数值分析2016上机实验报告

合集下载

数值分析上机实习报告

数值分析上机实习报告

指导教师:姓名:学号:专业:联系电话:上海交通大学目录序言 (3)实验课题(一) 雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (4)数值分析 (6)实验课题(二) 松弛因子对SOR法收敛速度的影响 (6)数值分析 (12)总结 (13)附录(程序清单) (14)1.雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (14)雅可比迭代法: (14)高斯-塞得尔迭代法: (16)2.松弛因子对SOR法收敛速度的影响 (18)松弛法(SOR) (18)序言随着科学技术的发展,提出了大量复杂的数值计算问题,在实际解决这些计算问题的长期过程中,形成了计算方法这门学科,专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的误差分析,是一门内容丰富,有自身理论体系的实用性很强的学科。

解决工程问题,往往需要处理很多数学模型,这就要花费大量的人力和时间,但是还有不少数学模型无法用解析法得到解。

使用数值方法并利用计算机,就可以克服这些困难。

事实上,科学计算已经与理论分析、科学实验成为平行的研究和解决科技问题的科学手段,经常被科技工作者所采用。

作为科学计算的核心内容——数值分析(数值计算方法),已逐渐成为广大科技工作者必备的基本知识并越来越被人重视。

由于数值方法是解数值问题的系列计算公式,所以数值方法是否有效,不但与方法本身的好坏有关,而且与数值问题本身的好坏也有关,因此,研究数值方法时,不但需要研究数值方法的好坏,即数值稳定性问题,而且还需要研究数值问题本身的好坏,即数值问题的性态,以及它们的判别问题。

数值计算的绝大部分方法都具有近似性,而其理论又具有严密的科学性,方法的近似值正是建立在理论的严密性基础上,根据计算方法的这一特点。

因此不仅要求掌握和使用算法,还要重视必要的误差分析,以保证计算结果的可靠性。

数值计算还具有应用性强的特点,计算方法的绝大部分方法如求微分方程近似解,求积分近似值,求解超越方程,解线性方程组等都具有较强的实用性,而插值法,最小二乘法,样条函数等也都是工程技术领域中常用的,有实际应用价值的方法。

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。

二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。

数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。

2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。

方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。

我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。

3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。

在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。

我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。

4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。

在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。

我们还学习了数值微分的数值方法,如差商法和牛顿插值法。

5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。

我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。

三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。

我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。

实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。

根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。

此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。

四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。

1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。

本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。

2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。

对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。

在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。

3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。

(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。

(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。

(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。

(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。

4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。

数值分析2016上机实验报告

数值分析2016上机实验报告

序言数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。

是科学与工程计算(科学计算)的理论支持。

许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。

目前,试验、理论、计算已成为人类进行科学活动的三大方法。

数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。

MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。

目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。

本实验报告使用了MATLAB软件。

对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。

并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录序言 (1)问题一非线性方程数值解法 (3)1.1 计算题目 (3)1.2 迭代法分析 (3)1.3计算结果分析及结论 (4)问题二追赶法解三对角矩阵 (5)2.1 问题 (5)2.2 问题分析(追赶法) (6)2.3 计算结果 (7)问题三函数拟合 (7)3.1 计算题目 (7)3.2 题目分析 (7)3.3 结果比较 (12)问题四欧拉法解微分方程 (14)4.1 计算题目 (14)4.2.1 方程的准确解 (14)4.2.2 Euler方法求解 (14)4.2.3改进欧拉方法 (16)问题五四阶龙格-库塔计算常微分方程初值问题 (17)5.1 计算题目 (17)5.2 四阶龙格-库塔方法分析 (18)5.3 程序流程图 (18)5.4 标准四阶Runge-Kutta法Matlab实现 (19)5.5 计算结果及比较 (20)问题六舍入误差观察 (22)6.1 计算题目 (22)6.2 计算结果 (22)6.3 结论 (23)7 总结 (24)附录问题一 非线性方程数值解法1.1 计算题目编写不动点迭代法求根程序:把方程010423=-+x x 写成至少四种x=g (x )的形式,取初值5.1x 0=,进行不动点迭代求根,并比较收敛性及收敛速度。

优质文档精选——数值分析上机实验报告

优质文档精选——数值分析上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验理学院11级统计01班41108030125鲁庆实验报告一一.实验名称误差与误差估计二.实验目的掌握数值运算的误差估计方法三.数学原理 1.绝对误差(*)e x设某一量的准确值为x ,近似值为x*,则x*与x 之差叫做近似值x*的绝对误差(简称误差),记为*(*)*e e x x x ==- 2.绝对误差限适当小的正数,使|(*)||*|*e x x x ε=-≤则称*ε为近似值 x * 的绝对误差限。

(有时用*x x ε*=±表示近似值x *的精度或准确值的所在范围。

3.相对误差(*)r e x绝对误差与准确值之比*(*)*(*),0r r e x x xe e x x x x-===≠称为x *的相对 误差。

4.相对误差限(*)r x ε若指定一个适当小的正数 (*)r x ε,使|(*)||(*)|(*)||r r e x e x x x ε=≤则称(*)r x ε为近似值 x *的相对误差限。

5.有效数字若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。

6.绝对误差的运算:)()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε (f(x))()(x)f x εε'≈四.实验内容1. 计算I n=e 1-⎰10nxe x 2dx (n=0,1,...)并估计误差。

解: >> I0 = exp(-1)*quad('(x.^0).*exp(x.^2)',0,1,10^(-10));>> vpa(I0,10) ans =.5380795069>> I1= exp(-1)*quad('(x.^1).*exp(x.^2)',0,1,10^(-10)); >> vpa(I1,10) ans =.3160602794>> I2 = exp(-1)*quad('(x.^2).*exp(x.^2)',0,1,10^(-10)); >> vpa(I2,10) ans =.2309602465>> I3 = exp(-1)*quad('(x.^3).*exp(x.^2)',0,1,10^(-10)); >> vpa(I3,10) ans =.1839397206>> I4 = exp(-1)*quad('(x.^4).*exp(x.^2)',0,1,10^(-10)); >> vpa(I4,10) ans =.1535596302>> I5 = exp(-1)*quad('(x.^5).*exp(x.^2)',0,1,10^(-10)); >> vpa(I5,10) ans =.1321205588>> I6 = exp(-1)*quad('(x.^6).*exp(x.^2)',0,1,10^(-10)); >> vpa(I6,10) ans =.1161009245>> I7 = exp(-1)*quad('(x.^7).*exp(x.^2)',0,1,10^(-10)); >> vpa(I7,10) ans =.1036383235>> I8 = exp(-1)*quad('(x.^8).*exp(x.^2)',0,1,10^(-10)); >> vpa(I8,10) ans =.9364676413e-1>> I9 = exp(-1)*quad('(x.^9).*exp(x.^2)',0,1,10^(-10)); >> vpa(I9,10) ans =.8544670595e-1 2.计算x255的值。

数值分析上机实验报告(插值)

数值分析上机实验报告(插值)

数值分析第一次上机练习实验报告——Lagrange 插值与三次样条插值一、 问题的描述设()2119f x x =+, []1,1x ∈-,取15iix =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x ,()S x .二、 方法描述——Lagrange 插值与三次样条插值我们取15i ix =-+,0,1,2,...,10i =,通过在i x 点的函数值()2119i i f x x =+来对原函数进行插值,我们记插值函数为()g x ,要求它满足如下条件:()()21,0,1,2,...,1019i i i g x f x i x ===+ (1)我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数()2119f x x=+进行插值,看两种方法的插值结果,并进行结果的比较。

10次的Lagrange 插值多项式为:()()10100i i i L x y l x ==∑ (2)其中:()21,0,1,2,...,1019i i iy f x i x ===+ 以及()()()()()()()()()011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----==----我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。

理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多项式()n L x 的次数n 越高逼近()f x 的精度就越好。

但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近会出现严重的()n L x 偏离()f x 的现象,即所谓的Runge 现象。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

数值分析上机实习报告

数值分析上机实习报告

数值分析上机实习报告随着现代科学技术的迅猛发展,计算机科学的应用日益广泛,数值分析作为计算机科学中重要的分支之一,其在工程、物理、生物学等领域的应用也越来越受到重视。

本学期,我们在数值分析课程的学习中,进行了多次上机实习,通过实习,我们对数值分析的基本方法和算法有了更深入的理解和掌握。

在实习过程中,我们使用了MATLAB软件作为主要的工具,MATLAB是一种功能强大的数学软件,它提供了丰富的数值计算函数和图形显示功能,使我们能够更加方便地进行数值计算和分析。

第一次实习是线性插值和函数逼近。

我们学习了利用已知数据点构造插值函数的方法,并通过MATLAB软件实现了线性插值和拉格朗日插值。

通过实习,我们了解了插值的基本原理,掌握了插值的计算方法,并能够利用MATLAB软件进行插值计算。

第二次实习是解线性方程组。

我们学习了高斯消元法、列主元高斯消元法和克莱姆法则等解线性方程组的方法,并通过MATLAB软件实现了这些算法。

在实习过程中,我们通过实际例子了解了这些算法的应用,掌握了它们的计算步骤,并能够利用MATLAB软件准确地求解线性方程组。

第三次实习是求解非线性方程和方程组。

我们学习了二分法、牛顿法、弦截法和迭代法等求解非线性方程的方法,以及雅可比法和高斯-赛德尔法等求解非线性方程组的方法。

通过实习,我们了解了非线性方程和方程组的求解方法,掌握了它们的计算步骤,并能够利用MATLAB软件求解实际问题。

通过这次上机实习,我们不仅深入学习了数值分析的基本方法和算法,而且锻炼了利用MATLAB软件进行数值计算和分析的能力。

同时,我们也认识到了数值分析在实际问题中的应用价值,增强了解决实际问题的能力。

总之,这次上机实习使我们受益匪浅,对我们学习数值分析课程起到了很好的辅助作用。

数值分析上机实习报告(西南交通大学)

数值分析上机实习报告(西南交通大学)

数值分析上机实习报告姓名:学号:专业:大地测量学与测量工程电话:序言1.所用程序语言:本次数值分析上机实习采用Visual c#作为程序设计语言,利用Visual c#可视化的编程实现方法,采用对话框形式进行设计计算程序界面,并将结果用表格或文档的格式给出。

2.程序概述:(1)第一题是采用牛顿法和steffensen法分别对两个题进行分析,编好程序后分别带入不同的初值,观察与真实值的差别,分析出初值对结果的影响,分析两种方法的收敛速度。

(2)第二题使用Visual c#程序设计语言完成了“松弛因子对SOR法收敛速度的影响”,通过在可视化界面下输入不同的n和w值,点击按钮直接可看到迭代次数及计算结果,观察了不同的松弛因子w对收敛速度的影响。

目录一.用牛顿法,及牛顿-Steffensen法............ 错误!未定义书签。

1. 计算结果.................................... 错误!未定义书签。

2. 结果分析 (5)3. 程序清单 (5)二.松弛因子对SOR法收敛速度的影响 (8)1. 迭代次数计算结果 (8)2. 计算X()结果 (10)3. 对比分析 (12)4. 程序清单: (12)三.实习总结 (14)实验课题(一)用牛顿法,及牛顿-Steffensen法题目:分别用牛顿法,及牛顿-Steffensen法(1)求ln(x+sin x)=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x=0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1、计算结果由于比较多每种方法中只选取了其中两个的图片例在下面:2、结果分析通过对以上的牛顿法和steffensen法的练习,我发现在初值的选取很重要,好的初值选出后可以很快的达到预定的精度,要是选的不好就很慢,而且在有的时候得出的还是非数字,所以初始值的选取很重要。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告实验报告插值法与数值积分实验(数值计算方法,3学时)一实验目的1.掌握不等距节点下的牛顿插值公式以及拉格朗日插值公式。

2.掌握复化的梯形公式、辛扑生公式、牛顿-柯特斯公式计算积分。

3. 会用龙贝格公式和高斯公式计算积分。

二实验内容用拉格朗日插值公式计算01.54.1==y x 以及所对应的近似值。

用牛顿插值公式求)102(y 的近似值。

三实验步骤(算法)与结果1拉格朗日插值法:(C 语言版)#include "Stdio.h" #include "Conio.h"int main(void) {float X[20],Y[20],x; int n;void input(float *,float *,float *,int *); float F(float *,float *,float,int); input(X,Y,&x,&n);printf("F(%f)=%f",x,F(X,Y,x,n));getch(); return 0; }void input(float *X,float *Y,float *x,int *n) {int i;printf("Please input the number of the data:");scanf("%d",n);printf("\nPlease input the locate of each num:\n");for(i=0;i<*n;i++){scanf("%f,%f",X+i,Y+i);}printf("\nPlease input the chazhi:"); scanf("%f",x);}float F(float *X,float *Y,float x,int n){int i,j;float Lx,Fx=0;for(i=0;i<n;i++)< p="">{Lx=1;for(j=0;j<n;j++)< p="">{if(j!=i) Lx=Lx*((x-*(X+j))/(*(X+i)-*(X+j))); } Fx=Fx+Lx*(*(Y+i));}return Fx;}得出结果如图:所以Y(1.4)=3.7295252#include#define N 10double X[N], Y[N], A[N][N];int n;double Newton(double x);double f(double x);void main() {printf("请输入已知x与对应y=f(x)的个数: n = "); scanf("%d", &n);getchar();if(n>N||n<=0) {printf("由于该维数过于犀利, 导致程序退出!"); return;}printf("\n请输入X[%d]: ", n);for (int i=0; i<="" p="">scanf("%lf", &X[i]);getchar();printf("\n请输入Y[%d]: ", n);for (i=0; i<="" p="">scanf("%lf", &Y[i]);getchar();double x;printf("\n请输入所求结点坐标x = ");scanf("%lf", &x);getchar();printf("\nf(%.4lf)≈%lf\n\n", x, Newton(x));}double Newton(double x) {int i, j;// 求均差for (i =0; i<="" p="">A[i][0] = Y[i];for (i=1; i<="" p="">for (j =1; j<=i; j++)A[i][j] = (A[i][j-1] - A[i-1][j-1]) / (X[i] - X[i-j]); // 求结点double result = A[0][0];for (i=1; i<="">double tmp = 1.0;for (int j=0; j<="" p="">tmp *= (x - X[j]);result += tmp * A[i][i];}return result;}四实验收获与教师评语</n;j++)<></n;i++)<>。

《数值分析》实验报告书

《数值分析》实验报告书

N4(0.895) function [y,R]= newcz(X,Y,x,M) x=0.895; M=4; X=[0.4,0.55,0.65,0.8,0.9]; Y=[0.41075,0.57815,0.69675,0.88811,1.02652];
n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C); C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1; 运行结果: ans = 1.0194
实验三、解线性方程组的直接法
解线性方程组的直接法是指经过有限步运算后能求得方程组精确解
的方法。但由于实际计算中舍入误差是客观存在的,因而使用这类方法 也只能得到近似解。目前较实用的直接法是古老的高斯消去法的变形, 即主元素消去法及矩阵的三角分解法。引进选主元的技巧是为了控制计 算过程中舍入误差的增长,减少舍入误差的影响。一般说来,列主元消 去法及列主元三角分解法是数值稳定的算法,它具有精确度较高、计算 量不大和算法组织容易等优点,是目前计算机上解中、小型稠密矩阵方 程组可靠而有效的常用方法。
Y=[0.82741,0.82659,0.82577,0.82495]; n=length(X); m=length(x); for i=1:m z=x(i);s=0.0; for k=1:n p=1.0; q1=1.0; c1=1.0; for j=1:n if j~=k p=p*(z-X(j))/(X(k)-X(j)); end q1=abs(q1*(z-X(j))); c1=c1*j; end s=p*Y(k)+s; end y(i)=s; end R=M.*q1./c1; 运行结果: ans = 0.8261 2. N3(0.596) function [y,R]= newcz(X,Y,x,M) x=0.596; M=3;

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告
结论:
对于二分法,只要能够保证在给定的区间内有根,使能够收敛的,当时收敛的速度和给定的区间有关,二且总体上来说速度比较慢。Newton法,收敛速度要比二分法快,但是最终其收敛的结果与初值的选取有关,初值不同,收敛的结果也可能不一样,也就是结果可能不时预期需要得结果。改进的Newton法求解重根问题时,如果初值不当,可能会不收敛,这一点非常重要,当然初值合适,相同情况下其速度要比Newton法快得多。
结果分析和讨论:
1.用二分法计算方程 在[1,2]内的根。( ,下同)
计算结果为
x=;
f(x)=;
k=18;
由f(x)知结果满足要求,但迭代次数比较多,方法收敛速度比较慢。
2.用二分法计算方程 在[1,]内的根。
计算结果为
x=;
f(x)=;
k=17;
由f(x)知结果满足要求,但迭代次数还是比较多。
3.用Newton法求解下列方程
程序设计:
本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下
function y=f(x);
y=-x*x-sin(x);
写成如上形式即可,下面给出主程序。
二分法源程序:
clear
%%%给定求解区间
b=;
a=0;
%%%误差
R=1;
k=0;%迭代次数初值
while (R>5e-6) ;
%%%改进常数或重根数
miu=2;
%%%初始值x0
x0=input('input initial value x0>>');
k=0;%迭代次数
max=100;%最大迭代次数
R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解

数值分析实验报告

数值分析实验报告
{
x0[i] = 0.01*i;//采用循环对数组变量x[100]赋值
}
rk_getback(x0, y0, 0.01, -50);//调用R-K函数计算得到每一个x(n)对应的y(n)值
CSeries embro = (CSeries)m_chart.Series(0);//使用画图控件Teechart进行画图
}
for (i = 0; i <= 200; i++)//利用插值多项式计算201个数值用于绘图
{
a1[i] = u + i*0.01;
b1[i] = 1 / (1 + 25 * a1[i] * a1[i]);
y[i] = Lagrange(a1[i], n, a2, b2);
}
m_chart.AddSeries(0);//用teechart绘制插值多项式函数图像
m3 = m.transpose()*y;//计算Y矩阵
m4 = m2*m3;//计算系数矩阵
CSeries serdemo = (CSeries)m_mchart.Series(0);//创建CSeries对象
MatrixXd m5(1, 4),m6(1,1);//创建1*4和1*1的矩阵
int i;
考虑在一个固定的区间上用插值逼近一个函数。显然Lagrange插值中使用的节点越多,插值多项式的次数就越高。我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。Runge给出的一个例子是极著名并富有启发性的。设区间[-1,1]上函数
考虑区间[-1,1]的一个等距划分,分点为
则拉格朗日插值多项式为
int i, n =19;
double j = 2.0 / (n ), u = -1.0, v = 1.0;

数值分析上机实验报告

数值分析上机实验报告

一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。

同时,提高编程能力,加深对数值分析理论知识的理解。

二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。

其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。

重复此过程,直至满足精度要求。

2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。

其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。

3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。

其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。

4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。

其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。

四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告x k x k - f(X k) f (X k)《数值分析》上机实验报告1. 用Newt on法求方程X7-X4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001 )。

1.1理论依据:设函数在有限区间[a,b]上二阶导数存在,且满足条件1. f(x)f(b) 02. f(x)在区间[a, b]上不变号3f(x) = 0;4」f (c)〔f .(x) |,其中c是a,b中使mir(| f .(a), f .(b) |)达到的一个b -a则对任意初始近似值x0• [a,b],由Newton迭代过程込f(x k )X“ M(Xk) = Xk — T^,k = 0,1,2,3…f'(X k)所生的迭代序列 % [平方收敛于方程f(x)=0在区间[a,b]上的惟一解: 令7 4f(x)=x -28x 14, f (0.1) 0, f(1.9) ::0f (x) =7x6-112x3=7x3(x3-16) ::: 0f (x) =42x5-336x2=42x2(x3-8) :: 0f (1.9) f (1.9) 0故以1.9为起点x0 =1.9如此一次一次的迭代,逼近X的真实根。

当前后两个的差<=出寸,就认为求出了近似的根。

本程序用Newton法求代数方程(最高次数不大于10)在(a,b )区间的根//限制循环次数1.2 C 语言程序原代码:#i nclude<stdio.h> #in clude<math.h> mai n() {double x2,f,f1; double x1=1.9; // 取初值为 1.9do {x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x 仁 x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); printf("计算结果:x=%f\n",x1);}1.3运行结果:* D:\VC + +\EXERCIS E\Debu g\l1.4 MATLAB上机程序fun cti on y=Newt on( f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2; breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))v=epsd=1; breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey=奇异’endfun cti on y=df(x)y=7*x A6-28*4*x A3;Endfunction y=f(x) y=x A7-28*x A4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newto n('f,'df,x0,eps,M);>> vpa(x,7)1.5问题讨论:1•使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。

通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。

本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。

二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。

三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。

通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。

2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。

通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。

3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。

通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。

四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。

根据二分法的原理,编写程序实现二分法求解方程的根。

(2)使用牛顿迭代法求解非线性方程的根。

根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。

2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。

根据拉格朗日插值法的原理,编写程序实现数据的插值。

(2)使用最小二乘法进行数据的逼近。

根据最小二乘法的原理,编写程序实现数据的逼近。

3. 数值积分(1)使用梯形法进行定积分的数值计算。

根据梯形法的原理,编写程序实现定积分的数值计算。

(2)使用辛普森法进行定积分的数值计算。

根据辛普森法的原理,编写程序实现定积分的数值计算。

五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。

结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序言数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。

是科学与工程计算(科学计算)的理论支持。

许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。

目前,试验、理论、计算已成为人类进行科学活动的三大方法。

数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。

MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。

目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。

本实验报告使用了MATLAB软件。

对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。

并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录序言 (1)问题一非线性方程数值解法 (3)1.1 计算题目 (3)1.2 迭代法分析 (3)1.3计算结果分析及结论 (4)问题二追赶法解三对角矩阵 (5)2.1 问题 (5)2.2 问题分析(追赶法) (6)2.3 计算结果 (7)问题三函数拟合 (7)3.1 计算题目 (7)3.2 题目分析 (7)3.3 结果比较 (12)问题四欧拉法解微分方程 (14)4.1 计算题目 (14)4.2.1 方程的准确解 (14)4.2.2 Euler方法求解 (14)4.2.3改进欧拉方法 (16)问题五四阶龙格-库塔计算常微分方程初值问题 (17)5.1 计算题目 (17)5.2 四阶龙格-库塔方法分析 (18)5.3 程序流程图 (18)5.4 标准四阶Runge-Kutta法Matlab实现 (19)5.5 计算结果及比较 (20)问题六舍入误差观察 (22)6.1 计算题目 (22)6.2 计算结果 (22)6.3 结论 (23)7 总结 (24)附录问题一 非线性方程数值解法1.1 计算题目编写不动点迭代法求根程序:把方程010423=-+x x 写成至少四种x=g (x )的形式,取初值5.1x 0=,进行不动点迭代求根,并比较收敛性及收敛速度。

1.2 迭代法分析将方程f (x )=0改写成其等价形式)(x x φ=取方程根的某一近似值x0作为初始点,由函数)(01x x φ=可计算出x 1,如此下去,设当前点为x k ,有)(x φ计算出x k+1,即)(1k k x x φ=+ k=0,1,.....称为迭代公式。

(收敛条件)设)(x φ在[a ,b]上有连续的一阶导数,并满足:].,[,1)()2(;)(],,[)1('b a x L x b x a b a x ∈∀≤≤≤≤∈∀φφ有则有函数φ(x)在区间[a,b]上存在唯一的不动点(方程的根)x*;对任何x0属于[a,b],可由迭代公式得到序列{x k }均收敛到方程的根x*。

设上述条件成立时,算法的中止条件为:k k k x k kx k x x L L x x x x L L x x --≤---≤-+--1*01*11 现将方程010423=-+x x 改写成如下四种x=φ(x )形式并计算收敛性。

(1)21031k k x x -=+ 计算得φ’(x0) 不收敛 (2)321410x x k -=+计算得φ’(x0) 不收敛 (3)k k k x x x 41021+=+ 计算得φ’(x0) 不收敛 (4)4101+=+k k x x 计算得φ’(x0) 收敛 1.3计算结果分析及结论在command 窗口输入func=inline(‘φ(x)’);[y k ]=StablePoint(1.5,func) 函数相对误差为3-10*1。

计算结果如下表1-1:从计算结果看到,迭代法(2)(3)均不收敛,因为他们不满足局部收敛条件,而迭代法(4)比迭代法(1)收敛快,只需要四步就可以计算得到近似值。

在做不动点迭代时,为使误差尽可能小且数据稳定。

由局部收敛性定理,在将函数f(x)化作x=φ(x )时,应尽可能构造函数使φ(x )收敛。

表1-1 迭代法计算结果问题二追赶法解三对角矩阵2.1 问题编写有效程序解线性方程组Ax=b,其中2.2 问题分析(追赶法)我们利用矩阵的直接三角分解法来推导三对角的计算公式,由系数矩阵A的特点,可以将方程分解为两个三角矩阵的乘积,即A=LU。

其中L 为下三角矩阵,U为单位上三角矩阵。

用追赶法求解严格占优矩阵Ax=f 等价于解两个三角方程组:①Ly=f,求y。

②Ux=y,求x。

从而得到解三对角方程组的追赶法公式:1)计算{βi}的递推公式β1=c1/b1,Βi=ci/(bi-aiβi-1),i=2,3,4,n-1;2)解Ly=fy1=f1/b1,Yi=(fi-aiyi-1)/(bi-aiβi-1),i=2,3,...,n;3)解Ux=yXn=yn ,Xi=yi-βixi+1,i=n-1,n-2,...,2,12.3 计算结果当b=(1,2,3,4,5,...,50)T 时,即初始值为matrix=[1:1:50],计算得x=(0.3333,0.6667,....,13.1186)。

只需要不断更换matrix 控制输入b 向量,就可以得到解x 。

MA TLAB 程序为附录程序2。

问题三 函数拟合3.1 计算题目 对函数22511)(xx f +=在区间[-1,1]上取xi=-1+0.2i (i=0.1....,10) (a )对函数做多项式插值和三次样条插值,并画出插值函数及f (x )的函数;(b )对函数求其三次拟合曲线并画出拟合曲线的图像,与(a)中结果进行比较。

3.2 题目分析3.2.1 Lagrange 插值对于插值函数)(x ϕ,我们通常可以选择多种不同的函数类型,但由于代数多项式具有简单和一些良好的特性,我们常选用代数多项式作为插值函数.首先我们来看这样一个问题:给定两个插值点),(),,(1,100y x y x 其中,10x x ≠怎样做通过这两点的一次插值函数?过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值.下面先用待定系数法构造插值直线.设直线方程为,)(101x a a x L +=将)(),,(1,100y x y x 分别代入直线方程)(1x L ,得⎩⎨⎧=+=+11100010y x a a y x a a , 当10x x ≠时,因01110≠x x 所以方程组有解,且解唯一.这也表明,平面上两个点有且仅有一条直线通过,用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和唯一性,但要解一个方程组才能得到插值函数的系数,因工作量大且不便向高阶推广,故这种构造方法不宜采用.当10x x ≠时,若用两点式表示这条直线,则有: 101001011)(y x x x x y x x x x x L --+--= 这种形式称为Lagrange 插值多项式. 记)(),(,)(,)(1001011010x l x l x x x x x l x x x x x l --=--=称为插值基函数,计算),(),(10x l x l 的值,可知 .,0,1)(⎩⎨⎧≠===ji j i x l ij j i δ 在Lagrange 插值多项式中,可将)(1x L 看作两条直线0101y x x x x --与1010y x x x x --的叠加,并可看到两个插值点的作用和地位是平等的。

如果我们给定三个插值点2,1,0)),(,(=i x f x i i ,其中i x 互不相等,那么该怎样构造函数)(x f 的二次(抛物线)插值多项式呢?仿照线性插值的Lagrange 插值,我们可设)(),()()()()()()(2211002x l x f x l x f x l x f x l x L i ++=为二次函数。

对)(0x l 来说,要求21,x x 是它的零点,因此可设),)(()(210x x x x A x l --=同理)(),(21x l x l 也有相应形式。

),())(()())(()())(()(2101200212x f x x x x C x f x x x x B x f x x x x A x L --+--+--=∴ 将210,,x x x x =分别代入,可得 ))((1,))((1,))((1120221012010x x x x C x x x x B x x x x A --=--=--= 有)())(())(()())(())(()())(())(()(2120210121012002010212x f x x x x x x x x x f x x x x x x x x x f x x x x x x x x x L ----+----+----=一般地,当给定n+1个互不相同的插值节点时,就可得出函数的n 次插值多项式: )())(()()())(()()()()(11011000n i i i i i i n i i n i i n i i i n x x x x x x x x x x x x x x x x x f x f l x L --------==+-+-==∑∑ 下面我们以定理的形式来给出Lagrange 插值多项式的误差估计。

设)(x f 在区间[]b a ,上有直到n+1阶导数,n x x x ,,,10 是[]b a ,上n+1个互异节点,)(x P n 满足)()(i i n x f x p =的n 次插值多项式,则对[]b a x ,∈∀,有)()!1()()(1)1(x n f x R n n n +++=ωξ,其中()b a x x x n i i n ,,)()(01∈-=∏=+ξω,且依赖于.x 。

3.2.2 三次样条插值所谓三次样条插值多项式)(x S n 是一种分段函数,它在节点i x 011()n n a x x x x b -=<<⋅⋅⋅<<=分成的每个小区间1[,]i i x x -上是3次多项式,其在此区间上的表达式如下:22331111111()[()()]()()666[,]1,2,,.i i i i i i i i i i i i i i ii i h x x h x x S x x x M x x M y M y M h h h x x x i n --------=-+-+-+-∈=⋅⋅⋅,, 因此,只要确定了i M 的值,就确定了整个表达式,i M 的计算方法如下: 令:11111111116()6(,,)i i i i i i i i i i i i i i i i i i i i i h h h h h h y y y y d f x x x h h h h μλμ++++--+++⎧===-⎪++⎪⎨--⎪=-=⎪+⎩, 则i M 满足如下n-1个方程:1121,2,,1i i i i i i M M M d i n μλ-+++==⋅⋅⋅-,对于第一种边界条件下有⎪⎪⎩⎪⎪⎨⎧-=+-=+---000110111)'],([62]),['(62h f x x M M h x x f f M M n n n n n n 如果令,]),['(6,1,)'],[(6,111000100---==-==n n n n n n h x x f f d h f x x f d μλ那么解就可以为 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----n n n n n n n d d d d M M M M 110110111102222 μλμλμλ3.2.3 曲线拟合由已知的离散数据点选择与实验点误差最小的曲线)(...)()()(1100x a x a x a x S n n ϕϕϕ+++=称为曲线拟合的最小二乘法。

相关文档
最新文档