不同接地材料及施工方法的优缺点比较
中性点经电阻接地方式的适用范围及优缺点

中性点经电阻接地方式的适用范围及优缺点中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。
该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。
中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。
这三种电阻接地方式各有优缺点,要根据具体情况选定。
对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。
电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。
电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。
(1)高电阻接地高电阻接地多用于电容电流为10A或稍大的系统内。
接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。
由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。
(2)中电阻接地中电阻接地多用于电容电流比10A大得多的系统。
接地电阻值的选择要保证继电保护有足够的灵敏度,故障时不致引起过高的过电压,也不要造成对通信线路的干扰。
有些国家对接地电阻值有较明确的规定,例如德国规定在中压电网中,该电阻值按单相接地电流Io为1000~2000A来考虑;法国则规定:以电缆为主的城市电网,按Io为1000A考虑,以架空线为主的郊区电网,则按300A 考虑。
在工业与民用的电力系统中,Io在100A及其以上者,一般可满足继电保护的要求,而且在厂区和建筑小区内,高压电力线和通信线很少会有数千米的平行线路,所以干扰问题一般不予考虑。
防雷接地和其他接地的区别

防雷接地和其他接地的区别1.防雷接地是指防雷设施(如避雷针、避雷带、避雷网、避雷器)的接地。
2.基础接地是指利用建筑物的地下基础内的钢筋网做接地体,代替人工接地极用的。
3.联合接地方式联合接地方式也称单点接地方式,即所有接地系统共用一个共同的“地”。
联合接地有以下一些特点:(1)整个大楼的接地系统组成一个笼式均压体,对于直击雷,楼内同一层各点位比较均匀;对于感应雷,笼式均压体和大楼的框架式结构对外来电磁场干扰也可提供10-40dB的屏蔽效果;(2)一般联合接地方式接地电阻非常小,不存在各种接地体之间的耦合影响,有利于减少干扰;(3)可以节省金属材料,占地少。
由上不难看出,采用联合接地方式可以有效抑制外部高压输电线路的干扰。
4.保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。
保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。
5.在一个范围内的联合接地,叫公共接地。
6.GB50057-94对等电位连接定义“将分开的装置、诸导电物体等用等电位连接导体或电涌保护器连接起来以减小雷电流在它们之间产生的电位差。
”施工时需要根据工程设计进行施工,施工图纸中要求已经写明,做法参见相关国标图集。
关于接地电阻的要求一般为:直击雷接地小于10欧姆;独立(专用)接地小于4欧姆;联合接地小于1欧姆。
特殊场合或设备有特殊要求的按其要求而定。
1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。
中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。
2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。
保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。
3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。
地下工程施工的典型方法及其优缺点

地下工程施工的典型方法及其优缺点说到地下工程,大家可能会立马联想到那些高楼大厦下埋着的管道、电缆,或者是深不见底的地铁隧道。
你可能会想,哇,那些地下施工一定特别艰难、特别复杂,确实,做这些活儿的工程师们个个都像是“地下工作者”,神秘又辛苦。
不过,地下工程施工其实也有几种常见的施工方法,每种方法各有各的优缺点,今天就跟你聊聊,看看它们到底咋个运作的,值不值得咱们投资。
首先说说最常见的那种——盾构法。
这种方法呢,听名字就知道,像个大盾牌一样,能够保护施工人员免受地下各种危险的影响。
施工时,盾构机就像个巨大无比的“地下巨兽”,它的刀盘一转动,土壤就被掘开,挖出的土被送到机器外面。
你能想象那场景吗?一台庞然大物在地下不慌不忙地推进,前进的路上就像是在慢慢切割蛋糕一样,土层一层层被切开。
盾构法的优点是什么呢?安全性高,毕竟机器都在作业,工人基本上远离危险。
而且这种方法特别适合在城市密集区施工,不会打扰到地面上的交通和居民,噪音也相对较小,简直是“低调奢华有内涵”。
但是,盾构法也有它的短板,最典型的就是施工速度相对较慢,尤其是当地下土质比较复杂时,盾构机可能会被卡住,进度就拖了下来。
而且盾构机本身成本也挺高,动辄几百万的机器和人工费,让很多项目经理头疼不已。
再来说说明挖法,顾名思义,这就是靠人力和机器一块儿挖掘地下通道的方法。
它的优点很简单,施工设备成本低,适用于较小的工程,尤其是在地质条件好的地方,像是软土或者沙土地区,施工起来简直是“得心应手”。
在一些地方,甚至能看到工程队用小型挖掘机和人工结合的方法,小伙子们挥舞着铲子、锄头,干得热火朝天。
可是呢,这个方法的缺点也很明显。
你能想象,几个人在地下几米深的地方干活,一不小心就可能发生滑坡或者塌方,安全隐患很大。
而且深挖的距离有限,遇到一些复杂的地质条件,就很难继续挖下去。
所以,说白了,明挖法只能当个“短期小打小闹”的工具,不能当大工程来用。
接下来我们说说一种有点“高大上”的方法——冻结法。
接地用什么材料

接地用什么材料首先,我们需要了解接地的基本原理。
接地的目的是将电气设备的金属外壳和其他可导电部分与地面形成良好的导电连接,使得任何电流都能够通过地面回流到地面,从而保证设备的安全运行。
因此,接地材料必须具有良好的导电性能,能够有效地将电流导入地下,避免因接地电阻过大导致的接地效果不佳。
在选择接地材料时,通常会考虑以下几种材料:1. 铜材料。
铜是一种优良的导电材料,具有良好的导电性能和耐腐蚀性能,因此被广泛应用于接地系统中。
铜材料可以有效地将电流导入地下,形成良好的接地效果。
此外,铜材料还具有较长的使用寿命,能够保证接地系统长期稳定运行。
2. 镀锌钢材料。
镀锌钢材料是一种具有良好导电性能和较强耐腐蚀性能的材料,常用于接地系统的构建中。
镀锌钢材料表面镀有一层锌,能够有效地防止材料表面的腐蚀,保证接地系统的稳定性和可靠性。
3. 接地棒。
接地棒是一种专门用于接地系统的材料,通常由铜或镀锌钢制成。
接地棒具有良好的导电性能和机械强度,能够有效地将电流导入地下,形成良好的接地效果。
此外,接地棒还具有安装方便、使用寿命长等优点,是一种常用的接地材料。
综上所述,接地材料的选择应考虑其导电性能、耐腐蚀性能、机械强度等因素。
铜材料、镀锌钢材料和接地棒是常用的接地材料,它们具有良好的导电性能和耐腐蚀性能,能够保证接地系统的稳定性和可靠性。
因此,在实际的接地工程中,可以根据具体情况选择合适的接地材料,以保证接地系统的良好运行。
总的来说,接地用什么材料并不是一个简单的问题,需要综合考虑材料的导电性能、耐腐蚀性能、机械强度等因素。
在实际工程中,应根据具体情况选择合适的接地材料,并严格按照相关标准和规范进行设计和施工,以保证接地系统的稳定性和可靠性。
希望本文能够对大家在接地工程中的材料选择提供一些帮助。
接地用什么材料

接地用什么材料
接地用的材料主要有以下几种:
1. 铜:铜是最常用的接地材料之一,因为它具有良好的导电性能和抗腐蚀性能。
铜接地材料通常用于地下接地系统,如接地棒、接地网等。
2. 镀锌钢:镀锌钢也是一种常见的接地材料,其表面覆盖一层锌层,以提供额外的抗腐蚀保护。
镀锌钢通常用于室外接地系统,如接地钉、接地网等。
3. 均质碳化物接地体:均质碳化物接地体是一种新型的接地材料,具有良好的导电性能和抗腐蚀性能。
它通常由碳化物材料制成,可用于各种接地系统,如接地棒、接地极等。
4. 铜铝复合材料:铜铝复合材料是由铜与铝通过冷压或电弧焊接而成的一种材料。
它结合了铜的导电性和铝的轻便性,具有较好的导电性能和抗腐蚀性能。
铜铝复合材料通常用于大型接地系统,如接地网等。
5. 接地胶:接地胶是一种特殊的导电材料,具有良好的导电性能和抗腐蚀性能。
它通常用于接地系统中的连接部位,如接地棒与接地导线的连接处,以提供更好的接地效果。
综上所述,接地用的材料多种多样,选择合适的材料取决于具体的使用环境和要求。
在选择接地材料时,需要考虑导电性能、抗腐蚀性能和使用寿命等因素。
同时,还需要根据实际情况进
行工程设计和材料选型,以确保接地系统的正常运行和安全性能。
【降本增效】地下车库地面材料比选

【降本增效】地下车库地面材料比选一、地下车库地面材料的优缺点1、混凝土原浆地面优点:节约成本。
缺点:(1)平整度差、粗糙、浮灰、污染等现象直接显现。
(2)坑洼、掉皮、起尘、翻砂、难清洁。
(3)后期的物业维护费用大。
2、金刚砂耐磨地面优点:地面不起尘,抗冲击力强,耐磨性能好,易清洁。
缺点:(1)存在砂眼、花色、强度低、裂缝、褪色现象。
(2)对耐磨材料质量和施工配合要求非常高,质量难控制。
(3)金刚砂需要与未终凝的混凝土地面一起施工,金刚砂地面损坏后很难维修。
(4)地面需要养护7天以上才能在上面施工,成品保护困难,难适应项目的进度要求。
3、环氧砂浆型地坪漆地面优点:整体无缝、颜色多样可自由搭配、光洁明亮、耐磨、不起尘,外观靓丽。
缺点:(1)不能抵抗较重的地下潮气,容易起泡、脱层,遇水防滑效果差。
(2)抗划伤性能差,怕沙粒、铁屑之类硬物划伤。
(3)耐高温性能差,刹车多的主车道、弯道容易掉漆。
(4)属于有机材料,容易老化。
(5)物业后期要长期维护,费用大。
(6)容易掩盖原地面质量问题,留下质量隐患。
4、混凝土密封固化剂地面优点:坚硬耐磨、防滑不起尘、适合潮湿的地库施工,工艺简便,永久固化,易清洁,防火等级高,后期基本不用维护,地面越用越光亮。
缺点:(1)无覆盖功能,不能掩盖原来混凝土地面的质量和外观问题,如原混凝土地面完成质量好,则呈现效果较好。
(2)颜值低,地面以混凝土原色为主,可选的颜色不多,日久会有轻微褪色现象。
5、水磨石地坪优点:水磨石是一种水泥型人造石材,具有整体性能好、形状颜色可控等优点。
缺点:由于磨损与污渍浸润等原因,其表面很快风化、剥离、污染,失去应有的建筑工艺特征;护水磨石地面的主要手段是定期清洗和打腊抛光,操作复杂且成本较高,从而造成水磨石表面粗糙和陈旧,使得水磨石只能作为低端产品使用,对于创造洁净工作环境显然是一个隐患。
二、地下车库地面材料主要性能对比相对混凝土原浆地面,其它施工工艺都要增加成本,但可避免地面起尘、翻砂现象,改善观感,提高业主满意度,利于车位去化,同时可降低后期维护成本。
独立接地和共同接地的优缺点

独立接地是指对需接地的系统分别建立独立接地网,且各接地网之间要有足够的距离,其优点在于各接地系统之间不会产生干扰,这对于通讯系统来说非常重要,特别是在电磁环境特别恶劣的情况下。
缺点是独立接地的计算机通讯系统,在雷电瞬时电压很高时,各接地系统点的电位可能相差很大,其设备元件容易击穿而损坏。
相对于共同接地方式,采用独立接地的计算机网络系统遭遇雷击的几率要高得多,同时,独立接地对设计施工都带来一定的困难。
共用接地是把所需接地的各系统连接到一个地网上,使其成为电气相通的统一接地网。
共用接地又有单点接地和多点接地两种方式。
多点接地是指将通信与计算机系统中各设备接地线从不同地方分别连接到接地平面或接地母线上,而单点接地是将通信与计算机系统中各设备接地线连接到接地母线的同一点或同一平面上。
多点接地优点是以最短的连线接至地网,使其串联阻抗减至最小,从而有效抑制因电容效应而产生的干扰。
单点接地方式,能消除公共阻抗耦合和低频接地环路引起的干扰,适用于1MHz以下频率的干扰。
1、独立接地网存在什么问题?2、它为什么会被共用接地网取代?接地是避雷技术最重要的一个环节,不管是直击雷、感应雷或其他形式的雷,最终都是把雷电流送入大地。
因此,没有合理饿良好的接地装置是不可能可*的避雷的。
现代建筑物,往往在一座建筑物内有许多不同性质的电气设备,需要多个接地装置;如避雷接地、电气安全接地、交流电源工作接地、通信及计算机系统接地(也叫直流接地,在数字逻辑系统中叫逻辑接地)等。
各通信系统和交流电源系统的接地是为了获得一个零电位点。
如果各系统分别接地,当发生雷击的时候各系统的接地点的电位可能相差很大,图a中的1、2、3三个接地网之间瞬间电位差大,假设其中‘1’为交流电源工作接地,‘2’为计算机逻辑接地,‘3’为机壳安全保护接地,又假设雷电冲击波从其中一条路‘1’即交流电源送进来,由于雷电的瞬时电压往往是几万V乃至几十万V,那么在同一台电子计算机电路板上分别与电源、通信或和外壳相连的各部分就承担各地网之间的高电压而被击穿,对于微机网络来讲,一般是调制解调器和网卡首先被击穿。
几种常见接地形式的简介与区别(带图)范文

建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。
其中TN系统又分为TN-C、TN-S、TN-C-S系统。
下面内容就是对各种供电系统做一个扼要的介绍。
(一)工程供电的基本方式根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。
(1)TT方式供电系统:TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。
第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT系统中负载的所有接地均称为保护接地,如图1-1所示。
这种供电系统的特点如下。
1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。
3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
把新增加的专用保护线PE线和工作零线N开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。
(2)TN方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。
它的特点如下。
1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
中性点接地系统分类及其优缺点

中性点接地系统分类及其优缺点中性点接地系统是电力系统中常见的一种保护措施,用于减少电力系统的短路故障时对设备和人员的损害。
中性点接地系统可以分为直接接地系统、小电阻接地系统和不对称接地系统三种类型。
不同类型的中性点接地系统具有不同的特点和优缺点。
1.直接接地系统:直接接地系统是指将电力系统的中性点与大地直接连通,并与大地形成有一定电阻的接地通路。
直接接地系统的优点包括:-设备简单:直接接地系统不需要添加额外的设备或装置,设备布置和维护较为简单。
-成本低廉:直接接地系统不需要大量的设备投资和维护费用,成本相对较低。
-适用性广泛:直接接地系统适用于大多数低电压电力系统。
直接接地系统的缺点包括:-地电压过高:直接接地系统存在着地电压过高的问题,在系统发生故障时,会导致接地电流增大,增加设备损坏的风险。
-故障隐患:直接接地系统一旦出现了接地故障,可能会导致电力系统的停运,对生产和生活造成不便。
2.小电阻接地系统:小电阻接地系统是指在中性点接地通路中添加一个小电阻,将接地电流限制在较低水平的接地系统。
小电阻接地系统的优点包括:-地电压低:相比于直接接地系统,小电阻接地系统的地电压较低,减少了设备损坏的风险。
-故障性能改善:小电阻接地系统能够提供较高的故障电流,使故障点更易于检测和定位,有利于故障的快速修复。
小电阻接地系统的缺点包括:-投资成本高:相比直接接地系统,小电阻接地系统需要添加电阻器等设备,投资成本较高。
-维护困难:小电阻接地系统的设备较多,维护和检修较为复杂,需要专业技术支持。
3.不对称接地系统:不对称接地系统是指将电力系统中性点的一相与大地直接接地,而其余相则通常通过电感、电容等器件接地。
不对称接地系统的优点包括:-地电压低:不对称接地系统能够通过合理设置接地电感和电容,将地电压限制在较低水平。
-故障定位准确:不对称接地系统能够通过检测故障电流和相位差,准确地确定故障点。
不对称接地系统的缺点包括:-技术较复杂:不对称接地系统需要精确地设置接地电感和电容,需要较高的技术水平。
变电上铜接地网与钢接地网的技术比较-最新文档

变电上铜接地网与钢接地网的技术比较1.从技术角度比较分析铜接地网和钢接地网的特点铜、钢性能比较 :1.1导电性能铜和钢在20C时的电阻率分别是 17.24 X 10-6 (Q • mm和138X 10-6 (Q • mm,因此铜的导电率是钢的 8倍。
1.2热稳定性铜的熔点为1083C,短路时最高允许温度为 450C;而钢的熔点为1510C,短路时最高允许温度为 400C。
因此,接地体截面相同时,铜材热稳定性较好。
同等热稳定性能时,钢接地体所需的截面积为铜材的三倍。
1.3耐腐性接地体的腐蚀主要有化学腐蚀和电化学腐蚀两种形式,在多数情况下,这两种腐蚀同时存在。
铜在土壤中的腐蚀速度大约是钢材的 1/10-1/50 ,是镀锌钢的耐腐蚀性的 3 倍以上,而且电气性能稳定。
铜的表面会产生附着性极强的氧化物(铜绿),能够对内部的铜起很好的保护作用,阻断腐蚀的形成。
当铜与其它金属(钢结构、水管、气管、电缆护套等)共存地下时,铜作为阴极不会受腐蚀,腐蚀的是后者。
钢材是逐层腐蚀,镀锌层具有一定的抗腐蚀性。
钢接地体接头部位经过高温电弧焊接加工后会出现点腐蚀情况,一般最多只能保证 10 年。
而铜腐蚀不存在点蚀情况,寿命较长。
2.接地体截面选择比较一般的500kV及220kV变电所中的主接地网和接地引下线都采用50X 5 (截面250mm2的镀锌扁钢。
忽略腐蚀的影响对铜接地体进行热稳定校验时,铜接地引下线的最小截面应满足下式:S式中:S—接地引下线的最小截面,mm2I —流过接地引下线的短路电流稳定值, A (根据系统5〜10年发展规划,按系统最大运行方式确定);t —短路电流的等效持续时间,s ;C—接地引下线材料的热稳定系数,根据材料的种类、性能及最高允许温度和短路前接地引下线的初始温度确定。
计算用故障电流原则上应按变电所远景最大运行方式、站内发生接地故障时的故障电流,当系统情况不是十分明确时, 220kV 单相接地短路电流按 50kA 设计。
接地用什么材料

接地用什么材料
在建筑工程中,接地是一项非常重要的工作,它可以保护建筑物及其中的设备不受雷击等自然灾害的影响。
而接地所使用的材料也是至关重要的,不同的材料会对接地效果产生不同的影响。
那么,接地用什么材料呢?接下来我们将就此问题展开讨论。
首先,铜材是一种常见的接地材料。
铜具有良好的导电性能,且不易氧化,因此被广泛应用于接地系统中。
铜材接地能够有效地降低接地电阻,提高接地效果,保护建筑物及其中的设备。
此外,铜材还具有较长的使用寿命,能够保持稳定的接地效果。
其次,镀锌钢材也是一种常用的接地材料。
镀锌钢材具有良好的耐腐蚀性能,能够在潮湿环境下保持稳定的性能。
因此,镀锌钢材适合用于需要长期暴露在室外环境中的接地系统。
它的使用寿命较长,能够满足建筑物及设备的接地需求。
另外,铝材也是一种常用的接地材料。
铝具有良好的导电性能,且比铜轻便,成本较低,因此在一些对成本有限制的项目中被广泛使用。
铝材接地能够有效降低接地电阻,提高接地效果,保护建筑物及其中的设备。
除了上述提到的几种常见接地材料外,还有一些其他材料也可以用于接地系统中,比如镍铬合金、钛合金等。
这些材料具有各自的特点和适用范围,在特定的工程项目中也会得到应用。
综上所述,接地用什么材料需要根据具体的工程需求来选择。
在选择接地材料时,需要考虑材料的导电性能、耐腐蚀性能、使用寿命以及成本等因素,以确保接地系统能够稳定可靠地工作。
希望本文对您有所帮助,谢谢阅读!。
配电网中性点不同接地方式的优缺点

配电网中性点不同接地方式的优缺点(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!配电网中性点不同接地方式的优缺点配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。
镀铜钢、纯铜、镀锌钢、不锈钢接地系统性能比较附件

镀铜钢、纯铜、镀锌钢、不锈钢接地系统性能比较附件镀铜钢、纯铜、镀锌钢、不锈钢接地系统性能比较表:一:耐腐蚀性:接地体的腐蚀主要有化学腐蚀和电化学腐蚀两种形式,多数情况下,这两种腐蚀同时存在。
铜在土壤中的腐蚀速度大约是钢材的1/10~1/50,而且电气性能和物理性能稳定。
铜的表面会产生附着性极强的氧化物(铜绿),对内部的铜有很好的保护作用,阻断腐蚀的形成。
1.关于镀锌钢材与镀铜钢材的对比镀锌扁钢的导电性及热稳定性均不及铜材。
铜材的导电性是钢材的9倍,特别是大电流的集肤效应,铜远远优于钢材。
在热稳定性方面,铜材是钢材的3倍以上。
而艾力高的镀铜钢绞线热稳定性能是钢材的2.5倍以上。
因此,选用铜材或铜镀钢材做接地导体,无论是在电气性能还是施工方面均比钢材要优异得多。
尤其是发生短路故障时,铜材能以六倍于钢材的泻流速度释放电流,从而大大避免了故障的进一步发生。
2:腐蚀速率比较:国际上对材料的耐蚀性按年腐蚀速率分为三类:第一类为完全耐蚀,其腐蚀速率小于0.1mm/a(毫米每年),优质不锈钢属于此类材料;第二类为尚耐蚀,其腐蚀速率为0.1-1.0mm/a,属于一般不锈钢;第三类为不耐蚀,其腐蚀速率大于1.0mm/a;铜腐蚀速率呈逐年减小的趋势,最大年均腐蚀速率为1.05×103 mm/年(闰风洁,李辛庚,电力接地网腐蚀与防护技术的进展[J],山东电力技术,007年第l期(总第153期) P9-13)所以在增加钢接地体截面来防止因腐蚀而导致的截面减少,无法承载接地短路电流时,应采用钢材的点腐蚀速率,通过美国联邦标准局(NBS)在1910年至1950年做的金属材料腐蚀性研究报告NO.579可知,国际标准认定的钢材平均点腐蚀速率0.43mm/年(如图所示),在钢材表面镀锌保护钢材的作用有限,国内热镀锌工艺处理的镀锌层厚度为0.05~0.06mm,锌在地下也发生点蚀,其平均点蚀速率约为0.065mm/年,因此锌层一年后腐蚀殆尽。
10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。
简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。
近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。
10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。
二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。
在接地故障电流小于10A的情况下,一般息弧能自动发生。
(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。
主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。
(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。
(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。
不同材料的接地体连接方法

不同材料的接地体连接方法
一、中油碧辟有限公司江门分公司(江门市高新技术开发区11号)油罐车卸油口(0区)的防静电接地装置与接地体连接方式是不符合规范要求的,防静电接地装置的接地线铜线端子直接用螺栓与镀锌钢接地体连接,如下图:
(这种连接方式,时间久了后,镀锌钢接地体会因氧化等原因与防静电接地装置的接地线铜线端子之间接触不良,出现接地无效甚至打火,形成一个点燃源)。
二、根据国家标准《电气装置安装工程接地装置施工及验收规范
GB50169-2006》和《电气装置安装工程母线装置施工及验收规范 GBJ149—90》的要求:不同材料的接地体间(钢与铜)的连接应进行搪锡处理。
三、施工方法:
1、将镀锌钢接地体进行防锈处理(用砂纸打磨干净搪锡部位的镀锌层、锈
蚀和油污);
2、用电烙铁或喷灯加热镀锌钢接地体上锡,使加热镀锌钢接地体接线孔形
成一层均匀平整的锡保护面;
3、测试镀锌钢接地体接地电阻;
3、当接地体接地电阻符合要求时(中性点不接地的系统接地电阻不大于4
Ω,中性点接地的系统接地电阻不大于10Ω),用M8以上镀锌或不锈钢螺
栓把防静电接地装置与上锡接地体锁紧。
江门市华荣防爆机电设备安装有限公司。
铜质材料和钢质材料的接地地网技术经济对比研究-电力论文-水利论文

铜质材料和钢质材料的接地地网技术经济对比研究-电力论文-水利论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——近年来,我国的电网建设取得了很大的发展,在线路容量方面也发生了很大的变化,线路出现短路的问题可以利用接地电阻来进行解决。
变电站在建设过程中,按照相关规程来进行计算,在接地电阻方面出现了阻值越来越小的情况。
变电站在发展过程中,对很多的新技术进行了利用,因此,在接地阻值变化的过程中,对变电站的运行安全也带来了很大的影响。
对接地网事故进行统计分析发现地网腐蚀是导致问题出现的重要影响因素。
为了防止这种事故再次发生对电网的运行稳定性进行影响,可以采取必要的措施进行预防。
通常情况下,铜质材料的接地地网在使用过程中要进行不定期的检查,在土壤以及地下水变化的情况下,对铜质材料的接地网会产生很大的影响,但是,使用这种材料在使用性能方面却比钢制材料更好,在投资初期,铜质材料的费用相对较高,在设计寿命周期方面却非常好,因此,在维护费用方面也非常少。
1、技术比较1.1性能比较1.1.1导电性能铜和钢在20℃时的电阻率分别是17.2410-6(mm)和13810-6(mm),因此铜的导电率是钢的8倍。
铜接地体在导电性能方面更好,在进行布置时,安全指标也更加好。
1.1.2热稳定性铜的熔点为1083℃,短路时最高允许温度为450℃;而钢的熔点为1510℃,短路时最高允许温度为400℃。
在接地体截面积相同的情况下,铜材的热稳定性更加好,而且,在热稳定性相同的情况下,钢材的接地体截面积却是铜质材料的3倍。
1.1.3耐腐性接地体在使用过程中出现的腐蚀主要体现在化学腐蚀和电化学腐蚀两个方面,其中,在多数情况下,这两种腐蚀是同时存在。
铜质材料和钢质材料在使用过程中,铜质材料的腐蚀速度是钢质材料的十分之一到五十分之一,在这种情况下,铜质材料的电气稳定性更加的稳定。
钢材在使用过程中被腐蚀时是逐层进行,在使用钢材时可以在表面进行镀锌操作,这样在抗腐蚀能力方面能够得到提高,但是,对其导电性能却带来了降低的影响,因此,在使用过程中要解决的问题也非常多。
人工接地体材料可采用

人工接地体材料可采用人工接地体是一种用于保护电气设备和人员安全的重要设备,其材料的选择对于接地体的性能和使用寿命具有重要影响。
在选择人工接地体材料时,需要考虑材料的导电性能、耐腐蚀性能、机械强度以及施工和维护的便利性等因素。
在实际工程中,常见的人工接地体材料包括铜、铝、镀锌钢等,下面将分别对这些材料进行介绍。
首先,铜是一种优良的人工接地体材料,具有良好的导电性能和耐腐蚀性能。
铜具有较高的导电率和热导率,能够有效地将接地电流导入地下,降低接地电阻,确保接地系统的正常运行。
此外,铜具有良好的耐腐蚀性能,能够在潮湿、多雨的环境中长期使用而不易生锈,具有较长的使用寿命。
因此,在一些对接地电阻要求较高、环境较为恶劣的场合,铜材料是一种较为理想的选择。
其次,铝也是一种常用的人工接地体材料,具有较好的导电性能和良好的抗腐蚀性能。
与铜相比,铝的导电性能稍逊一筹,但其价格较低,能够在一定程度上降低工程成本。
同时,铝具有良好的抗腐蚀性能,能够在大气、土壤等介质中长期使用而不易生锈,具有较长的使用寿命。
因此,在一些对成本要求较高、对导电性能要求适中的场合,铝材料是一种较为合适的选择。
最后,镀锌钢也是一种常见的人工接地体材料,具有良好的机械强度和较好的耐腐蚀性能。
镀锌钢具有较高的机械强度,能够在土壤中承受较大的机械载荷而不易变形和破坏,保证接地体的稳定性和安全性。
同时,镀锌钢具有较好的耐腐蚀性能,能够在潮湿、多雨的环境中长期使用而不易生锈,具有较长的使用寿命。
因此,在一些对机械强度要求较高、对耐腐蚀性能要求适中的场合,镀锌钢材料是一种较为适合的选择。
综上所述,人工接地体材料的选择应综合考虑导电性能、耐腐蚀性能、机械强度以及成本等因素,选择合适的材料能够保证接地体的正常运行和使用寿命,确保电气设备和人员的安全。
在实际工程中,需要根据具体的场合和要求选择合适的人工接地体材料,确保接地系统的稳定性和可靠性。
防雷接地材料

防雷接地材料
防雷接地材料是一种用于建筑物、设备和电力线路等的防雷安全设施,用于引导和分散雷击电流,保护人员和设备的安全。
一、铜接地极:铜接地极是目前最常用的防雷接地材料之一。
铜的导电性能好,耐腐蚀性能强,使用寿命长。
铜接地极通常埋设在地下,起到分散和导向雷电电流的作用,从而减小雷击损伤。
二、镀锌接地体:镀锌接地体是将钢材浸泡在含锌的熔融液体中获得的一种易于操作和使用的材料。
它具有良好的导电性能,并且具有耐腐蚀、耐磨损和耐高温等特点。
镀锌接地体通常用于建筑物的接地系统和电力设备的接地系统。
三、铜涂覆接地体:铜涂覆接地体是在钢材表面镀覆一层铜的接地装置。
它兼具铜的优良导电性能和钢的高强度,较好地解决了金属接地材料的导电性能和机械强度两方面的要求。
铜涂覆接地体广泛用于火电厂、变电站、通信基站等大型工程的接地系统建设。
四、镀铜接地极:镀铜接地极是将铜涂覆在接地体表面的接地装置。
它具有铜的优良导电性能和耐腐蚀性能,同时也具备了接地体的机械强度。
镀铜接地极常用于建筑物的接地系统和城市供电系统。
综上所述,防雷接地材料有铜接地极、镀锌接地体、铜涂覆接地体和镀铜接地极等。
这些材料都具有良好的导电性能和耐腐
蚀性能,能够有效地引导和分散雷击电流,保护建筑物、设备和人员的安全。
在实际工程中,根据具体需求选择适合的防雷接地材料,并按照相应的规范和标准进行施工和安装,以确保接地系统的良好运行和可靠性。
八十、施工现场临时用电接地方式采用哪种更好

施工现场临时用电接地方式采用哪种更好?施工现场接地方式主要是TN-S和TT两种,临时用电规范要求必须采用TN-S,当然一些低压引入的,也包括TN-C-S,但施工用电范围内必须TN-S。
有人认为室外优先采用TT,真是如此?未必!每种接地方式都不完美,各有优劣,需结合实际来确定,并尽量弥补劣势。
抛开接地方式的这几种人为定义,看本质。
TT方式现在也不是单纯的独立接地,至少每个回路还是要有PE线引来,不管哪种方式,单独接地会有PE线断开或者接触不好的担忧;PE线从别处引来会有故障电压蔓延的隐患。
没有最好的接地方式,只能根据实际情况来确定、取舍。
现在新的TT系统做法是,仅变压器的接地独立,与后面系统没有直接的金属连接,后面至少每个保护回路PE线连在一起,这样可靠性会好很多。
室外用电设备是可以做局部等电位联结的。
例如配电箱,做法是在以配电箱为圆心,2~3m半径范围内的地面敷设钢筋网(或其他金属网)加混凝土,钢筋网与配电箱接地体等可靠连接。
关于是采用TN-S 系统还是局部TT系统,按以前思路是认为两种做法各有利弊:采用TN-S系统,需要多敷设一根PE线,为防止PE线断线,应该在每个路灯处做PE线重复接地,此举也有一定等电位效果。
缺点是增加了线缆造价,而且存在通过PE线把未及时切除的故障电压传递到其他用电设备上的危险可能性。
采用局部TT系统,可以避免上述缺点,但是应采用RCD保护(除非满足GB 50054—2011相关要求,可以采用过电流保护,不过这基本上不可能实现),这就出现了一个剩余电流保护动作整定值的问题,这个整定值既要躲过线路、用电设备的正常泄漏电流,不能误动作,又要保证在发生接地故障时,约定时间内可以切断故障回路。
临时用电往往用电设备非常多,线路较长,泄漏电流较大,临时性导致变化范围大,所以这个整定值不是那么好确定的,实际中可以认为是无法确定的。
再有,TT系统的概念也在进步和更新,已经不是每个用电设备独立接地那么简单了,与TN-S系统差异很小,只是PE线和电源独立,后面还是连接在一起的,能节省的已经很少了,而且整定非常困难,并不一定适用在临时用电中,需要结合实际来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同接地材料及施工方法的优缺点比较
接地材料是接地的工作主体,材料的选择很重要。
下面对常用的接地材料的属性做个简单的介绍。
广泛使用的接地工程材料有各种金属材料(最常用的如扁钢)、接地体、降阻剂和离子接地系统等。
金属材料如扁钢,也常用铜材替代,主要用于接地环的建设,这是大多接地工程都选用的;接地体有金属接地体(角钢、铜棒和铜板)这类接地体寿命较短,接地电阻上升快,地网改造频繁(有的地区每年都需要改造),维护费用比较高,但是从传统金属接地极(体)中派生出类特殊结构的接地体(带电解质材料),使用效果比较好,一般称为离子或中空)接地系统;另外就是非金属接地体,使用比较方便,几乎没有寿命的约束,各方面比较认可。
在以下的讨论中以降阻剂、非金属接地块和离子接地系统为代表进行探讨。
降阻剂分为化学将阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。
物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。
并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。
现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。
物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。
非金属接地体有是在通讯、广电等部门广泛使用的工程材料。
基本成分是导电能力优越的非金属材料材料复合加工成型的,加工方法有浇注成型和机械压模成型的,一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法;机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。
选型时,尽量采用后者,特别是接地体有抗大电流或大冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。
非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。
离子(中空)接地系统是传统的金属接地改进而来,从工作原理到材料选用都脱胎换骨的变化,形成各种形状的结构。
这些接地系统的共同点是结构部分采用防腐性更好的金属,内填充电解物质及其载体组分的内填料,外包裹导点性能良好的不定性导电复合材料,一般称为外填料。
接地系统的金属材料已经出现的有不锈钢、铜包钢和纯铜材的。
不锈钢的防腐较钢材好,但是在埋地环境中依然会多多少少的锈蚀,以不锈钢为主体的接地系统不宜在腐蚀性严重的环境中使用。
表面处理过的铜是很好的抗锈蚀材料,铜包钢是铜-钢复合材料,钢材表面覆盖铜,可以节约大量的贵金属—铜材。
套管法或电镀法生产,表面铜层的厚度从0.01mm到0.50mm,厚度越厚防腐效果越好。
纯铜材料防腐性能最好,但是要耗用大量的贵金属,在性能要求较高的工程中使用。
由于接地系统大多向垂直方向伸展,所以接地面积大多要求很小,可以满足地形严重局限的工程需要。
特别是,补偿类型的接地系统有加长的设计,笔者曾使用过加长至24米的接地系统,辅以深井法施工,可以达到非常好的效果。
介绍的接地材料各有优势,但是都有自身的局限。
我们提倡各取所长,选择适当的材料满足不
同的工况。