋅⎪⎭⎫ ⎝⎛∂∂S V p T V T S ⎪⎭⎫ ⎝⎛∂∂Tp V ⎪⎪⎭⎫ ⎝⎛∂∂⋅ ⋅⎪⎭⎫⎝⎛∂∂=SV p V TC p V ⋅⎪⎪⎭⎫⎝⎛∂∂ 0>V C ; 因而0>P C习题3.7试证明在相变中物质摩尔内能的变化为:1p dT U L T dp ⎛⎫∆=-⋅ ⎪⎝⎭如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简。

热力学统计物理第三章3

热力学统计物理第三章3

这时有
dU α = TdS α − pα dV α + µ α dnα
dU β = TdS β − p β dV β + µ β dn β
dU γ = TdS γ + σdA
假定热平衡条件已经满足,温度保持不变, 假定热平衡条件已经满足 , 温度保持不变 , 用自由能 判据推求系统的力学平衡条件和相变条件。 判据推求系统的力学平衡条件和相变条件。 假想在温度和总体积保持不变的条件下, 假想在温度和总体积保持不变的条件下,系统发生一个 虚变动。在这虚变动中,三相的摩尔数,体积和面积分 虚变动。 在这虚变动中,三相的摩尔数, 的变化。 别有 δ n α , δV α ; δn β,δV β ; δA 的变化 。由于在虚变动 中系统的总摩尔数和总体积保持不变, 中系统的总摩尔数和总体积保持不变,应有
Tα = T β = T
pα = p β + 2σ r
µ α T , pα = µ β T , p β
(
)
(
)
分界面为平面)气液两相的平衡条件为: (分界面为平面)气液两相的平衡条件为:
Tα = T β = T
pα = p β = p
µ α (T , p ) = µ β (T , p )
分界面为曲面)气液两相的平衡条件为: (分界面为曲面)气液两相的平衡条件为:
δ nα + δ n β = 0
δV α + δV β = 0
δF = −( pα − p β )δV α + σδA + ( µ α − µ β )δnα = 0
如果假定液滴是球形的,有 如果假定液滴是球形的,
Vα =
4π 3 r 3
A = 4πr 2

第三章_单元系的相变_热力学统计物理

第三章_单元系的相变_热力学统计物理
T0

U p0 V
T0
代入平衡条件得到:
1 1 p p S U ( ) V ( 0 ) 0 T T0 T T0

9
上页得到: S U ( ) V (
1 T
1 T0
p T
p0 )0 T0
由于虚变动δU、δV 可任意变化,故上式要求:
UB U A W T
外界所作的功是
SB S A
W p(VB VA )
SB S A
U B U A p (VB V A ) T
G GB GA 0
在等温等压过程中,系统的吉布斯函数永不增 加。也就是说,在等温等压条件下,系统中发 生的不可逆过程总是朝着吉布斯函数减少的方 向进行的。
T T0
p p0
结果表明:达到平衡时整个系统的温度和压强是均匀的!
2、稳定平衡
近似有 而
~ S 2 S0 2 S 0 2~ S 2S 0
2
可以证明:
2 S0 2 S
2S 2S 2S 2S (U ) 2 2 UV 2 (V ) 2 0 U 2 UV V

4
二、热平衡的判据(热动平衡条件)
1、基本平衡判据
根据熵增加原理,孤立系统中发生的趋于平衡的过程 必朝着熵增加的方向进行。
熵判据:孤立系统平衡态是熵最大的态。 相对于平衡态的虚变动后的态的熵变小。 孤立系统处在稳定平衡状态的必要充分条件:
1 1 S S 2! S 3! S

U n H n F n
pdV dn

T ,V

18
定义:巨热力势

《热力学与统计物理》第三章 单元系的相变

《热力学与统计物理》第三章 单元系的相变

三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T

热力学统计物理第三章

热力学统计物理第三章
五十五分。
第九页,编辑于星期二:十一点 五十五分。
第十页,编辑于星期二:十一点 五十五分。
第十一页,编辑于星期二:十一点 五十五分。
第十二页,编辑于星期二:十一点 五十五分。
第十三页,编辑于星期二:十一点 五十五分。
第十四页,编辑于星期二:十一点 五十五分。
第十五页,编辑于星期二:十一点 五十五分。
第十六页,编辑于星期二:十一点 五十五分。
第十七页,编辑于星期二:十一点 五十五分。
第十八页,编辑于星期二:十一点 五十五分。
第十九页,编辑于星期二:十一点 五十五分。
第二十页,编辑于星期二:十一点 五十五分。
第二十一页,编辑于星期二:十一点 五十五分。
第二十二页,编辑于星期二:十一点 五十五分。
第一页,编辑于星期二:十一点 五十五分。
第二页,编辑于星期二:十一点 五十五分。
第三页,编辑于星期二:十一点 五十五分。
第四页,编辑于星期二:十一点 五十五分。
第五页,编辑于星期二:十一点 五十五分。
第六页,编辑于星期二:十一点 五十五分。
第七页,编辑于星期二:十一点 五十五分。
第八页,编辑于星期二:十一点 五十五分。

热力学与统计物理第三章

热力学与统计物理第三章

推论: 粒子数不守恒系统的化学势等于零。
1 1 p p S ( )U ( )V n n 0 T T T T T T
n n


C
T T
2017/9/8


0; 0 G ni i 0
p p



19
i
2.勒夏特列(Le Chatelier)原理
讨论:假如上述平衡条件不满足,系统中过程进行的方向如何?
p p , (1) 若相变平衡条件不满足,即 T T ,


因为整个孤立系的变化必定朝着熵增加方向进行,即 δS 0 若:

2017/9/8 4
二、自由能判据和吉布斯函数判据 1. 自由能判据
在等温等容过程中,系统的自由能永不增加。这就 是说,在等温等容条件下,对于各种可能的变动,以平 衡态的自由能为最小。
等温等容系统处在稳定平衡状态的必要且充分条件为:
~ ΔF 0 1 ~ 泰勒级数展开为: Δ F δF δ 2 F 2 2 δF 0 δ F 0 平衡条件和平衡稳定性条件。
2
2S 2 U V 2 V 0 V
2S
CV 1 p 2 2 T V 0 2 T T V T p CV 0, 稳定性条件 0 V T
平衡满足稳定性条件时,系统对平衡发生偏离时,系 统将自发产生相应的过程,以恢复系统的平衡。适用于均 匀系统的任何部分。
2017/9/8 10
a 气体的范德瓦耳斯方程: p 2 V b RT V

热力学与统计物理第三章

热力学与统计物理第三章

P.6/55
单元系的相变
等温等容系统处在稳定平衡状态 的必要和充分条件为
G 0
将G作泰勒展开,准确到二级,有
F 0
将F作泰勒展开,准确到二级,有
1 2 G G G 2
由 G 0 和 2 G 0 可以确定平衡 条件和平衡的稳定性条件。
1 2 F F F 2
泰勒展开,准确到二级有:
1 1 p p s U V 0 T T0 T T0 由于U和V 可独立变化,所以上
式成立,必有平衡条件:
1 S S 2 S 2 1 2 S 0 S 0 S 0 2
2013-7-31
T T0 ,
p p0
意义:达到平衡时,子系统与媒质 具有相同的温度和压强。子系统是 任选的,所以达到平衡时整个系统 的温度和压强是均匀的。
P.9/55
s S S0
平衡时有:
1 2 S 2 S0 2
单元系的相变
2、平衡的稳定性条件 平衡的稳定性条件应满足:
2 S0 2 S
2 ①式近似为: s S 0 2
p 0 V T
讨论:系统处于稳定平衡时,由 于扰动偏离时,系统将自动回落 到平衡态。
根据泰勒展开公式: 2S 2 2 S 2 U U
2S 2 U V
2S 2 U V
2S 2 U V 2 V 0 V P.10/55
单元系的相变
2、平衡的稳定性条件 平衡的稳定性条件应满足:
通过导数变换将上式化为平方和:
s 0 T T0 ; p p0 2 s 2S 2S 0 ①

热力学统计物理第三章总结

热力学统计物理第三章总结

第三章 单元复相系总结组别:第二组 组长:胡娟秀 组员:仓荣琴、宋莹珊、字艳美 汇报人:仓荣琴3.1热动平衡的判据1、热动平衡判据 (1)熵判据等v 等u 条件下,孤立系统处在稳定平衡状态的充要条件:0<∆s 平衡条件: 稳定平衡条件:02<S δ (2)自由能判据等v 等T 条件下,孤立系统处在稳定平衡状态的充要条件:0>∆F平衡条件:0=F δ 稳定平衡条件:02>F δ (3)吉布斯函数等T 等P 条件下,孤立系统处在稳定平衡状态的充要条件:0>∆G平衡条件:0=G δ 稳定条件:02>G δ0=S δ3.2开系的热力学基本方程1、开系的五个热力学方程dU TdS PdV dn dH TdS VdP dn dF SdT PdV dn dG SdT VdP dn dJ SdT PdV nd μμμμμ=-+=++=--+=-++=--- 2、化学势,m T PG G n μ∂⎛⎫==⎪∂⎝⎭ 3、巨热力势 定义式:J F n μ=-全微分是:dJ SdT PdV nd μ=---3.3单元系的复相平衡条件1、单元二相系的平衡条件平衡条件为:,,T T P P αβαβαβμμ=== 2、单元复相系的平衡条件 热学平衡条件:T T T αβγ==力学平衡条件:P P P αβγ==化学平衡条件(相平衡条件):αβγμμμ==3、利用熵增加原理对孤立系统各相之间趋于平衡的过程进行分析 (1)若热平衡条件未达条件到,T T αβ>,0U αδ<,Q 从αβ→ (2)若热平衡条件达到,力学平衡条件未达到,当P P αβ>,0V αδ>,α相体积膨胀,β相体积被压缩。

(3)若热平衡条件达到,化学平衡条件未达到,0U U n TT αβααβδ⎛⎫--> ⎪⎝⎭,U U αβ>,0n αδ<物质由αβ→(α相0n α<,β相0n βδ>)3.4复相系的平衡性质1、单元复相系的平衡汽化曲线:μL =μG熔化曲线:μS =μL 升华曲线:μS =μG ⇒三相平衡:μL =μS =μG2、相图的热力学解释(1)在一定温度和压强下,系统的平衡状态---化学势最小 (2)若在某一温度和压强范围内,α相的化学势低于其他相的化学势,那么系统以α相单独存在(3)单元系两相平衡共存时,两相平衡曲线方程 T α=T β=TP α=P β=P μα=μβ=μ3、克拉珀龙方程dp dT =L T (V mβ−V m α)物理意义:给出两相平衡曲线的斜率dpdT<0冰的熔点随压强的变化dp>0水的沸点随压强的变化3.5 临界点和气液两相的转变1.范德瓦耳斯气体物态方程:(2)()m m ap V b RT V +-= 2.c T ,c p ,mc V 的确定 等温线上极大值点N 点, ()0T m pV ∂=∂,22()0T m P V ∂<∂极小值点J 点,()0T m pV ∂=∂,22()0T mP V ∂>∂当温度升高,N 和J 逐渐靠近;温度继续升高,c T T =时,N 和J 重合,形成拐点,则()0T m p V ∂=∂,22()0T m P V ∂=∂ 利用范氏方程,可得827c a T Rb =,227c ap b =,3mc V b = c T ,c p ,mc V 的关系:83c c mc RT p V =3.7 相变的分类1、一级相变及其特点:(1)相变点两相的化学势连续),(),(P T U P T U βα=(2)相变点两相的化学势的一阶偏导发生突变TT ∂∂≠∂∂)()(βαμμ, pp ∂∂≠∂∂)()(βαμμ 特点:(1)两相存在各自的非奇异化学势函数,在相变点两相的化学势相等;(2)在相变点两相平衡共存;(3)在相变点两相化学势的一级偏导不相等,存在相变潜热和体积突变;(4)在相变点两侧,化学势低的是稳定相,较高的为亚稳相。

热统-(PDF)

热统-(PDF)
27
§ 3.8 临界现象和临界指数
二、液气流体系统
t T Tc Tc
1、l g (t) , t 0
1、临l界 指g数:(t )
,
t
0.34
0
2、T (t) T (t ) '
t 0, t 0。
' 1.2
28
§ 3.8 临界现象和临界指数
3、p pc c , t 0 K 5.0 4.6
p
( p ' 2 , T ) ( p ', T )
r
( p ' p 2 )v RT ln p '
r
p
14
§3.6 液滴的形成
实际问题中,p ' p 2 / r , 上式可近似为:
( p ' p 2 )v RT ln p '
r
p
ln p ' 2 v
p RTr
以水滴为例:在温度T = 291K时,水的表面张力系数和
r 自由能判据:定温定容时平衡态的自由能最小。
F=0 ;V 和n 可独立变动,有: 力学平衡条件 p p 2
r
相变平衡条件
说明:当两相分界面是平面时(即r →∞),两相的力学 平衡条件为两相的压强相等。
12
§3.6 液滴的形成
2. 曲面上的蒸汽压与平面上的饱和蒸汽压的关
系:
设分界面为平面时,饱和蒸汽压强为p;分界面
整个系统的自由能为三相的自由能之和: F F F F ( p p )V A ( ) n
假定液滴是球形,则有:
V 4 r3, A 4 r2
3
V 4 r2 r A 8 r r
11
§3.6 液滴的形成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
➢ 临界点
在等温线上的极大点N,有
p Vm
T
0,
2p
Vm2
T
0
在极小点J,有
p
2p
VmT 0,
Vm2
T
0
随着温度的升高,极大点与极小点逐渐靠近。达到临界温
度Tc时,两点重合而形成拐点。因此临界点的温度Tc和压
强pc满足
p
பைடு நூலகம்
2p
Vm
T
0,
Vm2
T
0
将范氏方程代入,可得
精品课件
时比体积变小,因而平衡曲线的斜率dp/dT是负的。
p
C• •
T
精品课件
由克拉珀龙方程可以推导蒸气压方程。 与凝聚相(固相或液相)达到平衡的蒸气称为饱和蒸气。
由于两相平衡时压强与温度间存在一定的关系,饱和 蒸气的压强是温度的函数。
凝聚相的摩尔体积远小于气相的摩尔体积,如果在克
拉珀龙方程中将其Vmα略去,并把气体看作理想气体pVmβ =RT,则克拉珀龙方程可简化为
精品课件
➢ 液气流体系统临界态的平衡条件
液气两相平衡时,两相具有相同的温度和压强。
Tc 、pc和Vmc之间存在以下关系
RTc 8 2.667 pcVmc 3 此无量纲的比值叫做临界系数。
精品课件
➢ 对应态定律
引进新的变量
tT, pp, v*Vm
Tc
pc
Vmc
分别称为对比温度、对比压强和对比体积。可将范氏方程
化为
pv3*2 v*1383t* 此式称为范氏对比方程。
范氏对比方程中不含与具体物质性质有关的常量。即 是说,如果采用对比变量,范氏方程是普适的。这个结论 称为对应态定律。
δU +δU0 = 0,δV +δV0 = 0
熵是广延量,虚变动引起整个系统的熵变为ΔŜ=
ΔS+ΔS0。
将S和S0作泰勒展开,准确到二级,有
SS 12 S , 2
S 0S 0 1 22 S 0
在稳定的平衡状态下,整个孤立系统的熵应取极大值。熵
函数的极值要求
δŜ =δS +δS0 = 0
根据热力学基本方程
T 两式相减有
dμα= dμβ
将化学势的全微分
代入上式,得
dμ= - SmdT + Vmdp
- Smα dT + Vmαd精p品=课件- SmβdT + Vmβdp

dp dT
Sm Vm
Sm Vm
以L表示1mol物质由α相转变到β相时所吸收的相变潜热,
因为相变时物质的温度不变,得
L = T(Smβ - Smα)
代入上式得
dp
L
dT T Vm Vm
此式称为克拉珀龙方程。
克拉珀龙方程给出两相平衡曲线的斜率,与实验结果 符合得很好。
精品课件
当物质熔解、蒸发或升华时,通常比体积增大,且相 变潜热是正的(混乱度增加,因而比熵增加),因此平衡
曲线的斜率dp/dT通常是正的。
在某些情形下,熔解曲线具有负的斜率。例如冰熔解
dG = -SdT + Vdp +μdn
式中第三项代表由于物质的量改变dn所引起的吉布斯函数
的改变,而
精品课件
称为化学势。
G n
T , p
由于吉布斯函数是广延量,系统的吉布斯函数等于物
质的量n与摩尔吉布斯函数Gm(T,p)之积
G(T,p,n) = nGm(T,p)
因此
G n
T
,
p
Gm
即是说,化学势μ等于摩尔吉布斯函数。
精品课件
δUα + δUβ = 0
δVα + δVβ = 0
δnα + δnβ = 0
由上节内能全微分知,两相的熵变分别为
S
U
pV
T
n
S
U
pV
T
n
根据熵的广延性,整个系统的熵变
SSS
UT 1T 1VT p T p nT T
精品课件
整个系统达到平衡时,总熵有极大值,必有
δS = 0
即可确定相图的两相平衡曲线。但实际上平衡曲线是由实 验直接测定的。
精品课件
➢ 克拉珀龙方程
p
设(T,p)和(T+dT,p+dp)是
两相平衡曲线上邻近的两点。
两点上,两相的化学势相等,
μα(T,p) =μβ(T,p),
•(T+dT,pdp) • (T , p)
μα(T+dT,p+dp) =μβ(T+dT,p+dp)
由上面开系吉布斯函数的全微分可知,G是以T、p、n
为独立变量的特性函数。若已知G(T,p,n) ,则
S G T p ,n,
G V 精 品课 件p T ,n,
G n T ,p
根据吉布斯函数的全微分和内能与吉布斯函数的关系, 易求得开系内能的全微分
dU = TdS - pdV +μdn
巨热力势的全微分为
dJ = -SdT - pdV - ndμ J是以T、V、μ为独立变量的特性函数。若已知 J(T,V,μ) ,则其它热力学量有
S T J V ,, p V J T ,, n J T ,V
由巨热力势定义知,其也可表为
J = F – G = - pV
这个温度和压强范围就是α相的单相区域。在这个区
域内温度和压强是独立的状态参量。
单元系两相平衡共存时,必须满足热、力学和相变平
衡条件
Tα = Tβ= T,pα = pβ= p
μα(T,p) =μβ(T,p)
上式给出两相平衡共存时压强与温度的关系,就是两相平
衡曲线的方程式。
精品课件
在平衡曲线上两相的化学势相等,两相可以以任意比 例共存。两相平衡是一种中性平衡。
SU T pV,精品课件S 0U 0 T 0 p 0V 0
可得
S ˆU T 1T 1 0 V T pT p0 0 0
因为在虚变动中δU和δV可以独立地改变,δŜ=0 要求 T = T0, p = p0
此式表明,达到平衡时子系统和介质具有相同的温度和压 强。
由于子系统是整个系统中任意的一个小部分,所以达 到平衡时整个系统的温度和压强是均匀的。
K
段OKBAMR上各点代表系统
O
的稳定平衡状态。
p
物质在B点全部处于气态,在A点全部处于液态。
B点和A点的μ值相等,正是在等温线的温度和A、B两
点的压强下气、液两相的相平衡条件。由
μA=μB
可以看出,这相当于积分
BNDJAVmdp 0
精品课件

面积(BND) = 面积( DJA) 此式说明,A、B两点在图中的位置
精品课件
§3.4 单元复相系的平衡性质
➢ 单元系相图
p
熔解线

液 C• 临界点
三相点 •
汽化线
升华线 气
T 单元系气液固三相相图
精品课件
水的相图
精品课件
➢ 液气两相的转变
p
•3 •
•2
•1
T
精品课件
在一定的温度和压强下,系统的平衡状态是其化学势 最小的状态。
如果在某一温度和压强范围内,α相的化学势 μα(T,p)较其它相的化学势低,系统将以α相单独存在。
精品课件
§3.3 单元系的复相平衡条件
考虑一个单元两相系的孤立系统。
用指标α和β表示两个相,用Uα、Vα、nα和Uβ、Vβ、 nβ分别表示α相和β相的内能、体积和物质的量。
整个系统孤立,则总内能等应是恒定的,即
Uα + Uβ = 常量 Vα + Vβ = 常量 nα + nβ = 常量
设想系统发生一个虚变动。在虚变动中两相的内能、 体积和物质的量均有变化,但孤立条件要求
pc L
G
C

L+G
T c 共存线退化为临界点。
Vml Vmg
pV 0 T
气液共存线 随 T 增高变短。
T
V ml V mc V mg
Vm
精品课件
二氧化碳等温线(安住斯 1869)
精品课件
精品课件
➢ 范氏气体等温线
pVam2
Vm b
精品课件
RT
➢ 麦克斯韦等面积法则 化学势的全微分为
Vm O K
平衡稳定性条件既适用于均匀系统的任何部分,也适 用于整个均匀系统。
精品课件
§3.2 开系的热力学基本方程
回顾:单元系、复相系与开系
吉布斯函数的全微分
dG = -SdT + Vdp
适用于物质的量不发生变化的情况。
吉布斯函数是一个广延量,当物质的量发生变化时,吉布斯函 数也将发生变化。
对于开系,上式应推广为
如果熵函数的二级微分是负的,即
δ2Ŝ =δ2S +δ2S0 < 0
则熵函数将具有极大值。 精品课件
由于介质比子系统大得多(n0>>n),故有|δ2S0|<< |δ2S0|。因此可以忽略δ2S0 ,
δ2Ŝ ≈δ2S < 0
根据泰勒展开公式
2 S U 2 S 2 U 2 2 U 2 S VU V V 2 S 2 V 2 0
选T、V为独立变量,通过导数变换可将上式的二次型化为
平方和,而有
2SC TV 2T2T 1 V p TV20
如要求δ2S对于各种可能的虚变动都小于零,应有
CV 0,
p V
T
0
此式是平衡的稳定性条件精。品课件
子系统
介质
如果平衡稳定性条件得到满足,当系统对平衡发生某 种偏离时,系统中将自发产生相应的过程,以恢复平衡。
相关文档
最新文档